JP3648756B2 - Coating material for semiconductor devices - Google Patents

Coating material for semiconductor devices Download PDF

Info

Publication number
JP3648756B2
JP3648756B2 JP07539394A JP7539394A JP3648756B2 JP 3648756 B2 JP3648756 B2 JP 3648756B2 JP 07539394 A JP07539394 A JP 07539394A JP 7539394 A JP7539394 A JP 7539394A JP 3648756 B2 JP3648756 B2 JP 3648756B2
Authority
JP
Japan
Prior art keywords
layer
coating material
semiconductor
film
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07539394A
Other languages
Japanese (ja)
Other versions
JPH07263722A (en
Inventor
祐一 江利山
欣司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP07539394A priority Critical patent/JP3648756B2/en
Publication of JPH07263722A publication Critical patent/JPH07263722A/en
Application granted granted Critical
Publication of JP3648756B2 publication Critical patent/JP3648756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Paints Or Removers (AREA)
  • Light Receiving Elements (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Photovoltaic Devices (AREA)
  • Led Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は光電変換機能を利用する半導体素子を保護するコ−テイング材に関し、さらに詳しくは、太陽電池、赤外線検出器、フォトダイオ−ド、カラ−センサ−、エレクトロルミネッセンス(EL)表示パネル、固体撮影像素子、X線蛍光板、発光ダイオ−ドなどの半導体素子を保護する、透明性、耐傷つき性、耐酸性、耐候性、耐汚染性、絶縁性を特徴とするコ−テイング材に関する。
【0002】
【従来技術】
光電変換機能、すなわち光エネルギ−/電気エネルギ−の相互変換素子は半導体の基本特性の一つであり、広く応用されており、例えば光起電力素子としては太陽電池、赤外線検出器、フォトダイオ−ドが、カラ−センサ−、光増幅素子としてはX線用蛍光板、発光素子としてはEL表示パネル、発光ダイオ−ド、および固体撮像素子などが知られている。
これらの中で、例えば、光起電力素子としての太陽電池は安全性の高いクリ−ンなエネルギ−源として期待されている。光起電力素子の素材としては、例えば、非晶質シリコン、多結晶シリコン、または化合物半導体としてカドミウムセレン/カドミウムテルル、銅インジウムセレナイドがある。例えば、これら半導体の光照射側に透明電極、集電電極、裏面に裏面電極を形成した光起電力素子と該光起電力素子を封止、固定する材料層および透明な表面層から構成される太陽電池モジュ−ルとして用いられている。
また、EL表示パネルは半導体に高電場を印加したときに生ずる発光現象を利用したものであり、半導体としては例えば、ZnS、ZnSe、CaS、SrS、などの主素材にCuCl、CuBr、CuAl、CuMnCl、Mn、Eu、Ce、Tb、Sm、Tm、Pr、CuMnなどを添加したものがある。EL表示パネルにおいて半導体は発光面側に誘電体、透明電極層、裏面に誘電体、電極層を形成し、発光素子とし、該発光素子を封止、固定する材料層および透明な表面層を形成してEL素子モジュ−ルとして用いられている。
以上の例に示した光電変換機能を利用する半導体素子に求められている性能は初期の光電変換機能の高さもさることながら、屋外環境の中で長期的に光電変換機能を維持することが重要であり、また、普及のためには安価であること、軽いことも求められている。
また、これら半導体素子を屋外で長期使用する場合、その光電変換機能が経時的に低下することが問題とされている。光電変換機能の低下原因としては、光照射面となる表面層の硬度不足により砂塵で傷が発生すること、耐候性不足による変色、クラック、失透、大気中の汚染物質の付着、自動車排気ガスによる汚染、酸性雨による表面の劣化による透光性、絶縁性の低下が指摘されている。
これらの問題を解決するために、従来、表面被覆材として例えば、ガラス、セラミックスなどの透明無機化合物や、ポリエステルなどの有機樹脂、透明な無機化合物を気相法で表面にコ−テイングしたフッ素樹脂フィルムなどを用いた光電変換素子モジュ−ルが提案されている。
【0003】
【発明が解決しようとする課題】
【0004】
しかしながら、表面被覆材として、ガラスを用いた場合、耐候性、表面の耐傷つき性、絶縁性に関しては改善されるが、モジュ−ルとしての重量が増加し、割れ易いという問題点がある。
また、ポリエステルなどの有機樹脂を用いた場合、耐候性、耐汚染性、耐酸性、表面硬度が不足するという問題点がある。一方、透明な無機化合物を気相法で表面にコ−テイングしたフッ素樹脂フィルムを用いる場合、耐汚染性、表面硬度が十分ではなく、かつ高価であるという問題点があった。
本発明は前記従来技術の問題点を解決することを目的になされたもので、半導体素子表面の光劣化、砂塵、風雨、酸性雨、大気中の汚染物質の付着などによる汚染による透光性、絶縁性低下を防ぐ半導体用コ−テイング材を提供することを目的とする。
なお、本発明においては保護とは、特に、屋外での使用において遭遇する光電変換機能を利用する半導体素子表面の光劣化、砂塵、風雨、酸性雨、大気中の汚染物質の付着などによる汚染による透光性、絶縁性低下を防ぐことを意味する。
【0005】
【問題点を解決するための手段】
すなわち、本発明は(A)一般式(1) R−Si(OR14-n(式中、Rは水素原子もしくはC1〜C12のアルキル基、R1は水素原子もしくはC1〜C6のアルキル基であり、nは0、1、2、3である)で表される少なくとも1種のアルコキシシランの加水分解物、もしくはその部分縮合物からなるポリスチレン換算重量平均分子量が500〜200、000であるポリシロキサン(以下、単に「ポリシロキサン」と記す)および/または(B)一般式(2)−Si(OR13-m(R1m(式中、R1は前記一般式(1)と同じで、m は0、1、2である)で表される基を分子中に含むポリスチレン換算重量平均分子量が5000〜100、000であるシリル化ビニル系重合体(以下、単に「シリル化ビニル系重合体」と記す)ならびに有機溶媒を含有し、前記(A)ポリシロキサンおよび/または(B)シリル化ビニル系重合体は、固形分として10〜60重量%含有されることを特徴とする半導体素子用コーティング材を提供するものである。
【0006】
以下に本発明を詳細に説明する。
本発明の半導体素子用コ−テイング材において、一般式(1)中のRの具体例としては、水素原子、メチル基、エチル基、プロピル基、ブチル基、フェニル基、オクチル基、ドデシル基、アセトキシ基などを挙げることができ、ビニル基、エポキシ基、アミノ基、アクリル基などの官能基を含んでもよい。また、式中R1の具体例として、水素原子、メチル基、エチル基、プロピル基、ブチル基、フェニル基などを挙げることができる。
本発明のポリシロキサンの前駆体となるアルコキシシランは1種単独でも2種以上でも使用することができるが、ポリシロキサンの硬化性、硬度、耐候性、耐薬品性の観点から、一般式(1)で表されるアルコキシシランのなかで80モル%以上がCH3Si(OR1)3で表されるメチルアルコキシシランである場合が好ましく、中でもメチルトリメトキシシラン、メチルトリエトキシシランをなどが好ましい。
ポリシロキサンのゲルパ−ミエ−ションクロマトグラフィ−(GPC)で求めたポリスチレン換算重量平均分子量は通常500〜200、000であり、好ましくは1000〜100、000である。分子量が500未満の場合は成膜性が不良の場合があり、また、分子量が200、000を越える場合、保存安定性が低下する場合がある。
【0007】
これら、アルコキシシランの加水分解物、縮合物であるポリシロキサンの製造法はすでに公知であり、多くの方法が提案されており、例えば特公昭52−3961に開示されている方法によって実施することができる。すなわち、その方法は前記アルコキシシランに所定量の水を加え、加熱することにより加水分解、縮合を行わせる工程からなっている。
アルコキシシランの加水分解に使用される水としては蒸留水、イオン交換水、もしくは後述するコロイド状金属酸化物の分散媒体の水を用いることができる。加水分解に用いる水の添加量は前記アルコキシシラン1モルに対して通常、0.8〜3モルであり、好ましくは1〜2モルである。加水分解に使用される水が0.8モル未満では塗膜の成膜性が悪い場合があり、3モルを越えると保存安定性が低下する場合がある。加水分解に用いられる水は通常、中性、もしくはコロイド状金属酸化物を使用する場合は酸性のものが用いられ、水素イオン濃度としては2〜7のものを使用する。
また、反応温度は通常20℃以上、溶剤の沸点以下であり、好ましくは40℃〜150℃で実施される。また反応時間は、通常、30分以上12時間未満である。
【0008】
本発明においてシリル化ビニル系重合体の製造は、通常、前記一般式(2)で表されるシリル基を有するビニル系化合物とシリル基を有さない有機ビニル化合物とをラジカル発生化合物の存在下の共重合により合成できる。
一般式(2)において、R1は一般式(1)と同様である。
シリル基を有するビニル系化合物としては、γ−トリメトキシシリルプロピルメタクリレ−ト、γ−メチルジメトキシシリルプロピルメタクリレ−ト、、トリメトキシシリルエチルスチレン、トリメトキシシリルブタジエンなどをあげることができる。
また、これらシリル基を有するビニル系化合物と共重合する有機ビニル化合物としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸グリシジル、メタクリル酸アミノエチル、メタクリル酸ヒドロキシエチル、などのメタクリル酸エステル類や、アクリル酸メチル、アクリル酸ブチル、アクリル酸2−エチルヘキシルなどのアクリル酸エステル類、アクリル酸、メタクリル酸、マレイン酸、イタコン酸などの不飽和カルボン酸類や、スチレン、α−メチルスチレン、アクリロニトリルなどのビニル化合物をあげることができる。これらのなかで好ましいものは、メタクリル酸エステル類である。
【0009】
一般式(2)で表されるシリル基はビニル系重合体分子の末端、側鎖にあってもよく、シリル化ビニル系重合体中のケイ素含有量として通常0.01〜20重量%、好ましくは0.1〜10重量%であり、0.01%未満では耐候性、密着性が不十分であり、一方、20重量%を越えると保存安定性が低下する場合がある。シリル化ビニル系重合体のポリスチレン換算重量平均分子量は、5000〜100、000であり、5000未満では成膜性が低下し、また200、000を越えると平滑な被覆膜が得られない場合がある。シリル化ビニル系重合体の示差熱分析法により求めたガラス転移温度は通常−60?〜150?であることが好ましい。ガラス転移温度が−60?未満では十分な塗膜硬度が得られず、一方、150?を越えると成膜性が低下する場合がある。
【0010】
本発明の半導体用コ−テイング材には、前記ポリシロキサンおよびシリル化ビニル系重合体のいずれか一方、もしくは両者を混合または共縮合したものを用いることができる。
ポリシロキサンとシリル化ビニル系重合体を混合して用いる場合、ポリシロキサンとシリル化ビニル系重合体の混合比は固形分比として通常任意で混合できるが好ましくは、80/20〜20/80(重量比)の範囲で用いられる。
また、ポリシロキサンとシリル化ビニル系重合体との共縮合物は、例えば、前記シリル化ビニル系重合体に対して前記一般式(1)で表されるアルコキシシランと水、有機溶剤を混合し加水分解、共縮合することにより製造することができる。この場合、例えば、酢酸、メタンスルホン酸、などの有機酸もしくはアンモニア水、トリエチルアミン、テトラメチルアンモニウムヒドロキシド、尿素、などの塩基、もしくは、テトラブトキシシルコニウム、テトラブトキシチタニウム、テトライソプロポキシアルミニウムなどの金属アルコキシドの中から選ばれる一種以上の化合物など、好ましくは、テトラブトキシジルコニウム、テトラブトキシチタニウム、テトライソプロポキシアルミニウムなどの半導体に対する腐食性の低い化合物を触媒として用いることができる。
【0011】
ポリシロキサンおよび/またはシリル化ビニル系重合体は、半導体コ−テイング材に固形分として10〜60重量%含まれる。本発明の半導体用コ−テイング材の固形分中のケイ素含有量は、通常、0.1〜50重量%、好ましくは1〜30重量%である。ケイ素含有量が0.1未満の場合は硬化膜の耐候性が低下し、50重量%を越えるとコ−テイング材としての保存安定性が低下する場合がある。また、本発明の半導体用コーテイング材には、金属酸化物、有機溶剤、硬化剤、その他の添加物などを添加することもできる。金属酸化物は、被覆膜の補強、硬度向上のために添加され、微粒子状の酸化ケイ素を粉体もしくはコロイド状金属酸化物の状態で添加することができる。金属酸化物としては酸化ケイ素、アルミナ、ジルコニア、チタニア、セリア、酸化亜鉛、チタン酸カリなどを挙げることができる。
【0012】
コロイド状金属酸化物は液状の分散媒体中、球状、棒状、羽毛状、不定形状の微粒子として分散したコロイド状の金属酸化物を意味する。金属酸化物の例としてはシリカ、アルミナ、チタニア、ジルコニア、酸化アンチモンなどを挙げることができるがこれらに限定される物ではない。分散媒体としては水もしくはメタノ−ル、イソプロパノ−ル、エチルセロソルブ、ジメチルアセトアミドなどの親水性有機溶媒を用いることができる。コロイド状金属酸化物の平均粒子径は球状の場合、0.005〜0.05μm、好ましくは0.01〜0.03μmであり、羽毛状、棒状の場合0.005〜0.1μmの範囲のものが使われ、固形分濃度が通常10〜40重量%程度のものである。分散媒が水の場合、pHは2〜6の範囲にある酸性コロイド状金属酸化物を用いることが好ましい。
コロイド状金属酸化物の平均粒子径が0.005μm未満においては、被覆膜の補強効果は小さく、一方、0.05μmを越える場合透明性が低下する場合がある。
【0013】
コロイド状金属酸化物は前記一般式(1)のアルコキシシランの加水分解、縮合に用いる水として用いることもでき、この場合水分量がアルコキシシランの使用モル数に対して通常0.8〜3倍モル、好ましくは1.0〜2倍モルである量が添加される。
これらのコロイド状金属酸化物の具体例を示すと、水を分散媒とするコロイド状シリカとしては、日産化学工業(株)製 スノ−テックス;触媒化成工業(株)製 カタロイドSN、をあげることができるが、一般式(1)のアルコキシシランにおいてn=0すなわちテトラアルコキシシランを加水分解することにより製造することもできる。
また、有機溶剤分散コロイド状シリカとしては例えば、日産化学工業(株)製イソプロパノ−ルシリカゾル、およびメタノ−ルシリカゾル、触媒化成工業(株)製 オスカルなどが市販されている。コロイド状アルミナゾルとしては、川研ファインケミカル(株)製 アルミナクリアゾルなどを用いることができる。
本発明において、コロイド状金属酸化物の使用量は、半導体コーティング材の全固形分中、通常、0〜50重量%であり、50重量%を超えると半導体コーティング材の透明性が低下する場合がある。
有機溶媒としては、例えばメタノ−ル、エタノ−ル、イソプロピルアルコ−ル。イソブチルアルコ−ル、エチレングリコ−ル、ジエチレングリコ−ル、エチレングリコ−ルモノブチルエ−テル、エチレングリコ−ルモノエチルエ−テル、などの1価、2価のアルコ−ル類やベンゼン、トルエン、キシレン、などの芳香族炭化水素、ジメトキシエタン、テトラヒドロフラン、ジオキサン、酢酸エチレングリコ−ルモノエチルエ−テル、などのエ−テル類、アセトン、メチルエチルケトン、ジイソブチルケトン、シクロヘキサノン、などのケトン類、酢酸エチル、酢酸ブチル、炭酸プロピレン、γ−ブチロラクトンなどのエステル類などの中から一つ以上組み合わせて用いることができる。
本発明において、有機溶媒の使用量は、通常、半導体コーティング材の20〜95重量%である。
【0014】
硬化剤の具体例としては、例えば、ジブチルスズジラウレ−ト、ジオクチルスズじマレエ−ト、オクチルスズトリスラウレ−トなどの有機スズ化合物や、テトラメチルアンモニウムヒドロキシド、アミノプロピルトリエトキシシラン、アミノエチルアミノプロピルトリメトキシシラン、などのアミの化合物、酢酸、メタンスルホン酸などの酸、アルミニウムトリスイソプロポキシド、アルミニウムトリスエチルアセトナ−トなどのアルミニウム化合物を挙げることができる。
硬化剤の使用量は、ポリシロキサンおよびシリル化ビニル系重合体の合計に対して、通常、0〜5重量%、好ましくは0〜2重量%であり、5重量%を超える場合には、半導体コーティング材の可使時間を短くするため好ましくない。
また、本発明において硬化剤は半導体コーティング材を使用する直前に添加することが、可使時間をより長くすることから好ましい。
本発明の半導体コ−テイング材の製造方法としては、例えば、ポリシロキサン、コロイド状アルミナおよびシリル化ビニル系重合体からなる組成物として特開昭63−308077号公報記載の方法、すなわち、アルコキシシランを水性アルミナゾルの存在下、加水分解、縮合して得られるアルミナ分散ポリシロキサン溶液へ、シリル基含有ビニル系樹脂を添加する方法、特開昭64−001769号公報記載の方法、すなわち、アルコキシシランを所定量の水で加水分解・縮合して得られる溶液へ、ジルコニウム化合物、シリコン変性アクリル樹脂を添加する方法などをあげることができる。
【0015】
本発明の半導体コ−テイング材は、半導体素子および半導体素子の周辺を保護するために使用されるが、好ましくは大気環境に接する表面との間に一層以上被覆されることにより保護効果を発現するものであり、さらに好ましくは、光を入射もしくは発光する側の大気と接する表面に被覆されることを特徴とする。
本発明における半導体素子としては光電変換機能を発現するかぎりにおいて、その形状、材質は限定されず、薄膜、単結晶固体、粒子、繊維状であっても良く、これらを一つ以上組み合わせたり、集合体、分散体として用いても良い。
また、半導体の素材としては、均質の無機化合物、有機化合物、有機金属化合物およびこれらの混合物が挙げられる。
本発明の半導体コ−テイング材の塗布方法は平面状素材を被覆する場合、例えば、スプレ−、ロ−ルコ−タ−、バ−コ−タ−、フロ−コ−タ−、ハケ、およびデイッピングなどの方法で実施することができる。また、非平面状素材、例えば粉体、単結晶固体表面を被覆する場合は例えば、浸漬後ろ過乾燥する方法、浸漬後スプレ−ドライする方法などを用いることができる。
本発明の半導体コーテイング材からなる被覆層は、塗布後硬化させるが、その硬化条件は、通常、大気圧下で、被加熱体の温度が20〜300℃であり、平面状素材を被覆する場合、好ましくは50〜200℃であり、一方、非平面状素材を被覆する場合は好ましくは80〜300℃である。硬化温度が20℃未満では硬化に長時間が必要であり、一方、300℃を越えると半導体コ−テイング材の分解が起きる場合がある。
【0016】
硬化時間は通常、平面状素材を被覆する場合、0.5分から8時間であり、好ましくは5分から1時間である。一方、非平面状素材を被覆する場合は、2秒から2時間であり、好ましくは5秒から1時間である。
本発明において、半導体コーテイング材の被覆層の厚みは通常、0.01〜1000μmであり、平面状素材に対しては1〜100μm、非平面状素材、例えば粉体、単結晶固体表面を被覆する場合0.01〜10μmである。0.01μm未満では実質的保護効果は低く、1000μmを越えると柔軟性が低下する場合がある。
【0017】
本発明の半導体コ−テイング材を被覆する具体例としては、図1〜図8の半導体素子モジュ−ル概略断面図に示すような、半導体素子と大気環境に接する表面との間に一層以上被覆したものであり、好ましくは光を入射もしくは発光する側の大気と接する表面に被覆されるように構成される。なお、図1〜に図8おいては、本発明の半導体コ−テイング材により被覆される層をシロキサン層と略記する。
図1に示す構造は、光照射面もしくは発光面側からシロキサン層(1)、シロキサン層(2)、半導体素子、シロキサン層(3)および背面材からなる。ここで、異なる3つのシロキサン層は、同一のであっても異なってもよい。
図2に示す構造は、光照射面もしくは発光面側からシロキサン層、有機樹脂層(1)、半導体素子、有機樹脂層(2)および背面材からなる。
図3に示す構造は、光照射面もしくは発光面側からシロキサン層、フッ素樹脂層、有機樹脂層(1)、半導体素子、有機樹脂層(2)および背面材からなる。
図4に示す構造は、光照射面もしくは発光面側からシロキサン層(1)、シロキサン層(2)、半導体素子、有機樹脂層および背面材からなる構造からなる。
図5に示す構造は、光照射面もしくは発光面側からシロキサン層(1)、フッ素樹脂層、シロキサン層(2)、半導体素子、有機樹脂層、背面材からなる。
図6に示す構造は、光照射面もしくは発光面側からフッ素樹脂層、シロキサン層、半導体素子、有機樹脂層および背面材からなる。
図7に示す構造は、光照射面もしくは発光面側からフッ素樹脂層、シロキサン層、有機樹脂層(1)、半導体素子、有機樹脂層(2)および背面材からなる。をあげることができる。
図8に示す構造は、光照射面もしくは発光面側からフッ素樹脂層、シロキサン層(1)、有機樹脂層(1)、シロキサン層(2)および背面材からなる。
をあげることができる。
【0018】
上記図1〜図8の構造のなかでは図3、図4および図5の構造が耐傷つき性などの点で好ましい。
図1〜図8に示す半導体素子モジュ−ルにおいて、背面材は半導体素子を支持、固定し、背面からの物理的衝撃による破損を防止する材料であり、例えば絶縁性樹脂、セラミック、絶縁被覆した金属基板、絶縁性無機化合物をコ−テイングしたフッ素樹脂フィルムを用いることができる。
また、有機樹脂層は半導体素子を支持、固定するとともに外部からの衝撃、水分の侵入を防ぐ役割をもち、例えば、酢酸ビニル/エチレン共重合体(EVA)、ポリビニルブチラ−ト(PVB)、シリコ−ン樹脂、エポキシ樹脂、フッ素化ポリイミド樹脂、アクリル樹脂、ナイロンなどの透明、耐候性の良好な樹脂を主成分とする材料を用いることができる。
これら有機樹脂層は400nm以上の波長領域で光透過率が80%以上であり、入射光の反射による損失を防ぐ為、屈折率は1.4から2.0の範囲であることが望ましい。また、上記有機樹脂には必要に応じて架橋剤、紫外線吸収材を添加してもよい。
【0019】
また、有機樹脂層としてフッ素樹脂被覆層を用いてもよく、さらに、その表面を無機化合物、例えば、酸化ケイ素、窒化ケイ素、炭化ケイ素、アルミナ、酸化チタンでコ−テイングしたフッ素フィルムを用いることができる。
このようなフッ素フィルムとしては、例えば、4フッ化エチレン/−エチレン共重合体(ETFE)、3フッ化塩化エチレン樹脂(PCTFE)、4フッ化エチレン/パ−フルオロアルキルビニルエ−テル共重合体(PFA)、4フッ化エチレン/6フッ化プロピレン共重合体(FEP)、フッ化ビニリデン樹脂(PVDF)、フッ化ビニル樹脂(PVF)などをあげることができる。
【0020】
また、無機化合物をフッ素フィルムにコ−テイングする方法としては、例えば、H2、SiH4、O2、N2O、N2、NH3、CH4、C2H2、Al(C2H5)3、Al(C2H5)3、AlCl3、Ti(OC2H5)4、などの中から選ばれる物質を用いたプラズマCVD(Chemical Vapor Deposition)、また、スパッタ法では、酸化ケイ素、窒化ケイ素、炭化ケイ素、アルミナ、酸化チタンをタ−ゲットとして実施することができる。
【0021】
本発明の半導体コーテイング材により、保護する半導体素子の構成例を図8および図9に示すがこれらに限定されるものではない。
図8においては光起電力素子の断面概略図を示すが、その構成は裏面から順に、導電性基体(25)、裏面電極層(24)、半導体層(23)、透明電極(22)、集電電極(21)からなる。
ここで、導電性基体は、例えば、ステンレススチ−ル、アルミニウム、銅、などから選ばれる。
裏面電極層は、例えば、Ti、Cr、Al、Ag、Cu、Auなどの金属、酸化亜鉛、酸化チタン、酸化スズから選ばれる金属酸化物、あるいは金属層と金属酸化物層の複合層から選ばれる。
光電変換層である半導体層は、例えば、非晶質シリコン、結晶シリコン、銅インジウムセレナド、カドミウムセレン/カドミウムテルルなどの化合物半導体のなかから選ばれ、pin結合、pn結合、ショットキ−型接合を形成している。
透明導電層は、例えば、酸化インジウム、アンチモンド−プの酸化スズ、フッ素ド−プの酸化スズ、酸化インジウム/酸化スズ(ITO)、酸化亜鉛、酸化チタンなどから選ばれる。
集電電極層は、例えば、パタ−ン化されたTi、Cr、Al、Ag、Cu、Auなどの金属から形成される。
【0022】
これらのうち裏面電極層、光電変換層、透明導電層は通常抵抗加熱蒸着、電子ビ−ム蒸着、スパッタリング法により形成することができ、また、集電電極層は導電性ペ−ストを用いた印刷法や全面に電極金属層を形成したのち、レジストを塗布、電極パタ−ンに対応したネガマスクを用いて露光、現像後、非被覆層をエッチングしてレジストを除去するという、光リソグラフィ−法により形成することができる。
図9においてはEL素子の概略断面図例を示すが、その構成は裏面から順に、導電性基体(31)、誘電体層(32)、半導体層(33)、誘電体層(32)、透明導電層(34)から構成される。
導電性基体は、例えば、ステンレススチ−ル、アルミニウム、銅、などから選ばれる。
【0023】
誘電体層は、例えば、Y2O3、Si3N4、BaTiO3、PbZrO3、PbTiO3、ZnOなどから選ばれる。
半導体層(発光層)は例えば、ZnS、ZnSe、CaS、SrS、などの主素材にCuCl、CuBr、CuAl、CuMnCl、Mn、Eu、Ce、Tb、Sm、Tm、Pr、CuMnなどを添加したもの中から選ばれる。
透明導電層は、例えば、酸化インジウム、アンチモンド−プの酸化スズ、フッ素ド−プの酸化スズ、酸化インジウム/酸化スズ(ITO)、酸化亜鉛、酸化チタンなどから選ばれる。
これらのうち半導体層、誘電体層、透明導電層は抵抗加熱蒸着、電子ビ−ム蒸着、スパッタリング法により形成することができるが、半導体粉末もしくは誘電体粉末を有機バインダ−樹脂で塗布乾燥して形成することもできる。
【0024】
【実施例】
以下、実施例に基づき本発明を詳細に説明する。なお、本発明はこれら実施例に限定されるものではない。実施例において特に説明しないかぎり部とは重量部を、%とは重量%を意味する。
参考例1 半導体素子の作成
アモルファスシリコン(a−Si)光起電力素子を作製した。以下、図9を参照して、作製手順を説明する。
まず、0.125mm厚みのステンレス基板(25)上にスパッタ法によって、裏面電極(24)としてAl膜厚500nm、酸化亜鉛500nm、を順次形成した。つぎにプラズマCVD法によりSiH4とPH3とH2よりn型a−Siを、SiH4とH2からi型a−Si層を、SiH4とBF3とH2からp型微結晶μc−Si層を形成し、n型膜厚15nm、i層膜厚400nm、p層膜厚10nm、n層膜厚10nm、i層膜厚80nm、p層膜厚10nmの積層構成の半導体層(23)を形成した。次に、酸素雰囲気下Inを抵抗加熱法で蒸着することにより酸化インジウムからなる透明電極(22)を膜厚70nmで形成した。次に、銀ペ−スト(デユポン製#5504)をスクリ−ン印刷で格子蒸に印刷したのち125℃で熱処理をして集電電極を形成することにより光起電力素子を作製した。
【0025】
参考例2 半導体素子の作成
EL発光素子を作製した。以下、図10を参照して、作成手順を説明する。
裏面を絶縁処理した0.125mmの厚みのアルミニウム基板上にスパッタ法によりY2O3膜厚500nmの誘電体層を形成し、この上にCuAlを添加した粒子径20μmのZnSをシアノエチルセルロ−スをバインダ−として厚み100μmにコ−テイングし、乾燥させることで半導体層(発光層)を形成した。次にスパッタ法によりY2O3膜厚500nmの誘電体層を形成した。次に酸素雰囲気下Inを抵抗加熱で蒸着することにより酸化インジウムからなる透明電極層を形成することでEL発光素子を作製した。
【0026】
実施例1
還流冷却器付きガラス製フラスコにメチルトリメトキシシラン310部、メタノ−ルシリカゾル230部およびイオン交換水100部混合し、60℃で6時間加熱攪拌したのち、室温まで冷却し、次にイソプロピルアルコ−ル400部およびジオクチルスズラウレート0.5部を添加することでコ−テイング材(1)を調製した。
このコーテイング材中の固形分の分子量をGPCで求めたところ重量平均分子量として5000であった。
【0027】
実施例2
還流冷却器付きガラス製フラスコにメチルトリメトキシシラン351部、メタノ−ルシリカゾル422部、コロイド状シリカ69部、ブチルセロソルブ158部を混合し60℃で4.5時間加熱攪拌したのち冷却することでコ−テイング材(2)を得た。
このコーテイング材の固形分の分子量をGPCで求めたところ重量平均分子量として1500であった。
【0028】
実施例3
窒素雰囲気下、還流冷却器付きガラス製フラスコに、メタクリル酸メチル45部、γ−メタクリロキシプロピルトリメトキシシラン5部、キシレン50部、2’、2’−アゾイソブチロニトリル(AIBN)0.5部を添加し、60℃で8時間加熱攪拌後、さらにジブチルスズラウレート2部を添加することでコ−テイング材(3)を得た。
このコーテイング材の固形分の分子量をGPCで求めたところ重量平均分子量として25000であった。
【0029】
実施例4
実施例2で得られたのコ−テイング材67部と実施例3で得られたコ−テイング材33部を混合することによりコ−テイング材(4)を調製した。
実施例5
実施例1においてジオクチルスズラウレートを1部添加するかわりにアミノエチルプロピルトリメトキシシラン1部を添加した以外は、実施例1と同様にしてコーティング材(5)を得た。
【0030】
使用例1(光起電力素子モジュ−ルの作製)
絶縁処理した亜鉛鋼板を背面材としてこの上にコ−テイング材(4)100部とジブチルスズジラウレ−ト1部の混合液をスプレ−コ−タ−で塗装後、150℃で15分加熱乾燥させることにより厚み15μmの膜を形成した。
次に参考例1で作成した光起電力素子を載せ、この上に再びコ−テイング材(4)を塗装し、150℃で30分加熱乾燥させることによりさらに膜厚30μmのコ−テイング層とし接着層を形成した。
次に同様にコ−テイング材(1)と硬化剤の溶液をスプレ−コ−タ−で塗装し、120℃で30分加熱乾燥することにより膜厚10μmの表面保護層を形成し、図1の構造の光起電力素子モジュールを得た。
ここで光電変化素子の出力端子はあらかじめ背面剤の亜鉛鋼板に出力端子ようの孔を開けておいて取り出して置いた。
【0031】
使用例2 (光起電力素子モジュ−ル作製)
絶縁処理した亜鉛鋼板を背面材としてこの上にコ−テイング材(3)をスプレ−コ−タ−で塗装後、100℃で15分加熱乾燥させることにより厚み15μmの膜を形成した。
次に参考例1で作成した光起電力素子を載せ、この上に再び同様のコ−テイング材(3)と硬化剤の溶液を塗装し、100℃で30分加熱乾燥させることによりさらに膜厚30μmのシロキサン層を形成した。次にコ−テイング材(4)100部とジオクチルスズジラウレ−ト1部からなる溶液をスプレ−コ−タ−で塗装し、120℃で30分加熱乾燥することにより表面に膜厚30μmのシロキサン被覆層を形成することで、図1の構造の光起電力モジュ−ルを作製した。
【0032】
使用例3 (光起電力素子モジュ−ル作製)
透明な接着剤としての架橋剤と紫外線吸収材を添加して成形したシ−ト状のエチレン−酢酸ビニル共重合体(EVA)を有機樹脂被覆層として用い、有機樹脂被覆層(EVA)/参考例1で作成した光起電力素子/有機樹脂被覆層(EVA)/背面材(絶縁処理した亜鉛鋼板)の順で重ね、真空ラミネ−タにいれ、1Torrに真空排気したのち大気圧をかけ140℃で30分間加熱してこれらを接着した。
次に光照射側の面に対し、コ−テイング材(1)をスプレ−コ−タ−で塗装し、120℃で30分加熱乾燥することにより表面に膜厚10μmのシロキサン層を形成することで、図2の構造の光起電力素子モジュ−ルを作製した。
【0033】
使用例4 (光起電力素子モジュ−ル作製)
絶縁処理した亜鉛鋼板を背面材としてこの上にコ−テイング材(3)をスプレ−コ−タ−で塗装後、100℃で15分加熱乾燥させることにより厚み15μmの膜を形成した。 次に参考例1で作成した光起電力素子を載せ、この上に再びコ−テイング材(3)と硬化剤の溶液を塗装し、100℃で30分加熱乾燥させることにより膜厚30μmのシロキサン層を形成した。次に光照射側の面に対し、コ−テイング材(5)をスプレ−コ−タ−で塗装し、120℃で30分加熱乾燥することにより表面に膜厚10μmのシロキサン層を形成することで、図1の構造の光起電力素子モジュ−ルを作製した。
【0034】
使用例5 (光起電力素子モジュ−ル作製)
13.56MHzの高周波電源を用いてSiH4/NH4/H2=流量比6/172/54で200℃、0.2Torrの条件でETFEのフィルム上に1μmの窒化ケイ素膜をプラズマCVDで形成し、これをフッ素樹脂被覆層層として用いた。透明な接着剤としての架橋剤と紫外線吸収材を添加して成形したシ−ト状の有機樹脂被覆層(EVAフィルム)を作製し、フッ素樹脂被覆層/有機樹脂被覆層/参考例1で作成した光起電力素子/有機樹脂被覆層/背面材(絶縁処理した亜鉛鋼板)の順で重ね、真空ラミネ−タにいれ、1Torrに真空排気したのち大気圧をかけ140℃で30分間加熱してこれらを接着した。次に光照射側の面に対し、コ−テイング材(1)をスプレ−コ−タ−で塗装し、120℃で30分加熱乾燥することにより表面に膜厚10μmのシロキサン層を形成することで図3の構造の光起電力素子モジュ−ルを作製した。
【0035】
使用例6 (光起電力素子モジュ−ル作製)
絶縁処理した亜鉛鋼板の上に有機樹脂被覆層としてのEVAフィルムを接着しこの上に参考例1で作成した光起電力素子を接着した。
次にコ−テイング材(3)をスプレ−コ−タ−で塗装し、100℃、15分乾燥させることにより厚み15μmのシロキサン層を形成した。この上に、コ−テイング材(1)をスプレ−コ−タ−で塗装し、120℃、30分乾燥することにより表面に膜厚10μmのシロキサン層を形成することで図4の構造の光起電力素子モジュ−ルを作製した。
使用例7 (光起電力素子モジュ−ル作製)
絶縁処理した亜鉛鋼板の上に有機樹脂被覆層としてのEVAフィルムを接着しこの上に参考例1で作成した光起電力素子を接着した。次にコ−テイング材(3)をスプレ−コ−タ−で塗装し、100℃、15分乾燥させることにより厚み15μmのシロキサン被覆層を形成した。この上に前記使用例5で使用したフッ素樹脂フィルムを接着し、さらに、コ−テイング材(1)をスプレ−コ−タ−で塗装し、120℃、30分乾燥することにより表面に膜厚10μmのシロキサン被覆層を形成することで図5の構造の光起電素子モジュ−ルを作製した。
【0036】
使用例7 (EL発光素子モジュ−ルの作製)
厚み100μmのPCTFEシ−トの上にEVAフィルム、参考例2で作成したEL発光素子、EVAフィルム、PETフィルムの順で重ね、真空ラミネ−タにいれ1Torrで真空排気した後大気圧をかけ140℃で30分間加熱して接着した。この上にコ−テイング材(4)と硬化剤の溶液をスプレ−コ−タ−で塗装し、120℃で30分間乾燥することにより表面に膜厚30μmのシロキサン皮膜層を形成することで図2の構造ののEL発光素子ジュ−ルを作製した。
使用例8
絶縁処理した亜鉛鋼板の上に、有機樹脂被覆層としてEVAフィルムを接着し、その上に参考例1で作成した光起電力素子を接着した。
次にコーティング材(4)をスプレーコーターで塗装し、150℃、30分乾燥させることにより厚さ25μmのシロキサン層を形成した。この上に、EVAフィルムを接着した。
次いで、片面をコロナ放電により親水化処理したETFEフィルムの処理面に、コーティング材(2)をスプレーコーティングし、150℃、15分乾燥させ、2μmのシロキサン層を形成した。このシロキサンコートETFEフィルムをシロキサン層が裏面になる様に、前記EVAフィルム面を接着することにより図7に示す構造の光起電力モジュールを作製した。
【0037】
比較例1 (表面に有機樹脂被覆層を設けた構造)
絶縁処理した亜鉛鋼板を背面材として用い、透明な接着剤としての架橋剤と紫外線吸収材を添加して成形したシ−ト状の有機樹脂被覆層(EVAフィルムとポリエステルフィルム)を作製し、有機樹脂被覆層(ポリエステル)/有機樹脂被覆層(EVA)/参考例1で作成した光起電力素子/有機樹脂被覆層(EVA)/背面材の順で重ね、真空ラミネ−タにいれ、1Torrに真空排気したのち大気圧をかけ140℃で30分間加熱してこれらを接着することで図2の構造の光起電力素子モジュ−ルを作製した。
【0038】
比較例2(表面のシロキサン層を設けない構造)
13.56MHzの高周波電源を用いてSiH4/NH4/H2=流量比6/172/54で200℃、0.2Torrの条件でETFEのフィルム上に1μmの窒化ケイ素膜をプラズマCVDで形成し、これをフッ素樹脂被覆層層として用いた。透明な接着剤としての架橋剤と紫外線吸収材を添加して成形したシ−ト状の有機樹脂被覆層(EVAフィルム)を作製し、フッ素樹脂被覆層/有機樹脂被覆層/参考例1で作成した光起電力素子/有機樹脂被覆層/背面材(絶縁処理した亜鉛鋼板)の順で重ね、真空ラミネ−タにいれ、1Torrに真空排気したのち大気圧をかけ140℃で30分間加熱してこれらを接着することで図3の構造の光起電力素子モジュ−ルを作製した。
【0039】
評価試験
使用例1〜7および比較例1〜2で得られた各モジュールについて以下の試験を行った。結果は表1に示す。
1)表面の耐傷つき性
JIS K5400鉛筆硬度試験法に従い実施した、鉛筆硬度H以下を×
鉛筆硬度2H以上4H以下を△、5H以上を○として評価した。
2)屋外曝露による耐候性評価
使用例で作製したモジュ−ルを工場地域において北面45度に傾斜した支持体に固定し、1年間の屋外曝露評価を実施した。表面外観の変化のあるものを×、変化のないものを○と判定した。
3)耐酸性
10%硫酸水を0.5mlモジュ−ル表面に置き24時間後の表面変化を観察した。変色などの変化があるものを×、変化なしを○と評価した。
【0040】
【表1】

Figure 0003648756
【0041】
【発明の効果】
本発明お半導体コ−テイング材は、透明性、耐傷つき性、耐酸性、耐候性、耐汚染性、絶縁性に優れ、太陽電池、赤外線検出器、フォトダイオ−ド、カラ−センサ−、エレクトロルミネッセンス(EL)表示パネル、固体撮影像素子、X線蛍光板、発光ダイオ−ドなどの半導体素子を保護するコーテイング材として好適である。
【0042】
【図面の簡単な説明】
【図1】光起電力素子モジュールの構成を示す図である。
【図2】光起電力素子モジュールの構成を示す図である。
【図3】光起電力素子モジュールの構成を示す図である。
【図4】光起電力素子モジュールの構成を示す図である。
【図5】光起電力素子モジュールの構成を示す図である。
【図6】光起電力素子モジュールの構成を示す図である。
【図7】EL発光素子モジュールの構成を示す図である。
【図8】光起電力素子モジュールの構成を示す図である。
【図9】半導体素子の構成を示す図である。
【図10】半導体素子の構成を示す図である。[0001]
[Industrial application fields]
The present invention relates to a coating material for protecting a semiconductor element using a photoelectric conversion function, and more specifically, a solar cell, an infrared detector, a photodiode, a color sensor, an electroluminescence (EL) display panel, a solid state. The present invention relates to a coating material characterized by transparency, scratch resistance, acid resistance, weather resistance, contamination resistance, and insulation, which protects a semiconductor element such as a photographic image element, an X-ray fluorescent plate, and a light emitting diode.
[0002]
[Prior art]
A photoelectric conversion function, that is, a light energy / electric energy mutual conversion element is one of the basic characteristics of semiconductors and is widely applied. For example, a photovoltaic element is a solar cell, an infrared detector, a photodiode. Known are color sensors, fluorescent plates for X-rays as light amplifying elements, EL display panels, light emitting diodes, and solid-state imaging elements as light emitting elements.
Among these, for example, a solar cell as a photovoltaic element is expected as a clean energy source with high safety. Examples of the material of the photovoltaic element include amorphous silicon, polycrystalline silicon, and cadmium selenium / cadmium tellurium and copper indium selenide as compound semiconductors. For example, these semiconductors are composed of a photovoltaic element formed with a transparent electrode, a collecting electrode on the light irradiation side, a back electrode on the back surface, a material layer for sealing and fixing the photovoltaic element, and a transparent surface layer. It is used as a solar cell module.
The EL display panel uses a light emission phenomenon that occurs when a high electric field is applied to a semiconductor. As a semiconductor, for example, a main material such as ZnS, ZnSe, CaS, SrS, or the like is CuCl, CuBr, CuAl, or CuMnCl. , Mn, Eu, Ce, Tb, Sm, Tm, Pr, CuMn and the like are added. In an EL display panel, a semiconductor is formed with a dielectric, a transparent electrode layer on the light emitting surface side, and a dielectric, an electrode layer on the back surface to form a light emitting device, and a material layer and a transparent surface layer for sealing and fixing the light emitting device. Therefore, it is used as an EL element module.
The performance required for the semiconductor elements using the photoelectric conversion function shown in the above examples is important to maintain the photoelectric conversion function for a long time in the outdoor environment, in addition to the height of the initial photoelectric conversion function. In addition, it is required to be inexpensive and light in order to spread.
In addition, when these semiconductor elements are used outdoors for a long time, the photoelectric conversion function is a problem that deteriorates with time. Causes of deterioration of the photoelectric conversion function include scratches caused by dust due to insufficient hardness of the surface layer that becomes the light irradiation surface, discoloration due to insufficient weather resistance, cracks, devitrification, adhesion of pollutants in the atmosphere, automobile exhaust gas It has been pointed out that there is a decrease in translucency and insulation due to surface contamination caused by acid rain and acid rain.
In order to solve these problems, conventionally, as a surface coating material, for example, a transparent inorganic compound such as glass or ceramics, an organic resin such as polyester, or a fluororesin coated on the surface by a vapor phase method. A photoelectric conversion element module using a film or the like has been proposed.
[0003]
[Problems to be solved by the invention]
[0004]
However, when glass is used as the surface covering material, the weather resistance, the scratch resistance of the surface, and the insulation are improved, but there is a problem that the weight as a module increases and it is easily broken.
In addition, when an organic resin such as polyester is used, there is a problem that weather resistance, stain resistance, acid resistance, and surface hardness are insufficient. On the other hand, when a fluororesin film coated with a transparent inorganic compound on the surface by a gas phase method is used, there is a problem that the stain resistance and the surface hardness are not sufficient and are expensive.
The present invention was made for the purpose of solving the above-mentioned problems of the prior art, and is light-degrading on the surface of a semiconductor element, sand, wind and rain, acid rain, translucency due to contamination due to adhesion of pollutants in the atmosphere, An object of the present invention is to provide a semiconductor coating material which prevents a decrease in insulation.
In the present invention, the term “protection” refers to, particularly, contamination due to light deterioration of the surface of the semiconductor element utilizing the photoelectric conversion function encountered in outdoor use, sand dust, wind and rain, acid rain, and adhesion of pollutants in the atmosphere. This means preventing light transmission and insulation from being lowered.
[0005]
[Means for solving problems]
That is, the present invention provides (A) the general formula (1) R n -Si (OR 1 ) 4-n Wherein R is a hydrogen atom or a C1 to C12 alkyl group, R 1 Is a hydrogen atom or a C1 to C6 alkyl group, and n is 0, 1, 2, or 3), and is a polystyrene equivalent weight comprising a hydrolyzate or partial condensate of at least one alkoxysilane represented by Polysiloxane having an average molecular weight of 500 to 200,000 (hereinafter simply referred to as “polysiloxane”) and / or (B) general formula (2) -Si (OR 1 ) 3-m (R 1 ) m (Wherein R 1 Is the same as the general formula (1), and m is 0, 1, or 2). The silylated vinyl polymer having a polystyrene-reduced weight average molecular weight of 5,000 to 100,000 in the molecule. (Hereinafter simply referred to as “silylated vinyl polymer”) and an organic solvent, and the (A) polysiloxane and / or (B) silylated vinyl polymer is 10 to 60% by weight as a solid content. It is intended to provide a coating material for a semiconductor element characterized by being contained.
[0006]
The present invention is described in detail below.
In the coating material for a semiconductor device of the present invention, specific examples of R in the general formula (1) include hydrogen atom, methyl group, ethyl group, propyl group, butyl group, phenyl group, octyl group, dodecyl group, An acetoxy group etc. can be mentioned, You may include functional groups, such as a vinyl group, an epoxy group, an amino group, and an acryl group. In the formula, R 1 Specific examples thereof include a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group.
The alkoxysilane used as the precursor of the polysiloxane of the present invention can be used alone or in combination of two or more. From the viewpoint of the curability, hardness, weather resistance, and chemical resistance of the polysiloxane, the general formula (1 80 mol% or more of the alkoxysilane represented by CH3Si (OR 1 3) A methylalkoxysilane represented by 3 is preferable, and methyltrimethoxysilane, methyltriethoxysilane, and the like are particularly preferable.
The polystyrene-converted weight average molecular weight determined by gel permeation chromatography (GPC) of polysiloxane is usually 500 to 200,000, preferably 1000 to 100,000. When the molecular weight is less than 500, the film formability may be poor, and when the molecular weight exceeds 200,000, the storage stability may be lowered.
[0007]
Methods for producing polysiloxanes which are hydrolysates and condensates of these alkoxysilanes are already known, and many methods have been proposed. For example, it can be carried out by the method disclosed in JP-B-52-3961. it can. That is, the method comprises a step of adding a predetermined amount of water to the alkoxysilane and heating to cause hydrolysis and condensation.
As water used for hydrolysis of alkoxysilane, distilled water, ion exchange water, or water of a colloidal metal oxide dispersion medium described later can be used. The amount of water used for the hydrolysis is usually 0.8 to 3 mol, preferably 1 to 2 mol, relative to 1 mol of the alkoxysilane. If the water used for hydrolysis is less than 0.8 mol, the film formability of the coating film may be poor, and if it exceeds 3 mol, storage stability may be reduced. Water used for the hydrolysis is usually neutral or acidic when a colloidal metal oxide is used, and a hydrogen ion concentration of 2 to 7 is used.
Moreover, reaction temperature is 20 degreeC or more normally and below the boiling point of a solvent, Preferably it implements at 40 to 150 degreeC. Moreover, reaction time is 30 minutes or more and less than 12 hours normally.
[0008]
In the present invention, the production of a silylated vinyl polymer is usually performed by combining a vinyl compound having a silyl group represented by the general formula (2) and an organic vinyl compound having no silyl group in the presence of a radical generating compound. Can be synthesized by copolymerization.
In general formula (2), R1 is the same as in general formula (1).
Examples of the vinyl compound having a silyl group include γ-trimethoxysilylpropyl methacrylate, γ-methyldimethoxysilylpropyl methacrylate, trimethoxysilylethylstyrene, and trimethoxysilylbutadiene.
Examples of the organic vinyl compound copolymerized with these vinyl compounds having a silyl group include, for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, glycidyl methacrylate, aminoethyl methacrylate, hydroxy methacrylate. Methacrylic acid esters such as ethyl, acrylic acid esters such as methyl acrylate, butyl acrylate and 2-ethylhexyl acrylate, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and itaconic acid, and styrene And vinyl compounds such as α-methylstyrene and acrylonitrile. Among these, methacrylic acid esters are preferable.
[0009]
The silyl group represented by the general formula (2) may be present at the terminal or side chain of the vinyl polymer molecule, and is usually 0.01 to 20% by weight, preferably as the silicon content in the silylated vinyl polymer. Is 0.1 to 10% by weight. If it is less than 0.01%, the weather resistance and adhesion are insufficient. On the other hand, if it exceeds 20% by weight, the storage stability may be lowered. The weight average molecular weight in terms of polystyrene of the silylated vinyl polymer is 5000 to 100,000, and if it is less than 5000, the film formability is lowered, and if it exceeds 200,000, a smooth coating film may not be obtained. is there. The glass transition temperature of the silylated vinyl polymer determined by differential thermal analysis is usually preferably from -60 to 150. When the glass transition temperature is less than -60 ?, sufficient coating film hardness cannot be obtained. On the other hand, when it exceeds 150 ?, the film formability may be lowered.
[0010]
As the coating material for semiconductor of the present invention, one of the polysiloxane and the silylated vinyl polymer, or a mixture or cocondensation of both can be used.
When mixing and using polysiloxane and a silylated vinyl polymer, the mixing ratio of the polysiloxane and the silylated vinyl polymer can usually be arbitrarily mixed as a solid content ratio, but preferably 80/20 to 20/80 ( (Weight ratio).
The co-condensate of polysiloxane and silylated vinyl polymer is prepared by, for example, mixing alkoxysilane represented by the general formula (1) with water and an organic solvent with respect to the silylated vinyl polymer. It can be produced by hydrolysis and cocondensation. In this case, for example, an organic acid such as acetic acid or methanesulfonic acid or a base such as aqueous ammonia, triethylamine, tetramethylammonium hydroxide, urea, or tetrabutoxysilconium, tetrabutoxytitanium, tetraisopropoxyaluminum, etc. One or more compounds selected from metal alkoxides, preferably compounds having low corrosiveness to semiconductors such as tetrabutoxyzirconium, tetrabutoxytitanium, and tetraisopropoxyaluminum can be used as the catalyst.
[0011]
The polysiloxane and / or silylated vinyl polymer is contained in the semiconductor coating material in an amount of 10 to 60% by weight as a solid content. The silicon content in the solid content of the coating material for semiconductor of the present invention is usually 0.1 to 50% by weight, preferably 1 to 30% by weight. When the silicon content is less than 0.1, the weather resistance of the cured film is lowered, and when it exceeds 50% by weight, the storage stability as a coating material may be lowered. Moreover, a metal oxide, an organic solvent, a hardening | curing agent, other additives, etc. can also be added to the coating material for semiconductors of this invention. The metal oxide is added to reinforce the coating film and improve the hardness. Fine silicon oxide can be added in the form of powder or colloidal metal oxide. Examples of the metal oxide include silicon oxide, alumina, zirconia, titania, ceria, zinc oxide, and potassium titanate.
[0012]
The colloidal metal oxide means a colloidal metal oxide dispersed as fine particles having a spherical shape, a rod shape, a feather shape, or an irregular shape in a liquid dispersion medium. Examples of the metal oxide include silica, alumina, titania, zirconia, and antimony oxide, but are not limited thereto. As the dispersion medium, water or a hydrophilic organic solvent such as methanol, isopropanol, ethyl cellosolve or dimethylacetamide can be used. The average particle diameter of the colloidal metal oxide is 0.005 to 0.05 μm, preferably 0.01 to 0.03 μm in the case of a sphere, and in the range of 0.005 to 0.1 μm in the case of a feather or rod. The solid content concentration is usually about 10 to 40% by weight. When the dispersion medium is water, it is preferable to use an acidic colloidal metal oxide having a pH in the range of 2 to 6.
When the average particle diameter of the colloidal metal oxide is less than 0.005 μm, the reinforcing effect of the coating film is small. On the other hand, when it exceeds 0.05 μm, the transparency may be lowered.
[0013]
The colloidal metal oxide can also be used as water used for hydrolysis and condensation of the alkoxysilane of the general formula (1). In this case, the water content is usually 0.8 to 3 times the mole number of alkoxysilane used. An amount that is moles, preferably 1.0 to 2 moles, is added.
Specific examples of these colloidal metal oxides include, as colloidal silica using water as a dispersion medium, SNO-TEX manufactured by NISSAN CHEMICAL INDUSTRY CO., LTD. However, it can also be produced by hydrolyzing n = 0, that is, tetraalkoxysilane in the alkoxysilane of the general formula (1).
Further, as the organic solvent-dispersed colloidal silica, for example, isopropanol silica sol manufactured by Nissan Chemical Industries, Ltd., and methanol silica sol, Oscar manufactured by Catalyst Chemical Industry Co., Ltd. are commercially available. As the colloidal alumina sol, alumina clear sol manufactured by Kawaken Fine Chemical Co., Ltd. can be used.
In the present invention, the amount of colloidal metal oxide used is usually 0 to 50% by weight in the total solid content of the semiconductor coating material, and if it exceeds 50% by weight, the transparency of the semiconductor coating material may be reduced. is there.
Examples of the organic solvent include methanol, ethanol, and isopropyl alcohol. Monovalent and divalent alcohols such as isobutyl alcohol, ethylene glycol, diethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether, and fragrances such as benzene, toluene and xylene Ethers such as aromatic hydrocarbons, dimethoxyethane, tetrahydrofuran, dioxane, ethylene glycol monoethyl ether, ketones such as acetone, methyl ethyl ketone, diisobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, propylene carbonate, γ -One or more of esters such as butyrolactone can be used in combination.
In this invention, the usage-amount of an organic solvent is 20 to 95 weight% of a semiconductor coating material normally.
[0014]
Specific examples of the curing agent include, for example, organic tin compounds such as dibutyltin dilaurate, dioctyltin maleate, and octyltin trislaurate, tetramethylammonium hydroxide, aminopropyltriethoxysilane, and aminoethyl. Examples include amino compounds such as aminopropyltrimethoxysilane, acids such as acetic acid and methanesulfonic acid, and aluminum compounds such as aluminum trisisopropoxide and aluminum trisethylacetonate.
The amount of the curing agent used is usually 0 to 5% by weight, preferably 0 to 2% by weight, based on the total of the polysiloxane and the silylated vinyl polymer. This is not preferable because it shortens the pot life of the coating material.
Moreover, in this invention, it is preferable to add a hardening | curing agent just before using a semiconductor coating material from extending a pot life.
As a method for producing the semiconductor coating material of the present invention, for example, as a composition comprising polysiloxane, colloidal alumina, and silylated vinyl polymer, the method described in JP-A-63-308077, that is, alkoxysilane A method of adding a silyl group-containing vinyl resin to an alumina-dispersed polysiloxane solution obtained by hydrolysis and condensation in the presence of an aqueous alumina sol, a method described in JP-A No. 64-001769, ie, alkoxysilane. Examples thereof include a method of adding a zirconium compound and a silicon-modified acrylic resin to a solution obtained by hydrolysis and condensation with a predetermined amount of water.
[0015]
The semiconductor coating material of the present invention is used for protecting the semiconductor element and the periphery of the semiconductor element, but preferably exhibits a protective effect by being further coated between the surface and the surface in contact with the atmospheric environment. More preferably, it is characterized by being coated on the surface in contact with the atmosphere on the side where light is incident or emitted.
The semiconductor element in the present invention is not limited in its shape and material as long as it exhibits a photoelectric conversion function, and may be a thin film, a single crystal solid, a particle, a fiber, or a combination or assembly of one or more of these. You may use as a body and a dispersion.
Examples of the semiconductor material include homogeneous inorganic compounds, organic compounds, organometallic compounds, and mixtures thereof.
The coating method of the semiconductor coating material of the present invention can be applied to a planar material, for example, spray, roll coater, bar coater, flow coater, brush, and dipping. It can be implemented by such a method. In addition, when a non-planar material such as a powder or a single crystal solid surface is coated, for example, a method of filtration drying after immersion, a method of spray drying after immersion, or the like can be used.
The coating layer made of the semiconductor coating material of the present invention is cured after application, but the curing conditions are usually atmospheric pressure, the temperature of the heated body is 20 to 300 ° C., and a planar material is coated. The temperature is preferably 50 to 200 ° C., while the non-planar material is preferably 80 to 300 ° C. If the curing temperature is less than 20 ° C., a long time is required for curing, whereas if it exceeds 300 ° C., the semiconductor coating material may be decomposed.
[0016]
The curing time is usually 0.5 minutes to 8 hours, preferably 5 minutes to 1 hour, when a planar material is coated. On the other hand, when the non-planar material is coated, it is 2 seconds to 2 hours, preferably 5 seconds to 1 hour.
In the present invention, the thickness of the coating layer of the semiconductor coating material is usually 0.01 to 1000 μm, and 1 to 100 μm for a planar material, covering a non-planar material such as a powder or a single crystal solid surface. In the case of 0.01 to 10 μm. If it is less than 0.01 μm, the substantial protective effect is low, and if it exceeds 1000 μm, the flexibility may be lowered.
[0017]
As a specific example of coating the semiconductor coating material of the present invention, one or more coatings are provided between the semiconductor element and the surface in contact with the atmospheric environment as shown in the schematic cross-sectional views of the semiconductor element module of FIGS. Preferably, it is configured so as to be coated on a surface that is in contact with the atmosphere on the side where light enters or emits light. 1 to 8, a layer covered with the semiconductor coating material of the present invention is abbreviated as a siloxane layer.
The structure shown in FIG. 1 includes a siloxane layer (1), a siloxane layer (2), a semiconductor element, a siloxane layer (3), and a back material from the light irradiation surface or light emission surface side. Here, the three different siloxane layers may be the same or different.
The structure shown in FIG. 2 includes a siloxane layer, an organic resin layer (1), a semiconductor element, an organic resin layer (2), and a back material from the light irradiation surface or the light emission surface side.
The structure shown in FIG. 3 includes a siloxane layer, a fluororesin layer, an organic resin layer (1), a semiconductor element, an organic resin layer (2), and a back material from the light irradiation surface or the light emitting surface side.
The structure shown in FIG. 4 is composed of a siloxane layer (1), a siloxane layer (2), a semiconductor element, an organic resin layer, and a back material from the light irradiation surface or the light emitting surface side.
The structure shown in FIG. 5 includes a siloxane layer (1), a fluororesin layer, a siloxane layer (2), a semiconductor element, an organic resin layer, and a back material from the light irradiation surface or the light emitting surface side.
The structure shown in FIG. 6 includes a fluororesin layer, a siloxane layer, a semiconductor element, an organic resin layer, and a back material from the light irradiation surface or the light emission surface side.
The structure shown in FIG. 7 includes a fluororesin layer, a siloxane layer, an organic resin layer (1), a semiconductor element, an organic resin layer (2), and a back material from the light irradiation surface or the light emitting surface side. Can give.
The structure shown in FIG. 8 includes a fluororesin layer, a siloxane layer (1), an organic resin layer (1), a siloxane layer (2), and a back material from the light irradiation surface or the light emitting surface side.
Can give.
[0018]
Among the structures shown in FIGS. 1 to 8, the structures shown in FIGS. 3, 4 and 5 are preferable in terms of scratch resistance.
In the semiconductor element module shown in FIGS. 1 to 8, the back material is a material that supports and fixes the semiconductor element and prevents damage due to physical impact from the back surface. For example, an insulating resin, ceramic, or insulating coating is used. A fluororesin film coated with a metal substrate or an insulating inorganic compound can be used.
In addition, the organic resin layer supports and fixes the semiconductor element and has a role of preventing impact from outside and intrusion of moisture. For example, vinyl acetate / ethylene copolymer (EVA), polyvinyl butyrate (PVB), A material mainly composed of a transparent resin having good weather resistance, such as a silicone resin, an epoxy resin, a fluorinated polyimide resin, an acrylic resin, or nylon can be used.
These organic resin layers have a light transmittance of 80% or more in a wavelength region of 400 nm or more, and the refractive index is preferably in the range of 1.4 to 2.0 in order to prevent loss due to reflection of incident light. Moreover, you may add a crosslinking agent and a ultraviolet absorber to the said organic resin as needed.
[0019]
In addition, a fluorine resin coating layer may be used as the organic resin layer, and a fluorine film whose surface is coated with an inorganic compound such as silicon oxide, silicon nitride, silicon carbide, alumina, or titanium oxide may be used. it can.
As such a fluorine film, for example, tetrafluoroethylene / -ethylene copolymer (ETFE), trifluoroethylene chloride resin (PCTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / 6-fluoropropylene copolymer (FEP), vinylidene fluoride resin (PVDF), vinyl fluoride resin (PVF), and the like can be given.
[0020]
As a method for coating an inorganic compound on a fluorine film, for example, H2, SiH4, O2, N2O, N2, NH3, CH4, C2H2, Al (C2H5) 3, Al (C2H5) 3, AlCl3, Ti ( In the case of plasma CVD (Chemical Vapor Deposition) using a substance selected from OC2H5) 4, etc., and sputtering, silicon oxide, silicon nitride, silicon carbide, alumina, and titanium oxide may be used as targets. it can.
[0021]
Although the example of a structure of the semiconductor element protected by the semiconductor coating material of this invention is shown in FIG. 8 and FIG. 9, it is not limited to these.
FIG. 8 shows a schematic cross-sectional view of the photovoltaic device, which is composed of a conductive substrate (25), a back electrode layer (24), a semiconductor layer (23), a transparent electrode (22), a collector, in order from the back surface. It consists of an electric electrode (21).
Here, the conductive substrate is selected from, for example, stainless steel, aluminum, copper, and the like.
The back electrode layer is selected from, for example, a metal such as Ti, Cr, Al, Ag, Cu, Au, a metal oxide selected from zinc oxide, titanium oxide, and tin oxide, or a composite layer of a metal layer and a metal oxide layer. It is.
The semiconductor layer, which is a photoelectric conversion layer, is selected from compound semiconductors such as amorphous silicon, crystalline silicon, copper indium selenado, cadmium selenium / cadmium tellurium, and has a pin bond, a pn bond, and a Schottky junction. Forming.
The transparent conductive layer is selected from, for example, indium oxide, antimony tin oxide, fluorine doped tin oxide, indium oxide / tin oxide (ITO), zinc oxide, titanium oxide, and the like.
The current collecting electrode layer is made of, for example, a patterned metal such as Ti, Cr, Al, Ag, Cu, or Au.
[0022]
Of these, the back electrode layer, the photoelectric conversion layer, and the transparent conductive layer can be usually formed by resistance heating vapor deposition, electron beam vapor deposition, and sputtering, and the collector electrode layer is made of conductive paste. A photolithographic method in which an electrode metal layer is formed on the entire surface of the printing method or after applying a resist, exposing and developing using a negative mask corresponding to the electrode pattern, and then etching the uncoated layer to remove the resist. Can be formed.
FIG. 9 shows an example of a schematic cross-sectional view of an EL element, which is composed of a conductive substrate (31), a dielectric layer (32), a semiconductor layer (33), a dielectric layer (32), and a transparent layer in order from the back surface. It is composed of a conductive layer (34).
The conductive substrate is selected from, for example, stainless steel, aluminum, copper, and the like.
[0023]
The dielectric layer is selected from, for example, Y2O3, Si3N4, BaTiO3, PbZrO3, PbTiO3, ZnO and the like.
The semiconductor layer (light emitting layer) is obtained by adding CuCl, CuBr, CuAl, CuMnCl, Mn, Eu, Ce, Tb, Sm, Tm, Pr, CuMn, etc. to a main material such as ZnS, ZnSe, CaS, SrS, etc. Chosen from the inside.
The transparent conductive layer is selected from, for example, indium oxide, antimony tin oxide, fluorine doped tin oxide, indium oxide / tin oxide (ITO), zinc oxide, titanium oxide, and the like.
Of these, the semiconductor layer, the dielectric layer, and the transparent conductive layer can be formed by resistance heating vapor deposition, electron beam vapor deposition, or sputtering, but the semiconductor powder or dielectric powder is coated and dried with an organic binder resin. It can also be formed.
[0024]
【Example】
Hereinafter, the present invention will be described in detail based on examples. The present invention is not limited to these examples. Unless otherwise specified in the examples, “part” means “part by weight” and “%” means “% by weight”.
Reference Example 1 Creating a semiconductor device
An amorphous silicon (a-Si) photovoltaic device was fabricated. Hereinafter, the manufacturing procedure will be described with reference to FIG.
First, an Al film thickness of 500 nm and zinc oxide of 500 nm were sequentially formed as a back electrode (24) on a stainless steel substrate (25) having a thickness of 0.125 mm by sputtering. Next, an n-type a-Si layer is formed from SiH4, PH3, and H2, an i-type a-Si layer is formed from SiH4 and H2, and a p-type microcrystalline .mu.c-Si layer is formed from SiH4, BF3, and H2 by plasma CVD. A stacked semiconductor layer (23) having a mold thickness of 15 nm, an i-layer thickness of 400 nm, a p-layer thickness of 10 nm, an n-layer thickness of 10 nm, an i-layer thickness of 80 nm, and a p-layer thickness of 10 nm was formed. Next, a transparent electrode (22) made of indium oxide was formed with a film thickness of 70 nm by depositing In in an oxygen atmosphere by a resistance heating method. Next, silver paste (Dyupon # 5504) was printed on the screen by screen printing, and then heat treated at 125 ° C. to form a collecting electrode, thereby producing a photovoltaic device.
[0025]
Reference Example 2 Creating a semiconductor device
An EL light emitting device was produced. Hereinafter, the creation procedure will be described with reference to FIG.
A dielectric layer having a Y2O3 film thickness of 500 nm is formed by sputtering on an aluminum substrate having a thickness of 0.125 mm, the back surface of which has been insulated, and ZnS having a particle diameter of 20 .mu.m added with CuAl is added to cyanoethyl cellulose as a binder. As a result, it was coated to a thickness of 100 μm and dried to form a semiconductor layer (light emitting layer). Next, a dielectric layer having a Y2O3 film thickness of 500 nm was formed by sputtering. Next, an EL light emitting device was manufactured by forming a transparent electrode layer made of indium oxide by depositing In by resistance heating in an oxygen atmosphere.
[0026]
Example 1
In a glass flask equipped with a reflux condenser, 310 parts of methyltrimethoxysilane, 230 parts of methanol silica sol and 100 parts of ion-exchanged water are mixed, heated and stirred at 60 ° C. for 6 hours, cooled to room temperature, and then isopropyl alcohol. A coating material (1) was prepared by adding 400 parts and 0.5 part of dioctyltin laurate.
When the molecular weight of the solid content in the coating material was determined by GPC, the weight average molecular weight was 5000.
[0027]
Example 2
A glass flask equipped with a reflux condenser was mixed with 351 parts of methyltrimethoxysilane, 422 parts of methanol silica sol, 69 parts of colloidal silica, and 158 parts of butyl cellosolve, heated and stirred at 60 ° C. for 4.5 hours, and then cooled. Taging material (2) was obtained.
When the molecular weight of the solid content of this coating material was determined by GPC, it was 1500 as the weight average molecular weight.
[0028]
Example 3
Under a nitrogen atmosphere, in a glass flask equipped with a reflux condenser, 45 parts of methyl methacrylate, 5 parts of γ-methacryloxypropyltrimethoxysilane, 50 parts of xylene, 2 ′, 2′-azoisobutyronitrile (AIBN) 0. 5 parts were added, and after heating and stirring at 60 ° C. for 8 hours, 2 parts of dibutyltin laurate was further added to obtain a coating material (3).
When the molecular weight of the solid content of this coating material was determined by GPC, the weight average molecular weight was 25000.
[0029]
Example 4
A coating material (4) was prepared by mixing 67 parts of the coating material obtained in Example 2 and 33 parts of the coating material obtained in Example 3.
Example 5
A coating material (5) was obtained in the same manner as in Example 1 except that 1 part of aminoethylpropyltrimethoxysilane was added instead of adding 1 part of dioctyltin laurate in Example 1.
[0030]
Use example 1 (production of photovoltaic element module)
Insulated galvanized steel sheet is used as a back material, and a mixture of 100 parts of the coating material (4) and 1 part of dibutyltin dilaurate is applied on it with a spray coater, then dried at 150 ° C for 15 minutes. As a result, a film having a thickness of 15 μm was formed.
Next, the photovoltaic element prepared in Reference Example 1 was placed, and the coating material (4) was again coated thereon, followed by heating and drying at 150 ° C. for 30 minutes to form a coating layer having a thickness of 30 μm. An adhesive layer was formed.
Next, similarly, a coating material (1) and a curing agent solution were coated with a spray coater and heated and dried at 120 ° C. for 30 minutes to form a surface protective layer having a thickness of 10 μm. A photovoltaic device module having the structure was obtained.
Here, the output terminal of the photoelectric conversion element was previously taken out by opening a hole for the output terminal in a zinc steel plate as a back agent.
[0031]
Use Example 2 (Photovoltaic Device Module Fabrication)
An insulating galvanized steel sheet was used as a back material, and a coating material (3) was coated thereon with a spray coater, followed by heating and drying at 100 ° C. for 15 minutes to form a film having a thickness of 15 μm.
Next, the photovoltaic element prepared in Reference Example 1 was placed, and a similar coating material (3) and a curing agent solution were again coated thereon, followed by heating and drying at 100 ° C. for 30 minutes to further increase the film thickness. A 30 μm siloxane layer was formed. Next, a solution consisting of 100 parts of the coating material (4) and 1 part of dioctyltin dilaurate was applied with a spray coater and heated and dried at 120 ° C. for 30 minutes to give a film thickness of 30 μm on the surface. A photovoltaic module having the structure of FIG. 1 was produced by forming a siloxane coating layer.
[0032]
Example 3 (Photovoltaic device module fabrication)
A sheet-like ethylene-vinyl acetate copolymer (EVA) formed by adding a cross-linking agent as a transparent adhesive and an ultraviolet absorber is used as an organic resin coating layer, and an organic resin coating layer (EVA) / reference The photovoltaic element prepared in Example 1 / organic resin coating layer (EVA) / backing material (insulated galvanized steel sheet) are stacked in this order, placed in a vacuum laminator, evacuated to 1 Torr, and then subjected to atmospheric pressure. These were adhered by heating at 30 ° C. for 30 minutes.
Next, the coating material (1) is applied to the surface on the light irradiation side with a spray coater and heated and dried at 120 ° C. for 30 minutes to form a siloxane layer having a thickness of 10 μm on the surface. Thus, a photovoltaic element module having the structure of FIG. 2 was produced.
[0033]
Use example 4 (photovoltaic element module fabrication)
An insulating galvanized steel sheet was used as a back material, and a coating material (3) was coated thereon with a spray coater, followed by heating and drying at 100 ° C. for 15 minutes to form a film having a thickness of 15 μm. Next, the photovoltaic element prepared in Reference Example 1 was placed, and a coating material (3) and a curing agent solution were again coated thereon, followed by heating and drying at 100 ° C. for 30 minutes to form a siloxane having a thickness of 30 μm. A layer was formed. Next, a coating material (5) is applied to the surface on the light irradiation side with a spray coater and heated and dried at 120 ° C. for 30 minutes to form a siloxane layer having a thickness of 10 μm on the surface. Thus, a photovoltaic device module having the structure of FIG. 1 was produced.
[0034]
Use example 5 (photovoltaic element module fabrication)
Using a high frequency power source of 13.56 MHz, a 1 μm silicon nitride film is formed by plasma CVD on an ETFE film under the conditions of SiH 4 / NH 4 / H 2 = flow rate ratio 6/172/54 at 200 ° C. and 0.2 Torr. Was used as a fluororesin coating layer. A sheet-like organic resin coating layer (EVA film) formed by adding a cross-linking agent as a transparent adhesive and an ultraviolet absorber is prepared, and prepared using a fluororesin coating layer / organic resin coating layer / reference example 1. The photovoltaic element / organic resin coating layer / backing material (insulated galvanized steel sheet) were stacked in this order, placed in a vacuum laminator, evacuated to 1 Torr, heated to 140 ° C. for 30 minutes. These were adhered. Next, the coating material (1) is applied to the surface on the light irradiation side with a spray coater and heated and dried at 120 ° C. for 30 minutes to form a siloxane layer having a thickness of 10 μm on the surface. Thus, a photovoltaic device module having the structure shown in FIG. 3 was produced.
[0035]
Use Example 6 (Photovoltaic Device Module Fabrication)
An EVA film as an organic resin coating layer was bonded onto the insulated galvanized steel sheet, and the photovoltaic element prepared in Reference Example 1 was bonded thereto.
Next, the coating material (3) was coated with a spray coater and dried at 100 ° C. for 15 minutes to form a siloxane layer having a thickness of 15 μm. On this, the coating material (1) is coated with a spray coater and dried at 120 ° C. for 30 minutes to form a siloxane layer having a thickness of 10 μm on the surface. An electromotive element module was produced.
Use example 7 (photovoltaic element module fabrication)
An EVA film as an organic resin coating layer was bonded onto the insulated galvanized steel sheet, and the photovoltaic element prepared in Reference Example 1 was bonded thereto. Next, the coating material (3) was coated with a spray coater and dried at 100 ° C. for 15 minutes to form a siloxane coating layer having a thickness of 15 μm. The fluororesin film used in the above-mentioned use example 5 is adhered onto this, and the coating material (1) is further coated with a spray coater, and dried at 120 ° C. for 30 minutes to obtain a film thickness on the surface. A photovoltaic device module having the structure of FIG. 5 was produced by forming a 10 μm siloxane coating layer.
[0036]
Use Example 7 (Production of EL light emitting device module)
The EVA film, the EL light-emitting device prepared in Reference Example 2, the EVA film, and the PET film were stacked in this order on a PCTFE sheet having a thickness of 100 μm, placed in a vacuum laminator, evacuated at 1 Torr, and then subjected to atmospheric pressure. It was heated at 30 ° C. for 30 minutes for adhesion. By coating the coating material (4) and a curing agent solution on this with a spray coater and drying at 120 ° C. for 30 minutes, a siloxane film layer having a thickness of 30 μm is formed on the surface. An EL light emitting device juule having the structure 2 was produced.
Example 8
An EVA film was bonded as an organic resin coating layer on the insulated galvanized steel sheet, and the photovoltaic element prepared in Reference Example 1 was bonded thereon.
Next, the coating material (4) was applied with a spray coater and dried at 150 ° C. for 30 minutes to form a siloxane layer having a thickness of 25 μm. On this, an EVA film was adhered.
Subsequently, the coating material (2) was spray-coated on the treated surface of the ETFE film whose one surface was hydrophilized by corona discharge, and dried at 150 ° C. for 15 minutes to form a 2 μm siloxane layer. A photovoltaic module having the structure shown in FIG. 7 was prepared by adhering the EVA film surface to the siloxane-coated ETFE film so that the siloxane layer was the back surface.
[0037]
Comparative Example 1 (Structure provided with an organic resin coating layer on the surface)
A sheet-like organic resin coating layer (EVA film and polyester film) formed by adding a cross-linking agent as a transparent adhesive and an ultraviolet absorber is produced using an insulated galvanized steel sheet as a back material, and organic Resin coating layer (polyester) / organic resin coating layer (EVA) / photovoltaic element prepared in Reference Example 1 / organic resin coating layer (EVA) / backing material are stacked in this order, put in a vacuum laminator, and 1 Torr After evacuation, atmospheric pressure was applied, and heating was performed at 140 ° C. for 30 minutes to bond them, thereby producing a photovoltaic device module having the structure of FIG.
[0038]
Comparative Example 2 (structure without a siloxane layer on the surface)
Using a high frequency power source of 13.56 MHz, a 1 μm silicon nitride film is formed by plasma CVD on an ETFE film under the conditions of SiH 4 / NH 4 / H 2 = flow rate ratio 6/172/54 at 200 ° C. and 0.2 Torr. Was used as a fluororesin coating layer. A sheet-like organic resin coating layer (EVA film) formed by adding a cross-linking agent as a transparent adhesive and an ultraviolet absorber is prepared, and prepared using a fluororesin coating layer / organic resin coating layer / reference example 1. The photovoltaic element / organic resin coating layer / backing material (insulated galvanized steel sheet) were stacked in this order, placed in a vacuum laminator, evacuated to 1 Torr, heated to 140 ° C. for 30 minutes. The photovoltaic element module having the structure shown in FIG. 3 was produced by bonding them together.
[0039]
Evaluation test
The following tests were performed on the modules obtained in Use Examples 1 to 7 and Comparative Examples 1 and 2. The results are shown in Table 1.
1) Surface scratch resistance
Implemented in accordance with JIS K5400 pencil hardness test method, pencil hardness H or less x
A pencil hardness of 2H or more and 4H or less was evaluated as Δ, and a rating of 5H or more was evaluated as ◯.
2) Weather resistance evaluation by outdoor exposure
The module produced in the use example was fixed to a support inclined at 45 degrees on the north surface in the factory area, and a one-year outdoor exposure evaluation was performed. The case where the surface appearance was changed was judged as x, and the case where there was no change was judged as ◯.
3) Acid resistance
10% aqueous sulfuric acid was placed on the surface of a 0.5 ml module, and the surface change after 24 hours was observed. A case where there was a change such as discoloration was evaluated as x, and a case where there was no change was evaluated as ○.
[0040]
[Table 1]
Figure 0003648756
[0041]
【The invention's effect】
The semiconductor coating material of the present invention is excellent in transparency, scratch resistance, acid resistance, weather resistance, stain resistance, insulation, solar cell, infrared detector, photodiode, color sensor, electro It is suitable as a coating material for protecting semiconductor elements such as a luminescence (EL) display panel, a solid-state imaging image element, an X-ray fluorescent plate, and a light emitting diode.
[0042]
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a photovoltaic element module.
FIG. 2 is a diagram showing a configuration of a photovoltaic element module.
FIG. 3 is a diagram showing a configuration of a photovoltaic element module.
FIG. 4 is a diagram showing a configuration of a photovoltaic element module.
FIG. 5 is a diagram showing a configuration of a photovoltaic element module.
FIG. 6 is a diagram showing a configuration of a photovoltaic element module.
FIG. 7 is a diagram showing a configuration of an EL light emitting element module.
FIG. 8 is a diagram showing a configuration of a photovoltaic element module.
FIG. 9 is a diagram showing a configuration of a semiconductor element.
FIG. 10 is a diagram showing a configuration of a semiconductor element.

Claims (2)

(A)一般式(1) R−Si(OR14-n(式中、Rは水素原子もしくはC1〜C12のアルキル基、R1は水素原子もしくはC1〜C6のアルキル基であり、nは0、1、2、3である)で表される少なくとも1種のアルコキシシランの加水分解物、もしくはその部分縮合物からなるポリスチレン換算重量平均分子量が500〜200、000であるポリシロキサンおよび/または(B) 一般式(2) −Si(OR13-m(R1m(式中、R1は前記一般式(1)と同じで、m は0、1、2である)で表される基を分子中に含むポリスチレン換算重量平均分子量が5000〜100、000であるシリル化ビニル系重合体
ならびに有機溶媒を含有し、
前記(A)ポリシロキサンおよび/または(B)シリル化ビニル系重合体は、固形分として10〜60重量%含有されることを特徴とする半導体素子用コーティング材。
(A) the general formula (1) R n -Si (OR 1) in 4-n (wherein, R is an alkyl group having a hydrogen atom or a Cl -C 12, R 1 is an alkyl group having a hydrogen atom or a C1 -C6, n is 0, 1, 2, 3) and a polysiloxane having a polystyrene-reduced weight average molecular weight of 500 to 200,000 consisting of a hydrolyzate of at least one alkoxysilane represented by the formula: / Or (B) General formula (2) -Si (OR 1 ) 3-m (R 1 ) m (wherein R 1 is the same as the general formula (1), m is 0, 1, 2) ) Containing a silylated vinyl polymer having a polystyrene-reduced weight average molecular weight of 5000 to 100,000 and an organic solvent containing a group represented by
The said (A) polysiloxane and / or (B) silylated vinyl type polymer are contained 10 to 60weight% as solid content, The coating material for semiconductor elements characterized by the above-mentioned.
前記(A)においてアルコキシシランがメチルトリメトキシシランおよびメチルトリエトキシシランもしくはいずれか一方を含むことを特徴とする請求項1記載の半導体素子用コーティング材。2. The coating material for a semiconductor device according to claim 1, wherein the alkoxysilane in (A) contains methyltrimethoxysilane and / or methyltriethoxysilane.
JP07539394A 1994-03-22 1994-03-22 Coating material for semiconductor devices Expired - Fee Related JP3648756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07539394A JP3648756B2 (en) 1994-03-22 1994-03-22 Coating material for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07539394A JP3648756B2 (en) 1994-03-22 1994-03-22 Coating material for semiconductor devices

Publications (2)

Publication Number Publication Date
JPH07263722A JPH07263722A (en) 1995-10-13
JP3648756B2 true JP3648756B2 (en) 2005-05-18

Family

ID=13574907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07539394A Expired - Fee Related JP3648756B2 (en) 1994-03-22 1994-03-22 Coating material for semiconductor devices

Country Status (1)

Country Link
JP (1) JP3648756B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491841B2 (en) * 1997-07-22 2010-06-30 東レ株式会社 Laminated film for solar cell cover
JPH1168134A (en) * 1997-08-08 1999-03-09 Bridgestone Corp Solar battery module
EP1091407A1 (en) * 1999-10-04 2001-04-11 Infineon Technologies AG Overvoltage protection device for a semiconductor device
JP2002314139A (en) * 2001-04-09 2002-10-25 Toshiba Corp Light emitting device
JP2002314143A (en) * 2001-04-09 2002-10-25 Toshiba Corp Light emitting device
DE50309259D1 (en) * 2002-05-06 2008-04-10 Osram Opto Semiconductors Gmbh WAVE LENGTH CONVERTING RESPONSE RESIN MASS AND LIGHT DIODE CONSTRUCTION ELEMENT
US6768048B2 (en) * 2002-12-04 2004-07-27 The Boeing Company Sol-gel coatings for solar cells
JP4503271B2 (en) * 2003-11-28 2010-07-14 東レ・ダウコーニング株式会社 Method for producing silicone laminate
KR101131410B1 (en) 2005-02-23 2012-04-13 미쓰비시 가가꾸 가부시키가이샤 Semiconductor light emitting device member, method for manufacturing such semiconductor light emitting device member and semiconductor light emitting device using such semiconductor light emitting device member
JP4615625B2 (en) * 2005-02-23 2011-01-19 三菱化学株式会社 SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME
WO2006093275A1 (en) * 2005-03-04 2006-09-08 Matsushita Electric Works, Ltd. Multilayer organic solar cell
JP4955954B2 (en) * 2005-03-04 2012-06-20 パナソニック株式会社 Stacked organic solar cell
JP4967370B2 (en) * 2005-06-06 2012-07-04 三菱化学株式会社 SEMICONDUCTOR LIGHT EMITTING DEVICE MEMBER, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR LIGHT EMITTING DEVICE USING THE SAME
JP5154234B2 (en) * 2007-01-15 2013-02-27 株式会社ワイ・ワイ・エル Semiconductor device
JP5206312B2 (en) * 2007-10-29 2013-06-12 Jsr株式会社 Water-based paint
WO2011007766A1 (en) * 2009-07-15 2011-01-20 日本発條株式会社 Sealing agent sheet for solar cells and sealing agent-integrated base material
JP2011097024A (en) * 2009-09-29 2011-05-12 Jsr Corp Method of manufacturing optical semiconductor element and composition for forming optical semiconductor element protection layer
JP5545298B2 (en) * 2009-10-21 2014-07-09 信越化学工業株式会社 Transparent laminated film for solar cell module surface protection and solar cell module
WO2011052564A1 (en) * 2009-10-30 2011-05-05 住友化学株式会社 Organic photoelectric conversion element and organic photoelectric conversion module
KR20120116968A (en) * 2010-01-06 2012-10-23 다우 글로벌 테크놀로지스 엘엘씨 Moisture resistant photovoltaic devices with elastomeric, polysiloxane protection layer
EP2530732B1 (en) * 2010-01-25 2019-04-17 LG Chem, Ltd. Sheet for photovoltaic cells
EP2530741B1 (en) * 2010-01-25 2018-07-25 LG Chem, Ltd. Photovoltaic module
CN102714247B (en) * 2010-01-25 2016-01-20 Lg化学株式会社 Photovoltaic module
JP4961026B2 (en) * 2010-02-09 2012-06-27 東レ・ダウコーニング株式会社 Method for producing silicone laminate
JP5741038B2 (en) * 2010-05-26 2015-07-01 Dic株式会社 Substrate having a cured product layer of a surface-treated resin composition on the surface, a light-receiving surface side protective sheet for solar cells using the same, and a solar cell module
JP5710915B2 (en) * 2010-09-09 2015-04-30 シチズンホールディングス株式会社 Semiconductor light emitting device
WO2014014057A1 (en) 2012-07-20 2014-01-23 旭化成株式会社 Semiconductor film and semiconductor element
JP2017120873A (en) 2015-12-25 2017-07-06 京セラ株式会社 Insulating paste, method for producing the same, and method for manufacturing solar cell element

Also Published As

Publication number Publication date
JPH07263722A (en) 1995-10-13

Similar Documents

Publication Publication Date Title
JP3648756B2 (en) Coating material for semiconductor devices
TWI750112B (en) Compositions of a hybrid organic-inorganic material, methods of producing the same and the use thereof, and producing methods of the use
US6768048B2 (en) Sol-gel coatings for solar cells
US9598586B2 (en) Coating materials and methods for enhanced reliability
JP3387741B2 (en) Protective material for semiconductor element, semiconductor element having the protective material, and semiconductor device having the element
JP5835324B2 (en) Water vapor barrier film, method for producing the same, and electronic device using the same
EP3170208A1 (en) Coating materials and methods for enhanced reliability
JP2014513431A (en) Back sheet for solar cell module and solar cell module including the same
JP5391515B2 (en) Solar cell back surface protection sheet and solar cell module
JP2004168057A (en) Fluorine composite resin film and solar cell
JP2000150936A (en) Semiconductor device and photovoltaic power generation device
JP2012204458A (en) Method for manufacturing solar cell module
JP2007253463A (en) Surface protective sheet for solar cell module
JPH06125103A (en) Solar battery module
JP3268893B2 (en) Method for manufacturing photovoltaic element
JP2001094128A (en) Solar cell module and method for fabricating the same
JP2010219196A (en) Back surface protection sheet for solar cell module and solar cell module
JP2000031509A (en) Solar cell module
JP2000068536A (en) Solar cell module
JP2003298087A (en) Solar cell system
JP2014067968A (en) Solar cell module
JP2007301976A (en) Film for membrane structure
CN101685837B (en) Moderate surface energy fluorine-containing solar cell mask and preparation process
CN201243021Y (en) Fluoro-containing solar battery face pack with moderately surface energy
JP5656079B2 (en) Hydrophilic laminated fluororesin film

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees