JP3602268B2 - Method and apparatus for removing sulfur compounds contained in natural gas and the like - Google Patents

Method and apparatus for removing sulfur compounds contained in natural gas and the like Download PDF

Info

Publication number
JP3602268B2
JP3602268B2 JP18521296A JP18521296A JP3602268B2 JP 3602268 B2 JP3602268 B2 JP 3602268B2 JP 18521296 A JP18521296 A JP 18521296A JP 18521296 A JP18521296 A JP 18521296A JP 3602268 B2 JP3602268 B2 JP 3602268B2
Authority
JP
Japan
Prior art keywords
gas
hydrogen sulfide
claus
sulfur
sulfur compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18521296A
Other languages
Japanese (ja)
Other versions
JPH1028837A (en
Inventor
満 木田
孝 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP18521296A priority Critical patent/JP3602268B2/en
Publication of JPH1028837A publication Critical patent/JPH1028837A/en
Application granted granted Critical
Publication of JP3602268B2 publication Critical patent/JP3602268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、天然ガス、石油随伴ガス、合成ガス、プロセスガス、石炭ガス化ガス、重油ガス化ガスなど(以下、本発明では天然ガス等と略記する。)に含まれる硫化水素(HS)、メルカプタン、硫黄酸化物などの硫黄化合物を除去する方法およびその装置に関する。
【0002】
【従来の技術】
天然ガス等に随伴される不純物ガスとしては、二酸化炭素(CO)、HS、COS、メルカプタン、重質炭化水素などがあり、これら不純物ガスは天然ガス等の採掘品位の低下などに伴い、近年漸次増加の傾向にあり、これらを除去、精製して製品ガスとする必要がある。
【0003】
一方、ガス中に含まれるHSを除去する方法として、クラウス反応によるものがある。このクラウス反応は、ガス中のHSの一部を酸化してSOとし、このSOと残部のHSとを反応させて硫黄単体を分離回収することにより、ガス中のHSを除去するものである。
また、クラウス反応後のオフガスに含まれる残余のSOを触媒存在下に水素化してHSとし、これをクラウス反応装置に戻して、硫黄分の除去率を高める方法も知られている。
【0004】
ところで、天然ガス等に随伴される不純物成分としては、上述のようにHS以外の種々の成分が含まれており、天然ガス等からこのような不純物ガスを分離し、この不純物ガスをクラウス反応装置に導き、ここに含まれる硫黄分を除去しようとすると、次のような不都合が生じる。
▲1▼不純物ガスには、HS以外の成分、例えばCOなどが多量に含まれているので、HS濃度が低くなり、クラウス反応での反応率が低下して、除去率が低下する。
▲2▼不純物ガスに含まれる重質炭化水素(ベンゼン、トルエン、キシレン等)が不完全燃焼して、煤が発生し、回収硫黄が煤で汚染され、硫黄の品質が低下するとともに煤によってクラウス触媒層が閉塞することがある。
【0005】
従来、COを多量に含有する硫化水素含有ガスをクラウス反応させる方法としては、例えば特公昭63−17488号公報に開示されたものがある。
この方法は、COを20vol%以上含むHS含有ガスの一部をクラウスプラントに供給し、残部をクラウスプラントを迂回してHSを選択的に吸収する 吸収剤に接触させ、この吸収剤で再生、分離されたHSをクラウスプラント に戻すものである。
しかしながら、この先行発明においても上述の不都合を十分解決することはできない。
【0006】
【発明が解決しようとする課題】
よって、本発明における課題は、天然ガス等に随伴される不純物ガスがHS以外にCO、COS、BTX、メルカプタンなどを多量に含んでいるものであっても、この不純物ガス中の硫黄化合物をクラウス反応によって効率よく除去でき、しかもBTXなどの重質炭化水素から生成する煤に起因するクラウス触媒層の閉塞や回収硫黄の品質低下を防止することにある。
【0007】
【課題を解決するための手段】
かかる課題は、天然ガス等から分離した不純物ガスを濃縮分離工程に送り、不純物ガス中のHSを主体とする濃縮ガスと残余の成分からなる残余ガスとに分離し、濃縮ガスをクラウス反応工程に送り、HSを回収除去し、このクラウス反応工程からのオフガスと上記残余ガスの全量または一部とを別々にまたは併せてテールガス処理工程に送り、ここで加熱、水素化してこれらガス中の硫黄化合物をHSとし、このHSを分離してクラウス反応工程に戻すことにより解決される。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明を詳しく説明する。
図1は、本発明の除去方法を実施するための装置の一例を示すもので、天然ガス等として採掘された粗天然ガスを用いるものである。
粗天然ガスは管1から第1吸収塔2に送られ、粗天然ガスに随伴される不純物ガスがここで非選択的に吸収され、精製された製品天然ガスが塔頂から管3により導出される。第1吸収塔2には、非選択的吸収液としてスルホラン−アミン混合液、モノエタノールアミン、ジエタノールアミン、ジグライコールアミン、メタノール、グライコール溶液等の水溶液が供給され、粗天然ガスに随伴された多量のCOおよびHS、少量のメルカプタンなどの硫黄化合物、少量のBTXなどの炭化水素が吸収される。
【0009】
この不純物ガスを吸収した吸収液は塔底から管4を経て第1再生塔5に送られ、ここで加熱され、不純物ガスが放散される。この不純物ガスは、例えば約70vol%のCO、約25vol%のHS、少量のメルカプタン、BTXの炭化水素などからなる。
この不純物ガスは第1再生塔5の塔頂から管6により抜き出され、再生された吸収液は塔底から抜液されて管7を経て第1吸収塔2に戻され、再利用される。
【0010】
管6からの不純物ガスは第2吸収塔8に導入される。第2吸収塔8には、ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、メチルジエタノールアミンなどのアルカノールアミン、スルホラン−アミン混合液、ポリエチレングリコールジアルキルエーテル、N,N−ジメチルアミノ酢酸塩等の水溶液からなる選択的吸収液が供給され、ここで不純物ガス中のHSの大部分と COの一部が吸収される。これらの吸収液のなかには、非選択的吸収液として 用いられるものもあるが、吸収条件を選ぶことにより、主としてHSを吸収す る選択的吸収液とすることができる。
ここでの吸収条件は、温度60℃以下、好ましくは5〜40℃とされ、圧力が実質的に大気圧もしくは2気圧以下の微かな加圧下とされる。
【0011】
第2吸収塔8の塔頂からは、ここで吸収されなかった残余成分からなる残余ガスが管9に導出される。この残余ガスは、大部分がCOであり、これに0.1 〜5vol%のメルカプタンおよび0.1〜5vol%のBTX、0.03〜0.3vol%のHS が含まれている。
第2吸収塔8の塔底から抜液された吸収液は、管10を経て第2再生塔11に送られ、ここで加熱されて吸収されているHS、COが放散され、HSが5 0vol%以上、例えばHSが約65vol%、COが約35vol%とからなり、HSが濃縮された濃縮ガスが塔頂から導き出される。
【0012】
第2再生塔11の塔底からは再生された吸収液が管12を経て第2吸収塔8に戻され、再使用される。
第2吸収塔8と第2再生塔11とは本発明の濃縮分離装置を構成しており、これらをそれぞれ複数塔設置してHS濃度を高めることも可能である。
【0013】
第2再生塔11からの濃縮ガスは管13を経てクラウス反応炉と多段のクラウス触媒層により構成されるクラウス硫黄回収装置14に送られる。クラウス硫黄回収装置14は、周知の構成のもので、無触媒式および触媒式の反応器を有し、触媒としてはアルミナ、ボーキサイト、チタニア、ジルコニア、シリカ、ゼオライトあるいはこれに熱安定剤として希土類金属あるいはアルカリ土類金属の酸化物を含むものが用いられる。
反応温度は無触媒式では1000〜1500℃、触媒式では200〜350℃程度である。
クラウス硫黄回収装置14では、管15を経て導入される酸素ガス、空気などの酸素含有ガスにより、濃縮ガス中のHSの一部が酸化されてSOとなり、このSOと残部のHSとが反応して硫黄となり、この反応によりHSの大部分 は硫黄単体となって管16から回収される。
【0014】
クラウス硫黄回収装置14からの排出ガス(オフガス)は、微量のHS、S O、S、COS、CSと多量のCO、HO、残存酸素および空気を酸素源とした場合にはNが含まれる。このオフガスの温度は通常130〜170℃であ る。
クラウス硫黄回収装置14からのオフガスは、管17から加熱炉18に送られるが、同時に第2吸収塔8から管9を経て送られる残余ガスの全量あるいは一部も加熱炉18に供給される。
【0015】
加熱炉18は、通常の燃焼バーナを具えたもので、オフガスおよび残余ガスを燃料と空気中の酸素による燃焼にて後段の水素化反応に必要な温度まで昇温を行なう。
なお、燃料の燃焼を部分酸化にて行なうことにより、水素化反応に必要なCO/Hの製造を行なうことも可能である。加熱炉18あるいは管19において水素化反応に必要な還元剤となるCO/Hを必要あれば添加する。加熱炉18の替りに熱交換器を使用することも可能である。
【0016】
この加熱ガスは管19から水素化反応器20に送られ、ここで還元触媒の存在下、これに含まれるSO、メルカプタン、S等の硫黄化合物はHSに還元される。
ここで使われる還元触媒は、Ni−Mo、Co−Mo、Ni−Co−Moの酸化物または硫化物であり、これらの触媒はアルミナ、シリカ、マグネシア、ボリヤ、トリア、ジルコニアなどの酸化物担体に担持されていてもよい。
還元反応は、180〜450℃、好ましくは250〜350℃の温度範囲で、大気圧下もしくは2気圧以下の微かな加圧下で行われる。還元用の水素含有ガスを添加してもよく、先の加熱炉18での燃焼過程においてCO/Hが十分生成 しておれば、改めて添加しなくともよい。
CO/Hと還元される硫黄化合物との混合容積比は2:1〜15:1、好まし くは3:1〜8:1が好ましい。
【0017】
水素化反応器20からの水素化ガスは、数vol%のHS、少量のBTX等 の炭化水素、未反応のメルカプタン、Hと多量のCOとNを含み、管21か ら抜き出され、冷却後、第3吸収塔22に送られる。第3吸収塔22には管23を経て第2再生塔11からの再生された吸収液の一部がここでの吸収液として供給されている。
この第3吸収塔22において、上記水素化ガス中のHSおよびCOの一部が吸収され、残余の多量のCOおよびN、少量のBTX等の炭化水素、メルカプタン、H、トレース量のHSを含むガスはこれの塔頂から管24に導び出され、このガスはそのまま大気中に排出されるかあるいは燃焼してスタックに排出される。
【0018】
第3吸収塔22の塔底からは、HSとCOを吸収した吸収液が管25を経て第2再生塔11に戻され、ここでHSとCOが放散され先の濃縮ガスとなってクラウス硫黄回収装置14に送られる。
本実施例では、上記加熱炉18、水素化反応器20、第3吸収塔22およびこれらに付随する管路によって本発明のテールガス処理装置が構成されている。
【0019】
このような硫黄化合物の除去方法によれば、クラウス硫黄回収装置14に導入される濃縮ガス中のHS濃度が不純物ガスに比べて高くなり、同伴されるCO濃度が低下するため、クラウス反応率が高くなり、硫黄の回収率も高くなる。
また、不純物ガス中のHS以外のメルカプタン、COSなどの他の硫黄化合物も最終的にほとんどがHSとされ、これもクラウス反応により除去されるので、大気中に 排出される排出ガス中の総イオウ含有量は極めて低いものになる。さらに、不純物ガス中に含まれているBTXなどの重質炭化水素がクラウス硫黄回収装置14に導入されることがないので、クラウス硫黄回収装置14で煤が発生することがなく、回収硫黄の品質低下および触媒層の閉塞を防止できる。
【0020】
また、本発明では、第3吸収塔22の吸収液として、第2吸収塔8および第2再生塔11で使用される水溶液の中から用いることができるが、これらの吸収液が第2吸収塔8での吸収液と異なる場合は、別途第3再生塔を設けて、濃縮分離工程とは別系統とする必要がある。
【0021】
また、本発明では水素化反応器20よりの水素化ガスから吸着によりHSを分離してクラウス硫黄回収装置14へ戻すようにすることもできる。すなわち、第3吸収塔22にかえて、吸着塔を設け、活性炭、あるいはこれに硫化水素と反応しうる化合物の水溶液を浸漬したもの、アルミナ、酸化鉄、酸化亜鉛などの吸着剤を充填し、これによりHSを吸着分離するようにしてもよい。
【0022】
さらに、クラウス硫黄回収装置14からのオフガスがCS、COSを含む場 合には、水素化処理後または水素化処理と同時にアルミナなどの加水分解触媒に接触させて、これら硫黄化合物をHSとし、これを第3吸収塔22で分離し、 クラウス硫黄回収装置14に戻すようにしてもよい。
【0023】
図2は、本発明の第2の例を示すもので、図1に示したものと同一構成部分には同一符号を付してその説明を省略する。
このものでは、加熱炉18以外に第2加熱炉26を設け、第2吸収塔8からの残余ガスを管9を経てこの第2加熱炉26に送り込み、ここで部分酸化燃焼によって加熱ならびに還元剤の添加を行い、この加熱ガスを管27から第2水素化反応器28に送り、ここで水素化して硫黄化合物をHSとし、この水素化ガスを 管29から第3吸収塔22へ送るものである。
【0024】
このものでは、クラウス硫黄回収装置14からのオフガスとは、別個に残余ガスを加熱、水素化しているため、残余ガスの組成に対応した反応条件、触媒、水素化条件を設定することができるため、硫黄化合物の排出量をさらに低減できる。
【0025】
図3は、本発明の第3の例を示すもので、このものでは、第2水素化反応器28の後段に第4吸収塔30を設け、第2加熱炉26からの加熱ガスを管27から第2水素化反応器28に送り、ここで水素化したのち、管29から第4吸収塔30に送り、ここでHSを吸収し、残余のガスを排出ガスとして管31から排出 するものである。
第4吸収塔30には、管32により第3吸収塔22で使用される吸収液が供給され、第4吸収塔30でHSを吸収した吸収液は管33を経て第2再生塔11 に戻される。
【0026】
このものでは、残余ガスの処理とクラウス硫黄回収装置14からのオフガスの処理とがそれぞれ完全に別個に分けられて行われるので、それぞれの組成に対応した加熱条件、還元条件、触媒、吸収条件等を個々に細かく設定することが可能となる。
このため、排出ガス中の硫黄化合物や炭化水素の含有量は極めて低いものとなる。
【0027】
【発明の効果】
以上説明したように、本発明は天然ガス、石油随伴ガス等に随伴する不純物ガスをHSを主体とする濃縮ガスと残余成分からなる残余ガスとに分離し、濃縮 ガスをクラウス反応により処理し、クラウス反応のオフガスと残余ガス中の硫黄化合物を水素化してこれらガス中の硫黄化合物をHSとし、このHSを分離してクラウス反応に戻すものである。
【0028】
このため、不純物ガス中にHS以外のCOなどのガスが多量に含まれていても、クラウス反応に供される濃縮ガス中のHS濃度を高くでき、クラウス反応率が高くなって硫黄除去率が向上する。また、クラウス硫黄回収装置にはBTXなどの重質炭化水素が持ち込まれないので、重質炭化水素に起因する煤の発生がなく、回収硫黄の品質低下、触媒層の閉塞が防止できる。さらに、不純物ガス中のメルカプタンなどのHS以外の硫黄化合物も最終的にHSに転換され、クラウス反応で除去されるので、大気中に排出される排出ガス中の総硫黄量をさらに低減できる。
【図面の簡単な説明】
【図1】本発明の装置の第1の例を示す概略構成図である。
【図2】本発明の装置の第2の例を示す概略構成図である。
【図3】本発明の装置の第3の例を示す概略構成図である。
【符号の説明】
2 第1吸収塔
5 第1再生塔
8 第2吸収塔
11 第2再生塔
14 クラウス硫黄回収装置
18 加熱炉
20 水素化反応器
22 第3吸収塔
26 第2加熱炉
28 第2水素化反応炉
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to hydrogen sulfide (H 2 S) contained in natural gas, petroleum accompanying gas, synthesis gas, process gas, coal gasification gas, heavy oil gasification gas, and the like (hereinafter, abbreviated as natural gas and the like in the present invention). ), A method and an apparatus for removing sulfur compounds such as mercaptans and sulfur oxides.
[0002]
[Prior art]
Impurity gases accompanying natural gas and the like include carbon dioxide (CO 2 ), H 2 S, COS, mercaptan, and heavy hydrocarbons. These impurity gases are accompanied by a decline in mining quality of natural gas and the like. In recent years, there is a tendency to increase gradually, and it is necessary to remove and purify these to obtain product gas.
[0003]
On the other hand, as a method for removing H 2 S contained in a gas, there is a method by a Claus reaction. The Claus reaction, and SO 2 by oxidizing a part of H 2 S in the gas by separating and recovering elemental sulfur is reacted with H 2 S of the SO 2 and the remainder, H 2 in the gas S is to be removed.
A method is also known in which the residual SO 2 contained in the off-gas after the Claus reaction is hydrogenated in the presence of a catalyst to form H 2 S, which is returned to the Claus reactor to increase the sulfur removal rate.
[0004]
By the way, as described above, various components other than H 2 S are included as impurity components accompanying natural gas and the like. Such impurity gas is separated from natural gas and the like, and this impurity gas is separated by Claus. If an attempt is made to remove the sulfur contained in the reactor by leading it to the reactor, the following disadvantages occur.
{Circle around (1)} Since the impurity gas contains a large amount of components other than H 2 S, for example, CO 2 , the H 2 S concentration decreases, the reaction rate in the Claus reaction decreases, and the removal rate decreases. descend.
(2) Heavy hydrocarbons (benzene, toluene, xylene, etc.) contained in the impurity gas are incompletely burned, soot is generated, the recovered sulfur is contaminated with soot, the quality of sulfur is reduced, and the soot is Claus. The catalyst layer may be clogged.
[0005]
Conventionally, as a method of causing a Claus reaction of a hydrogen sulfide-containing gas containing a large amount of CO 2 , for example, there is a method disclosed in Japanese Patent Publication No. Sho 63-17488.
In this method, a part of an H 2 S-containing gas containing 20% by volume or more of CO 2 is supplied to a Claus plant, and the remainder is brought into contact with an absorbent that bypasses the Claus plant and selectively absorbs H 2 S. The H 2 S regenerated and separated by the absorbent is returned to the Claus plant.
However, this prior art cannot sufficiently solve the above-mentioned disadvantages.
[0006]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to solve the problem that even if an impurity gas accompanying natural gas or the like contains a large amount of CO 2 , COS, BTX, mercaptan, etc. in addition to H 2 S, sulfur in the impurity gas It is an object of the present invention to efficiently remove a compound by the Claus reaction and to prevent clogging of the Claus catalyst layer and deterioration in the quality of recovered sulfur due to soot generated from heavy hydrocarbons such as BTX.
[0007]
[Means for Solving the Problems]
The problem is that an impurity gas separated from natural gas or the like is sent to a concentration separation step, where the gas is separated into a concentrated gas mainly composed of H 2 S in the impurity gas and a residual gas composed of residual components, and the concentrated gas is subjected to the Claus reaction. H 2 S is collected and removed, and the off-gas from the Claus reaction step and all or a part of the residual gas are separately or combined sent to a tail gas treatment step, where they are heated and hydrogenated to convert these gases. the sulfur compounds in the H 2 S, is solved by returning the Claus reaction step and separating the H 2 S.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an example of an apparatus for performing the removal method of the present invention, which uses crude natural gas extracted as natural gas or the like.
The crude natural gas is sent from the pipe 1 to the first absorption tower 2, where the impurity gas accompanying the crude natural gas is non-selectively absorbed, and the purified product natural gas is led out from the top of the tower by the pipe 3. You. An aqueous solution such as a sulfolane-amine mixed solution, monoethanolamine, diethanolamine, diglycolamine, methanol, or glycol solution is supplied to the first absorption tower 2 as a non-selective absorption solution. CO 2 and H 2 S, small amounts of sulfur compounds such as mercaptans and small amounts of hydrocarbons such as BTX are absorbed.
[0009]
The absorbing solution that has absorbed the impurity gas is sent from the bottom of the tower to the first regeneration tower 5 via the pipe 4, where it is heated and the impurity gas is diffused. The impurity gas is composed of, for example, about 70 vol% CO 2 , about 25 vol% H 2 S, a small amount of mercaptan, and BTX hydrocarbon.
This impurity gas is withdrawn from the top of the first regeneration tower 5 by a pipe 6, and the regenerated absorbent is withdrawn from the bottom of the tower, returned to the first absorption tower 2 via a pipe 7, and reused. .
[0010]
The impurity gas from the pipe 6 is introduced into the second absorption tower 8. The second absorption tower 8 is selected from an alkanolamine such as diethanolamine, triethanolamine, diisopropanolamine, and methyldiethanolamine, a mixed solution of sulfolane-amine, an aqueous solution of polyethylene glycol dialkyl ether, and an aqueous solution of N, N-dimethylaminoacetate. A typical absorbing liquid is supplied, where most of the H 2 S and some of the CO 2 in the impurity gas are absorbed. Some of these absorbing liquids are used as non-selective absorbing liquids. However, by selecting the absorbing conditions, a selective absorbing liquid that mainly absorbs H 2 S can be obtained.
Here, the absorption conditions are a temperature of 60 ° C. or lower, preferably 5 to 40 ° C., and a slight pressurization of substantially atmospheric pressure or 2 atm or less.
[0011]
From the top of the second absorption tower 8, residual gas comprising residual components not absorbed here is led out to the pipe 9. The residual gas is mostly a CO 2, this 0.1 ~5vol% of mercaptan and 0.1~5Vol% of BTX, contains 0.03 ~0.3vol% of H 2 S .
The absorption liquid drained from the bottom of the second absorption tower 8 is sent to the second regeneration tower 11 via the pipe 10, where H 2 S and CO 2 that have been heated and absorbed are diffused, 2 S is 50 vol% or more, for example, H 2 S is about 65 vol%, CO 2 is about 35 vol%, and a concentrated gas in which H 2 S is concentrated is led out from the tower top.
[0012]
From the bottom of the second regeneration tower 11, the regenerated absorbent is returned to the second absorption tower 8 via the pipe 12, and is reused.
The second absorption tower 8 and the second regeneration tower 11 constitute a concentration and separation device of the present invention, and a plurality of these may be provided to increase the H 2 S concentration.
[0013]
The concentrated gas from the second regeneration tower 11 is sent via a pipe 13 to a Claus sulfur recovery unit 14 composed of a Claus reactor and a multi-stage Claus catalyst layer. The Claus sulfur recovery unit 14 has a well-known configuration, and has a non-catalytic type and a catalytic type reactor. The catalyst is alumina, bauxite, titania, zirconia, silica, zeolite or a rare earth metal as a heat stabilizer. Alternatively, a material containing an oxide of an alkaline earth metal is used.
The reaction temperature is about 1000 to 1500 ° C. for the non-catalytic type, and about 200 to 350 ° C. for the catalytic type.
In the Claus sulfur recovery device 14, a part of the H 2 S in the concentrated gas is oxidized to SO 2 by an oxygen-containing gas such as air and air introduced through the pipe 15, and this SO 2 and the remaining H 2 becomes sulfur 2 and S react, most of the H 2 S is recovered from the pipe 16 becomes elemental sulfur by the reaction.
[0014]
The exhaust gas (off-gas) from the Claus sulfur recovery device 14 is a case where a trace amount of H 2 S, SO 2 , S, COS, CS 2 and a large amount of CO 2 , H 2 O, residual oxygen and air are used as an oxygen source. It is included in the N 2 in. The temperature of this off gas is usually 130 to 170 ° C.
The off-gas from the Claus sulfur recovery unit 14 is sent from the pipe 17 to the heating furnace 18, and at the same time, all or part of the residual gas sent from the second absorption tower 8 via the pipe 9 is also supplied to the heating furnace 18.
[0015]
The heating furnace 18 is equipped with a normal combustion burner, and raises the temperature of the off-gas and the residual gas to a temperature required for the subsequent hydrogenation reaction by combustion with fuel and oxygen in the air.
Note that by burning the fuel by partial oxidation, it is possible to produce CO / H 2 required for the hydrogenation reaction. Oh Rui furnace 1 8 is added if necessary to CO / H 2 as the reducing agent necessary for the hydrogenation reaction in the tube 19. It is also possible to use a heat exchanger instead of the heating furnace 18.
[0016]
The heated gas is sent from a pipe 19 to a hydrogenation reactor 20, where sulfur compounds such as SO 2 , mercaptan, and S contained therein are reduced to H 2 S in the presence of a reduction catalyst.
The reduction catalyst used here is an oxide or sulfide of Ni-Mo, Co-Mo, Ni-Co-Mo, and these catalysts are oxide supports such as alumina, silica, magnesia, boria, thoria, and zirconia. May be carried.
The reduction reaction is carried out in a temperature range of 180 to 450 ° C., preferably 250 to 350 ° C., under atmospheric pressure or under slight pressure of 2 atm or less. A hydrogen-containing gas for reduction may be added, and if CO / H 2 is sufficiently generated in the combustion process in the heating furnace 18, it may not be added again.
Mixing volume ratio of the sulfur compounds are reduced with CO / H 2 is 2: 1 to 15: 1, rather preferably from 3: 1 to 8: 1 is preferred.
[0017]
The hydrogenation gas from the hydrogenation reactor 20 contains several vol% of H 2 S, a small amount of hydrocarbons such as BTX, unreacted mercaptan, H 2 and large amounts of CO 2 and N 2 , After being extracted and cooled, it is sent to the third absorption tower 22. A part of the regenerated absorbing liquid from the second regenerating tower 11 is supplied to the third absorbing tower 22 via a pipe 23 as the absorbing liquid.
In the third absorption tower 22, a part of H 2 S and CO 2 in the hydrogenated gas is absorbed, and the remaining large amount of CO 2 and N 2 , a small amount of hydrocarbon such as BTX, mercaptan, H 2 , A gas containing a trace amount of H 2 S is led from the top of the gas into the pipe 24, and this gas is discharged as it is to the atmosphere or burned and discharged to the stack.
[0018]
From the bottom of the third absorption tower 22, the absorbing solution having absorbed H 2 S and CO 2 is returned to the second regeneration tower 11 through a pipe 25, where H 2 S and CO 2 enrichment of target is dissipated The gas is sent to the Claus sulfur recovery unit 14.
In this embodiment, the heating furnace 18, the hydrogenation reactor 20, the third absorption tower 22, and the pipes associated therewith constitute a tail gas processing apparatus of the present invention.
[0019]
According to such a method for removing a sulfur compound, the concentration of H 2 S in the concentrated gas introduced into the Claus sulfur recovery device 14 becomes higher than that of the impurity gas, and the concentration of CO 2 accompanying the gas decreases. The reaction rate is higher and the recovery of sulfur is higher.
In addition, most of other sulfur compounds such as mercaptan and COS other than H 2 S in the impurity gas are finally converted to H 2 S, which is also removed by the Claus reaction. The total sulfur content in it will be very low. Furthermore, since heavy hydrocarbons such as BTX contained in the impurity gas are not introduced into the Claus sulfur recovery unit 14, soot is not generated in the Claus sulfur recovery unit 14, and the quality of the recovered sulfur is reduced. Lowering and blocking of the catalyst layer can be prevented.
[0020]
In the present invention, the absorbing solution of the third absorption tower 22 can be used from the aqueous solution used in the second absorption tower 8 and the second regeneration tower 11, but these absorption solutions are used in the second absorption tower 22. In the case where the absorption liquid is different from the absorption liquid in Step 8, it is necessary to separately provide a third regeneration tower to provide a separate system from the concentration and separation step.
[0021]
Further, in the present invention, H 2 S can be separated from the hydrogenated gas from the hydrogenation reactor 20 by adsorption and returned to the Claus sulfur recovery unit 14. That is, instead of the third absorption tower 22, an adsorption tower is provided, and activated carbon or an aqueous solution of a compound capable of reacting with hydrogen sulfide is immersed therein, and an adsorbent such as alumina, iron oxide, or zinc oxide is filled therein. Thereby, H 2 S may be adsorbed and separated.
[0022]
Furthermore, when the off-gas from the Claus sulfur recovery unit 14 contains CS 2 and COS, the sulfur compound is brought into contact with a hydrolysis catalyst such as alumina after or simultaneously with the hydrogenation treatment to convert these sulfur compounds into H 2 S This may be separated in the third absorption tower 22 and returned to the Claus sulfur recovery unit 14.
[0023]
FIG. 2 shows a second example of the present invention. The same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted.
In this apparatus, a second heating furnace 26 is provided in addition to the heating furnace 18, and the residual gas from the second absorption tower 8 is sent to the second heating furnace 26 through a pipe 9, where the heating and reducing agent are heated by partial oxidation combustion. The heated gas is sent from a pipe 27 to a second hydrogenation reactor 28, where it is hydrogenated to convert sulfur compounds to H 2 S, and the hydrogenated gas is sent from a pipe 29 to a third absorption tower 22. Things.
[0024]
In this case, since the residual gas is heated and hydrogenated separately from the off-gas from the Claus sulfur recovery unit 14, reaction conditions, catalysts, and hydrogenation conditions corresponding to the composition of the residual gas can be set. In addition, the emission of sulfur compounds can be further reduced.
[0025]
FIG. 3 shows a third example of the present invention. In this example, a fourth absorption tower 30 is provided downstream of the second hydrogenation reactor 28, and the heating gas from the second heating furnace 26 is supplied to a pipe 27. To the second hydrogenation reactor 28, where it is hydrogenated and then sent from the pipe 29 to the fourth absorption tower 30, where it absorbs H 2 S and discharges the remaining gas as exhaust gas from the pipe 31. Things.
The absorption liquid used in the third absorption tower 22 is supplied to the fourth absorption tower 30 via a pipe 32, and the absorption liquid that has absorbed H 2 S in the fourth absorption tower 30 passes through a pipe 33 to the second regeneration tower 11. Is returned to.
[0026]
In this case, the treatment of the residual gas and the treatment of the off-gas from the Claus sulfur recovery unit 14 are performed completely separately, so that heating conditions, reduction conditions, catalysts, absorption conditions, etc., corresponding to the respective compositions. Can be individually set in detail.
For this reason, the content of sulfur compounds and hydrocarbons in the exhaust gas is extremely low.
[0027]
【The invention's effect】
As described above, the present invention separates impurity gas accompanying natural gas, petroleum accompanying gas and the like into a concentrated gas mainly composed of H 2 S and a residual gas composed of residual components, and treats the concentrated gas by a Claus reaction. The off-gas of the Claus reaction and the sulfur compound in the residual gas are hydrogenated to convert the sulfur compound in the gas into H 2 S, and this H 2 S is separated and returned to the Claus reaction.
[0028]
Therefore, be included in the gas, such as CO 2 other than H 2 S is a large amount in the impurity gas, can increase the concentration of H 2 S in the concentrated gas subjected to the Claus reaction, Claus reaction rate becomes high This improves the sulfur removal rate. In addition, since heavy hydrocarbons such as BTX are not brought into the Claus sulfur recovery apparatus, soot is not generated due to the heavy hydrocarbons, so that the quality of recovered sulfur is reduced and the catalyst layer is not blocked. Further, sulfur compounds other than H 2 S such as mercaptan in the impurity gas are finally converted to H 2 S and removed by the Claus reaction, so that the total sulfur amount in the exhaust gas discharged to the atmosphere is further reduced. Can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a first example of an apparatus of the present invention.
FIG. 2 is a schematic configuration diagram showing a second example of the device of the present invention.
FIG. 3 is a schematic configuration diagram showing a third example of the device of the present invention.
[Explanation of symbols]
2 First absorption tower 5 First regeneration tower 8 Second absorption tower 11 Second regeneration tower 14 Claus sulfur recovery unit 18 Heating furnace 20 Hydrogenation reactor 22 Third absorption tower 26 Second heating furnace 28 Second hydrogenation reaction furnace

Claims (4)

天然ガス等から分離された硫化水素などの硫黄化合物を含有する不純物ガスを濃縮分離工程に送り、ここで不純物ガス中に含まれる硫化水素を主体とする濃縮ガスと残余成分からなる残余ガスとに分離し、
上記濃縮ガスをクラウス反応工程に送り、ここで硫化水素を硫黄単体として回収し、
上記残余ガスとクラウス反応工程から排出されるオフガスとをテールガス処理工程に送り、ここで必要反応温度まで加熱し、ついで触媒存在下に水素化してこれらガス中に含まれる硫黄化合物を硫化水素とし、この硫化水素を分離して上記クラウス反応工程に戻すことを特徴とする天然ガス等に含まれる硫黄化合物の除去方法。
The impurity gas containing sulfur compounds such as hydrogen sulfide separated from natural gas etc. is sent to the concentration separation step, where it is converted into a concentrated gas mainly composed of hydrogen sulfide contained in the impurity gas and a residual gas composed of residual components. Separate and
The concentrated gas is sent to the Claus reaction step, where hydrogen sulfide is recovered as sulfur alone,
The residual gas and the off-gas discharged from the Claus reaction step are sent to a tail gas treatment step, where it is heated to a required reaction temperature, and then hydrogenated in the presence of a catalyst to convert the sulfur compounds contained in these gases into hydrogen sulfide, A method for removing sulfur compounds contained in natural gas and the like, wherein the hydrogen sulfide is separated and returned to the Claus reaction step.
請求項1記載の除去方法において、上記残余ガスを第2のテールガス処理工程に送り、ここで必要反応温度まで加熱し、ついで触媒存在下に水素化してこのガスに含まれる硫黄化合物を硫化水素とし、この硫化水素を上記クラウス反応工程に戻すことを特徴とする天然ガス等に含まれる硫黄化合物の除去方法。2. The method according to claim 1, wherein said residual gas is sent to a second tail gas treatment step, where it is heated to a required reaction temperature, and then hydrogenated in the presence of a catalyst to convert sulfur compounds contained in this gas into hydrogen sulfide. Returning the hydrogen sulfide to the Claus reaction step. 天然ガス等から分離された硫化水素などの硫黄化合物を含有する不純物ガスを、これに含まれる硫化水素を主体とする濃縮ガスと残余成分からなる残余ガスとに分離する濃縮分離装置と、
この濃縮分離装置からの濃縮ガス中の硫化水素をクラウス反応により硫黄単体として回収するクラウス反応装置と、
このクラウス反応装置からのオフガスと上記濃縮分離装置からの残余ガスとを必要反応温度まで加熱し、ついで触媒存在下に水素化して、これらガス中に含まれる硫黄化合物を硫化水素とし、この硫化水素を分離して上記クラウス反応装置へ戻すテールガス処理装置を設けたことを特徴とする天然ガス等に含まれる硫黄化合物の除去装置。
A concentration separation device for separating an impurity gas containing a sulfur compound such as hydrogen sulfide separated from natural gas or the like into a concentrated gas mainly composed of hydrogen sulfide contained therein and a residual gas composed of residual components,
A Claus reaction device for recovering hydrogen sulfide in the concentrated gas from the concentration separation device as simple sulfur by a Claus reaction,
The off-gas from the Claus reactor and the residual gas from the enrichment and separation unit are heated to the required reaction temperature, then hydrogenated in the presence of a catalyst to convert the sulfur compounds contained in these gases into hydrogen sulfide, An apparatus for removing sulfur compounds contained in natural gas or the like, which is provided with a tail gas treatment device for separating and returning to the Claus reactor.
請求項3記載の除去装置において、上記濃縮分離装置からの残余ガスのみを必要反応温度まで加熱し、ついで触媒存在下に水素化して、このガス中に含まれる硫黄化合物を硫化水素とし、この硫化水素を上記クラウス反応装置へ戻す第2のテールガス処理装置を付設したことを特徴とする天然ガス等に含まれる硫黄化合物の除去装置。4. The removal device according to claim 3, wherein only the residual gas from said concentration and separation device is heated to a required reaction temperature, and then hydrogenated in the presence of a catalyst to convert a sulfur compound contained in this gas into hydrogen sulfide. An apparatus for removing sulfur compounds contained in natural gas or the like, further comprising a second tail gas treatment device for returning hydrogen to the Claus reactor.
JP18521296A 1996-07-15 1996-07-15 Method and apparatus for removing sulfur compounds contained in natural gas and the like Expired - Fee Related JP3602268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18521296A JP3602268B2 (en) 1996-07-15 1996-07-15 Method and apparatus for removing sulfur compounds contained in natural gas and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18521296A JP3602268B2 (en) 1996-07-15 1996-07-15 Method and apparatus for removing sulfur compounds contained in natural gas and the like

Publications (2)

Publication Number Publication Date
JPH1028837A JPH1028837A (en) 1998-02-03
JP3602268B2 true JP3602268B2 (en) 2004-12-15

Family

ID=16166842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18521296A Expired - Fee Related JP3602268B2 (en) 1996-07-15 1996-07-15 Method and apparatus for removing sulfur compounds contained in natural gas and the like

Country Status (1)

Country Link
JP (1) JP3602268B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076755A1 (en) 2014-11-14 2016-05-19 Общество с ограниченной ответственностью "ЭНГО Инжиниринг" Method for processing natural gas and device for implementing same
RU2780167C2 (en) * 2017-12-19 2022-09-20 Линде Гмбх Gas recycling method including oxidation process with dissipated heat generation, and corresponding device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60018992T2 (en) 2000-10-18 2006-04-20 Jgc Corp. METHOD AND DEVICE FOR REMOVING SULFUR COMPOUNDS OF SULFUR HYDROGEN, MERCAPTAN, CARBON DIOXIDE AND AROMATIC HYDROCARBONS CONTAINING SAVINGS
WO2006106784A1 (en) * 2005-03-31 2006-10-12 Nittetsu Mining Co., Ltd. Method for processing hydrogen sulfide, method for producing hydrogen and photocatalyst reactor
EP1948560A1 (en) 2005-11-04 2008-07-30 Shell Internationale Research Maatschappij B.V. Process for producing a purified gas stream
US8028724B2 (en) 2007-02-12 2011-10-04 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and unloading of LNG from the tank
US20090199591A1 (en) 2008-02-11 2009-08-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied natural gas with butane and method of storing and processing the same
KR20090107805A (en) 2008-04-10 2009-10-14 대우조선해양 주식회사 Method and system for reducing heating value of natural gas
DE102010013279B3 (en) 2010-03-29 2011-07-28 Uhde GmbH, 44141 Process and apparatus for processing a carbon dioxide rich sour gas in a Claus process
EP3131658B1 (en) * 2014-04-16 2019-09-25 Saudi Arabian Oil Company Improved sulfur recovery process for treating low to medium mole percent hydrogen sulfide gas feeds with btex in a claus unit
CN108905533A (en) * 2018-08-07 2018-11-30 中国恩菲工程技术有限公司 The device of sulphur is prepared using the sulfur dioxide in flue gas
JP7394585B2 (en) * 2019-10-30 2023-12-08 三菱重工業株式会社 carbon dioxide capture system
CN113908683B (en) * 2021-12-14 2022-03-11 东营联合石化有限责任公司 Liquefied petroleum gas desulphurization device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3823366B2 (en) * 1996-03-23 2006-09-20 千代田化工建設株式会社 Sulfur recovery method and sulfur recovery plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076755A1 (en) 2014-11-14 2016-05-19 Общество с ограниченной ответственностью "ЭНГО Инжиниринг" Method for processing natural gas and device for implementing same
RU2780167C2 (en) * 2017-12-19 2022-09-20 Линде Гмбх Gas recycling method including oxidation process with dissipated heat generation, and corresponding device

Also Published As

Publication number Publication date
JPH1028837A (en) 1998-02-03

Similar Documents

Publication Publication Date Title
US8871176B2 (en) Process for reducing sulfur emission of sulfur plant
JP3847712B2 (en) Method and apparatus for removing sulfur compounds in gas containing hydrogen sulfide, mercaptan, carbon dioxide, aromatic hydrocarbon
EP1819636B1 (en) Plant and method for sox removal in oxygen-containing gases
JP2002145605A (en) Method for treating sour gas containing hydrogen sulfide
JP3602268B2 (en) Method and apparatus for removing sulfur compounds contained in natural gas and the like
FI56320C (en) FOERFARANDE FOER ATT REDUCERA DEN TOTALA SVAVELHALTEN I AVGASER VID EN CLAUSPROCESS
EP1773473B1 (en) Process for removing mercaptans from an inert gas gas stream
NL1002135C2 (en) Method for removing sulfur-containing impurities, aromatics and hydrocarbons from gas.
NL1002134C2 (en) Method for removing sulfur-containing impurities, aromatics and hydrocarbons from gas.
JPS60220123A (en) Removal of sulfur compound from exhaust gas
US6960548B2 (en) Method for regenerating used absorbents derived from treatment of thermal generator fumes
CZ4899A3 (en) Process of obtaining sulfur from gases containing sulfur dioxide
CA2902660A1 (en) Method for removing sulphur dioxide from gas streams, using titanium dioxide as catalyst
US7708967B2 (en) Process for disposal of mercaptans
EP1166849A1 (en) Treatment of a gas stream containing hydrogen sulphide
JP2010174191A (en) Method for reducing oxygen consumption in natural gas treatment
MXPA98005793A (en) Method to remove contaminants containing azufre, aromatic substances and hydrocarbons, from a

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees