JP3621719B2 - 車室内騒音低減装置 - Google Patents
車室内騒音低減装置 Download PDFInfo
- Publication number
- JP3621719B2 JP3621719B2 JP11726994A JP11726994A JP3621719B2 JP 3621719 B2 JP3621719 B2 JP 3621719B2 JP 11726994 A JP11726994 A JP 11726994A JP 11726994 A JP11726994 A JP 11726994A JP 3621719 B2 JP3621719 B2 JP 3621719B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- error signal
- noise
- circuit
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
- Exhaust Silencers (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Filters That Use Time-Delay Elements (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、エンジンの振動騒音を主要因として発生する車室内の騒音を、相殺音と干渉させて低減させる車室内騒音低減装置に関する。
【0002】
【従来の技術】
エンジンの振動騒音を主要因として発生する車室内騒音に対し、この騒音と同一振幅で逆位相となる音(相殺音)を音源から発生させ、車室内騒音を低減させる種々の技術が提案されている。
【0003】
また、最近では、例えば特開平3−178845号公報等に示されるように、LMS(Least Mean Square )アルゴリズム(適応フィルタのフィルタ係数を求める計算式を簡略化するため、フィルタの修正式が再帰式であることを利用し、平均自乗誤差で近似して求める理論)、あるいは、このLMSアルゴリズムを多チャンネルに拡大したMEFX−LMS(Multiple Error Filtered X−LMS)アルゴリズムを利用した車室内騒音低減装置が提案され、一部実用化され始めている。このLMSアルゴリズムを利用した車室内騒音低減装置では、エンジン振動を主要因として発生する車室内騒音を消音する場合、エンジン振動と相関の高い信号を騒音振動源信号(プライマリソース)として検出し、このプライマリソースから適応フィルタによって騒音に対する相殺音を合成してスピーカから発生する。そして、受聴点における騒音低減状態をエラー信号としてマイクにより検出し、このエラー信号と上記プライマリソースとからLMSアルゴリズムにより適応フィルタのフィルタ係数を更新して受聴点における騒音低減を最適な値とするようになっている。
【0004】
【発明が解決しようとする課題】
ところで、上述のLMSアルゴリズムあるいはMEFX−LMSアルゴリズムを利用した車室内騒音低減装置では、受聴点の騒音低減状態をマイク等によってエラー信号として検出し、この瞬時のエラー信号とプライマリソースとからLMSアルゴリズムにより適応フィルタのフィルタ係数を更新するため、エラー信号中に消音対象外のノイズ成分(ランダム信号;人の話し声や音楽あるいは突発的な音等)が含まれると、このノイズ成分の影響を受けてフィルタ係数の更新が行われ、消音用スピーカから相殺音として発せられて、乗員に違和感を与えるといった問題がある。
【0005】
本発明は、上記事情に鑑みてなされたもので、例え、人の話し声や音楽あるいは突発的な音等のランダム信号が発生しても、このランダム信号による影響を抑え、乗員に違和感を与えることのない安定した車室内騒音低減装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するため本発明による車室内騒音低減装置は、エンジン振動と相関の高い騒音振動源信号を適応フィルタによりキャンセル信号として合成するキャンセル信号合成手段と、上記キャンセル信号を騒音に対する相殺音として発生する相殺音発生手段と、受聴点における騒音低減状態を誤差信号として検出する誤差信号検出手段と、上記騒音振動源信号に基づきエンジンの加減速を判定し、この加減速に応じて設定する重み付けの定数を用いて前回の処理データと上記誤差信号とから指数平均値を求め、この指数平均値を予め設定しておいた範囲内の値に処理し今回の処理データとして出力する誤差信号処理手段と、上記騒音振動源信号と上記今回の処理データとに基づき上記適応フィルタのフィルタ係数を更新するフィルタ係数更新手段とを備えたものである。
【0007】
【作 用】
上記構成において、まず、エンジンの振動騒音を主要因として車室内に騒音が発生すると、キャンセル信号合成手段で、エンジン振動と相関の高い騒音振動源信号を適応フィルタによりキャンセル信号として合成し、相殺音発生手段から、上記キャンセル信号を騒音に対する相殺音として発生する。
次いで、誤差信号検出手段により、受聴点における騒音低減状態を誤差信号として検出し、誤差信号処理手段で、上記騒音振動源信号に基づきエンジンの加減速を判定し、この加減速に応じて設定する重み付けの定数を用いて前回の処理データと上記誤差信号とから指数平均値を求め、この指数平均値を予め設定しておいた範囲内の値に処理し今回の処理データとして出力する。
そして、フィルタ係数更新手段で、上記騒音振動源信号と上記今回の処理データとに基づき上記適応フィルタのフィルタ係数を更新する。
【0008】
【実施例】
以下、図面に基づいて本発明の実施例を説明する。
図1〜図4は本発明の第一実施例を示し、図1は車室内騒音低減装置のシステム概略図、図2は入力信号変換回路の説明図、図3は誤差信号処理回路の説明図、図4は誤差信号処理回路での信号処理の一例を示す説明図である。
【0009】
図1において、符号1は4サイクルエンジンを示し、このエンジン1の図示しないイグニッションコイルへのイグニッションパルス信号(Ig パルス信号)は、入力信号変換回路2に対しても出力される。
【0010】
この入力信号変換回路2は、図2に示すように、波形成形回路2aと間引回路2bとで構成されており、この入力信号変換回路2に入力された上記Ig パルス信号は、エンジン回転に同期してエンジン2回転で1パルスで、エンジン回転の0.5×n(n:整数)次成分の周波数からなる信号に成形・間引されて、騒音振動源信号(プライマリソースPs )として、キャンセル信号合成手段としての適応フィルタ3、スピーカ/マイク間伝達特性補償回路(以下「CMN0 回路」と略称)4および誤差信号処理手段としての誤差信号処理回路5に出力される。
【0011】
これは、4サイクルエンジン関連の振動騒音は、エンジン1が2回転(720℃A)で吸入・圧縮・爆発・排気の4行程を完了するために、エンジン2回転を1周期とする振動騒音となっており、周波数領域ではエンジン回転の0.5次成分を基本波とし、その高次成分が主体となったスペクトルとなっている(0.5×n(n:整数)次成分により構成されている)ためである。従って、Ig パルス信号を前述のように成形・加工することにより、消音したい振動騒音と極めて相関の高いプライマリソースPs を得ることができる。
【0012】
また、上記適応フィルタ3は、フィルタ係数更新手段としてのLMS演算回路6により更新可能なフィルタ係数W(n) を有するFIR(Finite Impulse Response )フィルタであり、所定のタップ数(例えば、512タップ)に形成されている。この適応フィルタ3に入力された上記プライマリソースPs は、上記フィルタ係数W(n) と畳み込み積和され、キャンセル信号として、D/A変換器7に出力され、図示しないフィルタ回路およびアンプ回路(AMP回路)8を介して、相殺音発生手段としてのスピーカ9から相殺音を発生するようになっている。
【0013】
上記スピーカ9は、例えば、図示しない車内のフロントドア等に配設されており、車内の受聴点(例えば、運転席の乗員の耳位置に近接する位置)には、誤差信号検出手段としてのマイク10が設けられている。
【0014】
上記マイク10にて検出された騒音低減状態を示す誤差信号(相殺音とエンジン関連の振動騒音との干渉の結果を示す信号;エラー信号)は、アンプ回路(AMP回路)11、フィルタ回路(図示せず)およびA/D変換器12を介して上記誤差信号処理回路5に入力されるようになっている。
【0015】
この誤差信号処理回路5は、図3に示すように、トリガ信号生成部5aと、加減速判定部5bと、信号記憶部5cと、指数平均算出部5dと、信号判定部5eと、信号設定部5fとから主に構成されている。
【0016】
すなわち、上記トリガ信号生成部5aには、前記プライマリソースPs が入力され、このプライマリソースPs のパルスを指数平均のトリガパルスとして上記指数平均算出部5dに出力する回路部となっている。
【0017】
また、上記加減速判定部5bには、上記プライマリソースPs が入力され、この入力信号に基づきエンジンの加減速を判定し、この加減速に応じて上記指数平均算出部5dの後述する計算式の定数を設定する回路部となっている。
【0018】
さらに、上記信号記憶部5cは、RAM回路で、上記信号設定部5fからの出力に応じて、今回求めた処理データを“前回の処理データ”として各タップ毎に記憶しておく回路部となっている。
【0019】
また、上記指数平均算出部5dは、上記信号記憶部5cから前回の処理データe(n)を読み込み、この前回の処理データe(n)と上記マイク10から入力されたエラー信号E(n) とで指数平均値Px(n)を求め、上記信号判定部5eに、この指数平均値Px(n)を出力する回路部となっている。ここで指数平均処理の式は、
Px(n)=((N−1)e(n)+E(n) )/N …(1)
で与えられる。また、Nは上記加減速判定部5bにより設定される1以上の定数で、実験の結果、定常時では4とした方が好ましい結果が得られることから、1≦N≦4として定められるようにすると、
N=4−α×|Psn−Psn−1| …(2)
で与えられる。ここで、αは定数,Psnは今回のトリガパルスのパルス間隔,Psn−1は前回のトリガパルスのパルス間隔である。
【0020】
上記(1)式から明らかなように、上記定数Nの値は、大きく設定し過ぎると今回得られたエラー信号E(n) の影響度を下げすぎて、過渡状態等におけるシステムの追従性を悪化させてしまう可能性があり、また、十分に安定性を確保できる範囲で設定する必要がある。このため、本第一実施例では上記加減速判定部5bを設け、エンジン運転状態に応じて上記定数Nを可変としているのである。
【0021】
また、上記信号判定部5eは、上記指数平均算出部5dから入力された指数平均値Px(n)が予め実験等により求めた範囲内の値であるか否かを判定する回路である。この判定は、以下の式で行われる。
|Px(n)|≧P …(3)
Pは実験等により求めた制限値である。
【0022】
そして、上記信号設定部5fは、上記信号判定部5eの上記(3)式となっている(|Px(n)|≧Pの)各タップ値のデータを、図4(c)に示すように、これらタップ値毎に前回の処理データで置換し、上記信号記憶部5cに|Px(n)|≧Pならばデータe’(n)を前回の処理データe(n)とし、|Px(n)|<Pならばデータe’(n)を今回の処理データe(n)として書き込むとともに、前記LMS演算回路6に対して今回の処理後のデータe’(n)を出力する回路部となっている。
【0023】
尚、図4(a)に全てのタップ値において|Px(n)|<Pとなっている場合、図4(b)にx1 タップ目が|Px(n)|≧Pとなっている場合、図4(c)に図4(b)のデータを上記信号設定部5fにより置換した例を示す。
【0024】
一方、前記CMN0 回路4には、予めスピーカ/マイク間伝達特性CMNが有限のインパルスレスポンスで近似して(補償係数CMN0 として)設定されており、入力されたプライマリソースPs に、上記補償係数CMN0 を乗じる(畳み込み積和する)ことにより補償して、上記LMS演算回路6に信号を出力する回路となっている。
【0025】
また、上記LMS演算回路6では、上記誤差信号処理回路5からの今回の処理データe’(n)と、上記CMN0 回路4で補償された(畳み込み積和された)プライマリソースPs とから、周知のLMSアルゴリズムにより前記適応フィルタ3のフィルタ係数W(n) の修正量を求め、フィルタ係数W(n) を更新する。
【0026】
尚、図1中、符号Cはエンジン1の振動騒音に対する車体伝達特性を示す。
【0027】
次に、上記構成による実施例の作用について説明する。
まず、エンジンの振動騒音は、エンジン1から図示しないマウント等を伝達して車内音となり、また、吸気や排気の音等も車室内に伝播する。これらのエンジン関連振動騒音は、周波数領域では、いずれも0.5×n(n:整数)次成分の周波数スペクトルにより主に構成されており、各々の振動源に対する車体伝達特性Cが乗ぜられて受聴点(例えばドライバーの耳に近接する位置)に達する。
【0028】
一方、エンジン1のイグニッションコイル(図示せず)へのイグニッションパルス信号(Ig パルス信号)は、入力信号変換回路2に入力され、波形成形回路2aと間引回路2bにより、エンジン回転に同期してエンジン2回転で1パルスで、エンジン回転の0.5×n(n:整数)次成分の周波数からなる信号に成形・間引されて、騒音振動源信号(プライマリソースPs )として、適応フィルタ3、スピーカ/マイク間伝達特性補償回路(以下「CMN0 回路」と略称)4および誤差信号処理回路5に出力される。
【0029】
上記適応フィルタ3に入力されたプライマリソースPs は、この適応フィルタ3のフィルタ係数W(n) との畳み込み積和により、振動騒音を相殺するキャンセル信号として、D/A変換器7に出力され、図示しないフィルタ回路およびアンプ回路(AMP回路)8を介して、スピーカ9に出力され、このスピーカ9から上記受聴点における振動騒音に対する相殺音として出力される。このとき、上記相殺音は、スピーカ/マイク間伝達特性CMNを受けて上記受聴点に達する。
【0030】
このため、上記受聴点では、上記エンジン関連の振動騒音と上記相殺音とが干渉して振動騒音が低減させられると同時に、上記受聴点の近傍に配設されているマイク10により、振動騒音と相殺音との干渉の結果が検出され、エラー信号E(n) として、アンプ回路(AMP回路)11、フィルタ回路(図示せず)およびA/D変換器12を介して誤差信号処理回路5に入力される。
【0031】
上記誤差信号処理回路5では、上記エラー信号E(n) が指数平均算出部5dに入力され、上記プライマリソースPs がトリガ信号生成部5aと加減速判定部5bとに入力される。
【0032】
そして、上記加減速判定部5bに入力された上記プライマリソースPs に基づき(パルス間隔の変化に基づき)エンジンの加減速を判定し、この加減速に応じて上記指数平均算出部5dの計算式の定数を設定する。
【0033】
その後、上記指数平均算出部5dで、上記トリガ信号生成部5aに入力された上記プライマリソースPs のパルスでトリガし、入力された上記エラー信号E(n) を、信号記憶部5cから読み出した前回の処理データe(n)をもとに指数平均化処理して、過去のエラー信号の値が圧縮された値に処理して信号判定部5eに出力する。
【0034】
この信号判定部5eでは、入力された指数平均値Px(n)が予め実験等により求めた範囲内の値であるか否かを判定し、例えば、図4(b)に示すように、x1 タップ目が|Px(n)|≧Pとなっている場合は、これらの情報とともに信号を信号設定部5fに出力(|Px(n)|<Pとなっている場合にも、これらの情報とともに信号を5fに出力する)。
【0035】
そして、この信号設定部5fにおいて、図4(b)のように|Px(n)|≧Pとなっている場合には、上記信号記憶部5cから前回の処理データe(n)を読み出し、x1 タップ目の値をこの前回の処理データe(n)のx1 タップ目の値に置換してLMS演算回路6に出力する。一方、この置換した処理データe’(n)を新たに前回の処理データe(n)として上記信号記憶部5cに書き込む。|Px(n)|<Pの場合には置換せずに今回の処理データe’(n)をLMS演算回路6に出力する一方、新たに前回の処理データe(n) として上記信号記憶部5cに書き込む。
【0036】
また、上記CMN0 回路4に入力されたプライマリソースPs は、スピーカ/マイク間伝達特性CMNを有限のインパルスレスポンスで近似した値(補償係数CMN0 )と畳み込み積和され、上記LMS演算回路6に出力される。
【0037】
そして、上記LMS演算回路6で、上記誤差信号処理回路5からの処理デ−タe’(n)と、上記CMN0 回路4で補償されたプライマリソースPs とから、LMSアルゴリズムにより前記適応フィルタ3のフィルタ係数W(n) の修正量を求め、フィルタ係数W(n) を更新する。
【0038】
このように本第一実施例によれば、例え、人の話し声や音楽あるいは突発的な音等のランダム信号が発生しても、このランダム信号を誤差信号処理回路によって制限するため、これらランダム信号の影響を受けることのない安定した消音システムが実現できる。
【0039】
また、誤差信号処理回路に加減速判定部を備えたことから、急な加減速等の過渡的な状態が生じても消音システムが柔軟に対応できる。尚、このような過渡的な状態が少なく常に安定した条件で消音システムが機能できる場合には、この加減速判定部を省略できることはいうまでもない。
【0040】
また、本第一実施例では、プライマリソースPs としてIg パルスを用いるように構成しているが、他のエンジン関連の振動騒音と相関の高い信号(例えば、燃料噴射パルスTi 等)をプライマリソースPs としても良い。
【0041】
また、本第一実施例では、1チャンネル(マイク1個、スピーカ1個)のLMSアルゴリズムを利用した騒音低減装置の例について説明したが、LMSアルゴリズムを多チャンネルに拡大したMEFX−LMS(Multiple Error Filtered X−LMS)アルゴリズムを利用した車室内騒音低減装置(例えば、マイク4個、スピーカ4個等の装置)についても適用可能である。
【0042】
次いで、図5および図6は本発明の第二実施例を示し、図5は誤差信号処理回路の説明図、図6は誤差信号処理回路での信号処理の一例を示す説明図である。尚、この第二実施例は、前記第一実施例における誤差信号処理回路の信号判定部での指数平均値の制限値の設定の仕方と誤差信号処理回路の信号設定部の置換が異なり、他の部分は前記第一実施例と同じであり、この同じ部分には同一符号を記しその説明は省略する。
【0043】
図5において、符号5’ は前記第一実施例の誤差信号処理回路5に対応する誤差信号処理回路で、この誤差信号処理回路5’ は、トリガ信号生成部5aと、加減速判定部5bと、信号記憶部5cと、指数平均算出部5dと、信号判定部15eと、信号設定部15fとから主に構成されている。
【0044】
上記信号判定部15eは、上記指数平均算出部5dから入力された指数平均値Px(n)が予め実験等により求めた範囲内の値であるか否かを判定する回路で、この判定は、以下の式で行われる。
Px(n)≧e(n)+Q …(4a)
Px(n)≦e(n)−Q …(4b)
ここで、Qは実験等で過渡状態においても適応できるように設定した制限値,e(n)は前回の処理データである。
【0045】
そして、上記信号設定部15fは、上記信号判定部15eの上記(4a)式あるいは上記(4b)式となっている各タップ値のデータを、図6(c)に示すように、これらタップ値毎に、上記(4a)式(Px(n)≧e(n)+Q)の場合は、このタップ部分のデータをe(n)+Qとし、上記(4b)式(Px(n)≦e(n)−Q)の場合は、このタップ部分のデータをe(n)−Qとして置換し、上記信号記憶部5cに処理後のデータe’(n)を新たな前回の処理データe(n)として書き込むとともに、前記LMS演算回路6に対して置換後の処理データ(今回の処理データe’(n))を出力する回路部となっている。上記(4a),(4b)式以外、即ちe(n)−Q<Px(n)<e(n)+Qならば置換せずに上記信号記憶部5cに、置換しない処理後データ=今回の指数平均値としてe’(n)を新たなe(n)として書き込むと共に、上記LMS演算回路6にe’(n)を出力する。
【0046】
すなわち、図6(a)に示すように、上記(4a)式と上記(4b)式による制限帯は、前回の処理データe(n)を基準として形成され、図6(b)に示すように、x2 タップ目で、この制限帯から出る場合には、図6(c)に示すように、上記信号設定部15fで、制限帯の値(図6(c)ではe(n)+Q)と置換されるのである。
【0047】
このように、本第二実施例では、前回の処理データを基準として指数平均算出部5dからの指数平均値が制限されるので、より効果的にランダム信号の影響を受けることのない安定した消音システムとすることができる。
【0048】
【発明の効果】
以上、説明したように本発明によれば、例え、人の話し声や音楽あるいは突発的な音等のランダム信号が発生しても、このランダム信号による影響を抑え、乗員に違和感を与えることのない安定した消音性能を得ることができる。
【図面の簡単な説明】
【図1】本発明の第一実施例による車室内騒音低減装置のシステム概略図
【図2】本発明の第一実施例による入力信号変換回路の説明図
【図3】本発明の第一実施例による誤差信号処理回路の説明図
【図4】本発明の第一実施例による誤差信号処理回路での信号処理の一例を示す説明図
【図5】本発明の第二実施例による誤差信号処理回路の説明図
【図6】本発明の第二実施例による誤差信号処理回路での信号処理の一例を示す説明図
【符号の説明】
1 エンジン
3 適応フィルタ(キャンセル信号合成手段)
5 誤差信号処理回路(誤差信号処理手段)
6 LMS演算回路(フィルタ係数更新手段)
9 スピーカ(相殺音発生手段)
10 マイク(誤差信号検出手段)
e(n) 前回の処理データ
e’(n) 今回の処理データ
E(n) エラー信号(誤差信号)
Ps プライマリソース(騒音振動源信号)
Px(n) 指数平均値
W(n) フィルタ係数
【産業上の利用分野】
本発明は、エンジンの振動騒音を主要因として発生する車室内の騒音を、相殺音と干渉させて低減させる車室内騒音低減装置に関する。
【0002】
【従来の技術】
エンジンの振動騒音を主要因として発生する車室内騒音に対し、この騒音と同一振幅で逆位相となる音(相殺音)を音源から発生させ、車室内騒音を低減させる種々の技術が提案されている。
【0003】
また、最近では、例えば特開平3−178845号公報等に示されるように、LMS(Least Mean Square )アルゴリズム(適応フィルタのフィルタ係数を求める計算式を簡略化するため、フィルタの修正式が再帰式であることを利用し、平均自乗誤差で近似して求める理論)、あるいは、このLMSアルゴリズムを多チャンネルに拡大したMEFX−LMS(Multiple Error Filtered X−LMS)アルゴリズムを利用した車室内騒音低減装置が提案され、一部実用化され始めている。このLMSアルゴリズムを利用した車室内騒音低減装置では、エンジン振動を主要因として発生する車室内騒音を消音する場合、エンジン振動と相関の高い信号を騒音振動源信号(プライマリソース)として検出し、このプライマリソースから適応フィルタによって騒音に対する相殺音を合成してスピーカから発生する。そして、受聴点における騒音低減状態をエラー信号としてマイクにより検出し、このエラー信号と上記プライマリソースとからLMSアルゴリズムにより適応フィルタのフィルタ係数を更新して受聴点における騒音低減を最適な値とするようになっている。
【0004】
【発明が解決しようとする課題】
ところで、上述のLMSアルゴリズムあるいはMEFX−LMSアルゴリズムを利用した車室内騒音低減装置では、受聴点の騒音低減状態をマイク等によってエラー信号として検出し、この瞬時のエラー信号とプライマリソースとからLMSアルゴリズムにより適応フィルタのフィルタ係数を更新するため、エラー信号中に消音対象外のノイズ成分(ランダム信号;人の話し声や音楽あるいは突発的な音等)が含まれると、このノイズ成分の影響を受けてフィルタ係数の更新が行われ、消音用スピーカから相殺音として発せられて、乗員に違和感を与えるといった問題がある。
【0005】
本発明は、上記事情に鑑みてなされたもので、例え、人の話し声や音楽あるいは突発的な音等のランダム信号が発生しても、このランダム信号による影響を抑え、乗員に違和感を与えることのない安定した車室内騒音低減装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するため本発明による車室内騒音低減装置は、エンジン振動と相関の高い騒音振動源信号を適応フィルタによりキャンセル信号として合成するキャンセル信号合成手段と、上記キャンセル信号を騒音に対する相殺音として発生する相殺音発生手段と、受聴点における騒音低減状態を誤差信号として検出する誤差信号検出手段と、上記騒音振動源信号に基づきエンジンの加減速を判定し、この加減速に応じて設定する重み付けの定数を用いて前回の処理データと上記誤差信号とから指数平均値を求め、この指数平均値を予め設定しておいた範囲内の値に処理し今回の処理データとして出力する誤差信号処理手段と、上記騒音振動源信号と上記今回の処理データとに基づき上記適応フィルタのフィルタ係数を更新するフィルタ係数更新手段とを備えたものである。
【0007】
【作 用】
上記構成において、まず、エンジンの振動騒音を主要因として車室内に騒音が発生すると、キャンセル信号合成手段で、エンジン振動と相関の高い騒音振動源信号を適応フィルタによりキャンセル信号として合成し、相殺音発生手段から、上記キャンセル信号を騒音に対する相殺音として発生する。
次いで、誤差信号検出手段により、受聴点における騒音低減状態を誤差信号として検出し、誤差信号処理手段で、上記騒音振動源信号に基づきエンジンの加減速を判定し、この加減速に応じて設定する重み付けの定数を用いて前回の処理データと上記誤差信号とから指数平均値を求め、この指数平均値を予め設定しておいた範囲内の値に処理し今回の処理データとして出力する。
そして、フィルタ係数更新手段で、上記騒音振動源信号と上記今回の処理データとに基づき上記適応フィルタのフィルタ係数を更新する。
【0008】
【実施例】
以下、図面に基づいて本発明の実施例を説明する。
図1〜図4は本発明の第一実施例を示し、図1は車室内騒音低減装置のシステム概略図、図2は入力信号変換回路の説明図、図3は誤差信号処理回路の説明図、図4は誤差信号処理回路での信号処理の一例を示す説明図である。
【0009】
図1において、符号1は4サイクルエンジンを示し、このエンジン1の図示しないイグニッションコイルへのイグニッションパルス信号(Ig パルス信号)は、入力信号変換回路2に対しても出力される。
【0010】
この入力信号変換回路2は、図2に示すように、波形成形回路2aと間引回路2bとで構成されており、この入力信号変換回路2に入力された上記Ig パルス信号は、エンジン回転に同期してエンジン2回転で1パルスで、エンジン回転の0.5×n(n:整数)次成分の周波数からなる信号に成形・間引されて、騒音振動源信号(プライマリソースPs )として、キャンセル信号合成手段としての適応フィルタ3、スピーカ/マイク間伝達特性補償回路(以下「CMN0 回路」と略称)4および誤差信号処理手段としての誤差信号処理回路5に出力される。
【0011】
これは、4サイクルエンジン関連の振動騒音は、エンジン1が2回転(720℃A)で吸入・圧縮・爆発・排気の4行程を完了するために、エンジン2回転を1周期とする振動騒音となっており、周波数領域ではエンジン回転の0.5次成分を基本波とし、その高次成分が主体となったスペクトルとなっている(0.5×n(n:整数)次成分により構成されている)ためである。従って、Ig パルス信号を前述のように成形・加工することにより、消音したい振動騒音と極めて相関の高いプライマリソースPs を得ることができる。
【0012】
また、上記適応フィルタ3は、フィルタ係数更新手段としてのLMS演算回路6により更新可能なフィルタ係数W(n) を有するFIR(Finite Impulse Response )フィルタであり、所定のタップ数(例えば、512タップ)に形成されている。この適応フィルタ3に入力された上記プライマリソースPs は、上記フィルタ係数W(n) と畳み込み積和され、キャンセル信号として、D/A変換器7に出力され、図示しないフィルタ回路およびアンプ回路(AMP回路)8を介して、相殺音発生手段としてのスピーカ9から相殺音を発生するようになっている。
【0013】
上記スピーカ9は、例えば、図示しない車内のフロントドア等に配設されており、車内の受聴点(例えば、運転席の乗員の耳位置に近接する位置)には、誤差信号検出手段としてのマイク10が設けられている。
【0014】
上記マイク10にて検出された騒音低減状態を示す誤差信号(相殺音とエンジン関連の振動騒音との干渉の結果を示す信号;エラー信号)は、アンプ回路(AMP回路)11、フィルタ回路(図示せず)およびA/D変換器12を介して上記誤差信号処理回路5に入力されるようになっている。
【0015】
この誤差信号処理回路5は、図3に示すように、トリガ信号生成部5aと、加減速判定部5bと、信号記憶部5cと、指数平均算出部5dと、信号判定部5eと、信号設定部5fとから主に構成されている。
【0016】
すなわち、上記トリガ信号生成部5aには、前記プライマリソースPs が入力され、このプライマリソースPs のパルスを指数平均のトリガパルスとして上記指数平均算出部5dに出力する回路部となっている。
【0017】
また、上記加減速判定部5bには、上記プライマリソースPs が入力され、この入力信号に基づきエンジンの加減速を判定し、この加減速に応じて上記指数平均算出部5dの後述する計算式の定数を設定する回路部となっている。
【0018】
さらに、上記信号記憶部5cは、RAM回路で、上記信号設定部5fからの出力に応じて、今回求めた処理データを“前回の処理データ”として各タップ毎に記憶しておく回路部となっている。
【0019】
また、上記指数平均算出部5dは、上記信号記憶部5cから前回の処理データe(n)を読み込み、この前回の処理データe(n)と上記マイク10から入力されたエラー信号E(n) とで指数平均値Px(n)を求め、上記信号判定部5eに、この指数平均値Px(n)を出力する回路部となっている。ここで指数平均処理の式は、
Px(n)=((N−1)e(n)+E(n) )/N …(1)
で与えられる。また、Nは上記加減速判定部5bにより設定される1以上の定数で、実験の結果、定常時では4とした方が好ましい結果が得られることから、1≦N≦4として定められるようにすると、
N=4−α×|Psn−Psn−1| …(2)
で与えられる。ここで、αは定数,Psnは今回のトリガパルスのパルス間隔,Psn−1は前回のトリガパルスのパルス間隔である。
【0020】
上記(1)式から明らかなように、上記定数Nの値は、大きく設定し過ぎると今回得られたエラー信号E(n) の影響度を下げすぎて、過渡状態等におけるシステムの追従性を悪化させてしまう可能性があり、また、十分に安定性を確保できる範囲で設定する必要がある。このため、本第一実施例では上記加減速判定部5bを設け、エンジン運転状態に応じて上記定数Nを可変としているのである。
【0021】
また、上記信号判定部5eは、上記指数平均算出部5dから入力された指数平均値Px(n)が予め実験等により求めた範囲内の値であるか否かを判定する回路である。この判定は、以下の式で行われる。
|Px(n)|≧P …(3)
Pは実験等により求めた制限値である。
【0022】
そして、上記信号設定部5fは、上記信号判定部5eの上記(3)式となっている(|Px(n)|≧Pの)各タップ値のデータを、図4(c)に示すように、これらタップ値毎に前回の処理データで置換し、上記信号記憶部5cに|Px(n)|≧Pならばデータe’(n)を前回の処理データe(n)とし、|Px(n)|<Pならばデータe’(n)を今回の処理データe(n)として書き込むとともに、前記LMS演算回路6に対して今回の処理後のデータe’(n)を出力する回路部となっている。
【0023】
尚、図4(a)に全てのタップ値において|Px(n)|<Pとなっている場合、図4(b)にx1 タップ目が|Px(n)|≧Pとなっている場合、図4(c)に図4(b)のデータを上記信号設定部5fにより置換した例を示す。
【0024】
一方、前記CMN0 回路4には、予めスピーカ/マイク間伝達特性CMNが有限のインパルスレスポンスで近似して(補償係数CMN0 として)設定されており、入力されたプライマリソースPs に、上記補償係数CMN0 を乗じる(畳み込み積和する)ことにより補償して、上記LMS演算回路6に信号を出力する回路となっている。
【0025】
また、上記LMS演算回路6では、上記誤差信号処理回路5からの今回の処理データe’(n)と、上記CMN0 回路4で補償された(畳み込み積和された)プライマリソースPs とから、周知のLMSアルゴリズムにより前記適応フィルタ3のフィルタ係数W(n) の修正量を求め、フィルタ係数W(n) を更新する。
【0026】
尚、図1中、符号Cはエンジン1の振動騒音に対する車体伝達特性を示す。
【0027】
次に、上記構成による実施例の作用について説明する。
まず、エンジンの振動騒音は、エンジン1から図示しないマウント等を伝達して車内音となり、また、吸気や排気の音等も車室内に伝播する。これらのエンジン関連振動騒音は、周波数領域では、いずれも0.5×n(n:整数)次成分の周波数スペクトルにより主に構成されており、各々の振動源に対する車体伝達特性Cが乗ぜられて受聴点(例えばドライバーの耳に近接する位置)に達する。
【0028】
一方、エンジン1のイグニッションコイル(図示せず)へのイグニッションパルス信号(Ig パルス信号)は、入力信号変換回路2に入力され、波形成形回路2aと間引回路2bにより、エンジン回転に同期してエンジン2回転で1パルスで、エンジン回転の0.5×n(n:整数)次成分の周波数からなる信号に成形・間引されて、騒音振動源信号(プライマリソースPs )として、適応フィルタ3、スピーカ/マイク間伝達特性補償回路(以下「CMN0 回路」と略称)4および誤差信号処理回路5に出力される。
【0029】
上記適応フィルタ3に入力されたプライマリソースPs は、この適応フィルタ3のフィルタ係数W(n) との畳み込み積和により、振動騒音を相殺するキャンセル信号として、D/A変換器7に出力され、図示しないフィルタ回路およびアンプ回路(AMP回路)8を介して、スピーカ9に出力され、このスピーカ9から上記受聴点における振動騒音に対する相殺音として出力される。このとき、上記相殺音は、スピーカ/マイク間伝達特性CMNを受けて上記受聴点に達する。
【0030】
このため、上記受聴点では、上記エンジン関連の振動騒音と上記相殺音とが干渉して振動騒音が低減させられると同時に、上記受聴点の近傍に配設されているマイク10により、振動騒音と相殺音との干渉の結果が検出され、エラー信号E(n) として、アンプ回路(AMP回路)11、フィルタ回路(図示せず)およびA/D変換器12を介して誤差信号処理回路5に入力される。
【0031】
上記誤差信号処理回路5では、上記エラー信号E(n) が指数平均算出部5dに入力され、上記プライマリソースPs がトリガ信号生成部5aと加減速判定部5bとに入力される。
【0032】
そして、上記加減速判定部5bに入力された上記プライマリソースPs に基づき(パルス間隔の変化に基づき)エンジンの加減速を判定し、この加減速に応じて上記指数平均算出部5dの計算式の定数を設定する。
【0033】
その後、上記指数平均算出部5dで、上記トリガ信号生成部5aに入力された上記プライマリソースPs のパルスでトリガし、入力された上記エラー信号E(n) を、信号記憶部5cから読み出した前回の処理データe(n)をもとに指数平均化処理して、過去のエラー信号の値が圧縮された値に処理して信号判定部5eに出力する。
【0034】
この信号判定部5eでは、入力された指数平均値Px(n)が予め実験等により求めた範囲内の値であるか否かを判定し、例えば、図4(b)に示すように、x1 タップ目が|Px(n)|≧Pとなっている場合は、これらの情報とともに信号を信号設定部5fに出力(|Px(n)|<Pとなっている場合にも、これらの情報とともに信号を5fに出力する)。
【0035】
そして、この信号設定部5fにおいて、図4(b)のように|Px(n)|≧Pとなっている場合には、上記信号記憶部5cから前回の処理データe(n)を読み出し、x1 タップ目の値をこの前回の処理データe(n)のx1 タップ目の値に置換してLMS演算回路6に出力する。一方、この置換した処理データe’(n)を新たに前回の処理データe(n)として上記信号記憶部5cに書き込む。|Px(n)|<Pの場合には置換せずに今回の処理データe’(n)をLMS演算回路6に出力する一方、新たに前回の処理データe(n) として上記信号記憶部5cに書き込む。
【0036】
また、上記CMN0 回路4に入力されたプライマリソースPs は、スピーカ/マイク間伝達特性CMNを有限のインパルスレスポンスで近似した値(補償係数CMN0 )と畳み込み積和され、上記LMS演算回路6に出力される。
【0037】
そして、上記LMS演算回路6で、上記誤差信号処理回路5からの処理デ−タe’(n)と、上記CMN0 回路4で補償されたプライマリソースPs とから、LMSアルゴリズムにより前記適応フィルタ3のフィルタ係数W(n) の修正量を求め、フィルタ係数W(n) を更新する。
【0038】
このように本第一実施例によれば、例え、人の話し声や音楽あるいは突発的な音等のランダム信号が発生しても、このランダム信号を誤差信号処理回路によって制限するため、これらランダム信号の影響を受けることのない安定した消音システムが実現できる。
【0039】
また、誤差信号処理回路に加減速判定部を備えたことから、急な加減速等の過渡的な状態が生じても消音システムが柔軟に対応できる。尚、このような過渡的な状態が少なく常に安定した条件で消音システムが機能できる場合には、この加減速判定部を省略できることはいうまでもない。
【0040】
また、本第一実施例では、プライマリソースPs としてIg パルスを用いるように構成しているが、他のエンジン関連の振動騒音と相関の高い信号(例えば、燃料噴射パルスTi 等)をプライマリソースPs としても良い。
【0041】
また、本第一実施例では、1チャンネル(マイク1個、スピーカ1個)のLMSアルゴリズムを利用した騒音低減装置の例について説明したが、LMSアルゴリズムを多チャンネルに拡大したMEFX−LMS(Multiple Error Filtered X−LMS)アルゴリズムを利用した車室内騒音低減装置(例えば、マイク4個、スピーカ4個等の装置)についても適用可能である。
【0042】
次いで、図5および図6は本発明の第二実施例を示し、図5は誤差信号処理回路の説明図、図6は誤差信号処理回路での信号処理の一例を示す説明図である。尚、この第二実施例は、前記第一実施例における誤差信号処理回路の信号判定部での指数平均値の制限値の設定の仕方と誤差信号処理回路の信号設定部の置換が異なり、他の部分は前記第一実施例と同じであり、この同じ部分には同一符号を記しその説明は省略する。
【0043】
図5において、符号5’ は前記第一実施例の誤差信号処理回路5に対応する誤差信号処理回路で、この誤差信号処理回路5’ は、トリガ信号生成部5aと、加減速判定部5bと、信号記憶部5cと、指数平均算出部5dと、信号判定部15eと、信号設定部15fとから主に構成されている。
【0044】
上記信号判定部15eは、上記指数平均算出部5dから入力された指数平均値Px(n)が予め実験等により求めた範囲内の値であるか否かを判定する回路で、この判定は、以下の式で行われる。
Px(n)≧e(n)+Q …(4a)
Px(n)≦e(n)−Q …(4b)
ここで、Qは実験等で過渡状態においても適応できるように設定した制限値,e(n)は前回の処理データである。
【0045】
そして、上記信号設定部15fは、上記信号判定部15eの上記(4a)式あるいは上記(4b)式となっている各タップ値のデータを、図6(c)に示すように、これらタップ値毎に、上記(4a)式(Px(n)≧e(n)+Q)の場合は、このタップ部分のデータをe(n)+Qとし、上記(4b)式(Px(n)≦e(n)−Q)の場合は、このタップ部分のデータをe(n)−Qとして置換し、上記信号記憶部5cに処理後のデータe’(n)を新たな前回の処理データe(n)として書き込むとともに、前記LMS演算回路6に対して置換後の処理データ(今回の処理データe’(n))を出力する回路部となっている。上記(4a),(4b)式以外、即ちe(n)−Q<Px(n)<e(n)+Qならば置換せずに上記信号記憶部5cに、置換しない処理後データ=今回の指数平均値としてe’(n)を新たなe(n)として書き込むと共に、上記LMS演算回路6にe’(n)を出力する。
【0046】
すなわち、図6(a)に示すように、上記(4a)式と上記(4b)式による制限帯は、前回の処理データe(n)を基準として形成され、図6(b)に示すように、x2 タップ目で、この制限帯から出る場合には、図6(c)に示すように、上記信号設定部15fで、制限帯の値(図6(c)ではe(n)+Q)と置換されるのである。
【0047】
このように、本第二実施例では、前回の処理データを基準として指数平均算出部5dからの指数平均値が制限されるので、より効果的にランダム信号の影響を受けることのない安定した消音システムとすることができる。
【0048】
【発明の効果】
以上、説明したように本発明によれば、例え、人の話し声や音楽あるいは突発的な音等のランダム信号が発生しても、このランダム信号による影響を抑え、乗員に違和感を与えることのない安定した消音性能を得ることができる。
【図面の簡単な説明】
【図1】本発明の第一実施例による車室内騒音低減装置のシステム概略図
【図2】本発明の第一実施例による入力信号変換回路の説明図
【図3】本発明の第一実施例による誤差信号処理回路の説明図
【図4】本発明の第一実施例による誤差信号処理回路での信号処理の一例を示す説明図
【図5】本発明の第二実施例による誤差信号処理回路の説明図
【図6】本発明の第二実施例による誤差信号処理回路での信号処理の一例を示す説明図
【符号の説明】
1 エンジン
3 適応フィルタ(キャンセル信号合成手段)
5 誤差信号処理回路(誤差信号処理手段)
6 LMS演算回路(フィルタ係数更新手段)
9 スピーカ(相殺音発生手段)
10 マイク(誤差信号検出手段)
e(n) 前回の処理データ
e’(n) 今回の処理データ
E(n) エラー信号(誤差信号)
Ps プライマリソース(騒音振動源信号)
Px(n) 指数平均値
W(n) フィルタ係数
Claims (1)
- エンジン振動と相関の高い騒音振動源信号(Ps)を適応フィルタによりキャンセル信号として合成するキャンセル信号合成手段(3)と、
上記キャンセル信号を騒音に対する相殺音として発生する相殺音発生手段(9)と、
受聴点における騒音低減状態を誤差信号(E(n))として検出する誤差信号検出手段(10)と、
上記騒音振動源信号(Ps)に基づきエンジン(1)の加減速を判定し、この加減速に応じて設定する重み付けの定数(N)を用いて前回の処理データ(e(n))と上記誤差信号(E(n))とから指数平均値(Px(n))を求め、この指数平均値(Px(n))を予め設定しておいた範囲内の値に処理し今回の処理データ(e’(n))として出力する誤差信号処理手段(5)と、
上記騒音振動源信号(Ps)と上記今回の処理データ(e’(n))とに基づき上記適応フィルタ(3)のフィルタ係数(W(n))を更新するフィルタ係数更新手段(6)とを備えたことを特徴とする車室内騒音低減装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11726994A JP3621719B2 (ja) | 1994-05-30 | 1994-05-30 | 車室内騒音低減装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11726994A JP3621719B2 (ja) | 1994-05-30 | 1994-05-30 | 車室内騒音低減装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07325587A JPH07325587A (ja) | 1995-12-12 |
JP3621719B2 true JP3621719B2 (ja) | 2005-02-16 |
Family
ID=14707581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11726994A Expired - Fee Related JP3621719B2 (ja) | 1994-05-30 | 1994-05-30 | 車室内騒音低減装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3621719B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113066468A (zh) * | 2021-03-18 | 2021-07-02 | 辛巴网络科技(南京)有限公司 | 一种基于车内环境主动噪音干扰消除优化装置及方法 |
-
1994
- 1994-05-30 JP JP11726994A patent/JP3621719B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07325587A (ja) | 1995-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3410141B2 (ja) | 車室内騒音低減装置 | |
JPH06230788A (ja) | 車室内騒音低減装置 | |
JPH0720884A (ja) | 車室内騒音低減装置 | |
JP2017504815A (ja) | アクティブ・ノイズ・コントロール・システム | |
EP2287046A1 (en) | Active noise controller | |
JP3410129B2 (ja) | 車室内騒音低減装置 | |
JP3621719B2 (ja) | 車室内騒音低減装置 | |
JPH06332470A (ja) | 車室内騒音低減装置 | |
JP3621718B2 (ja) | 車室内騒音低減装置 | |
JP2980007B2 (ja) | 排気音質改良装置 | |
JP2876896B2 (ja) | 車両用能動型騒音制御装置 | |
JP2000172281A (ja) | 車室内音制御装置 | |
JPH0651787A (ja) | 能動型消音装置 | |
JPH07168582A (ja) | 車室内騒音低減装置 | |
JP3621714B2 (ja) | 車室内騒音低減装置 | |
JP3537150B2 (ja) | 騒音制御装置 | |
JPH07325586A (ja) | 車室内騒音低減装置 | |
JPH0883083A (ja) | 車室内騒音低減装置 | |
JPH0627970A (ja) | 車室内こもり音制御装置 | |
JPH0732947A (ja) | 能動型騒音制御装置 | |
JP3273051B2 (ja) | 能動型騒音制御装置及び適応的騒音制御方法 | |
JP3122192B2 (ja) | 能動型騒音制御装置及び適応騒音制御方法 | |
JPH0627968A (ja) | 車室内騒音低減装置 | |
JPH0962270A (ja) | 車室内騒音低減装置 | |
JP3544677B2 (ja) | 車室内こもり音低減装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040420 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041119 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |