JP3599403B2 - A new method for producing benzazepine derivatives - Google Patents
A new method for producing benzazepine derivatives Download PDFInfo
- Publication number
- JP3599403B2 JP3599403B2 JP3634295A JP3634295A JP3599403B2 JP 3599403 B2 JP3599403 B2 JP 3599403B2 JP 3634295 A JP3634295 A JP 3634295A JP 3634295 A JP3634295 A JP 3634295A JP 3599403 B2 JP3599403 B2 JP 3599403B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- lower alkyl
- integer
- compound
- hydrogen atom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 0 *C(CC*1C(c2ccc(*)cc2)=O)(Cc2c1cccc2)F Chemical compound *C(CC*1C(c2ccc(*)cc2)=O)(Cc2c1cccc2)F 0.000 description 7
- SNTAJENKEZMMCP-UHFFFAOYSA-N NC(CC1)CCN1C(C1)C(C(CC2)C2C2(CC3)F)C1C=C2c(cccc1)c1N3C(c1ccc(C(C2)C2C(c(cccc2)c2-c2ccccc2)=O)cc1)=O Chemical compound NC(CC1)CCN1C(C1)C(C(CC2)C2C2(CC3)F)C1C=C2c(cccc1)c1N3C(c1ccc(C(C2)C2C(c(cccc2)c2-c2ccccc2)=O)cc1)=O SNTAJENKEZMMCP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Landscapes
- Plural Heterocyclic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
【0001】
【産業上の利用分野】
本発明は,アルギニンバソプレシン拮抗薬として有用な新規ベンズアゼピン誘導体の新規製造法,並びに有用な新規合成中間体に関する。
【0002】
【従来の技術】
アルギニンバゾプレシン(AVP)は,視床下部−下垂体系にて生合成・分泌される9個のアミノ酸からなるペプチドである。AVPは生体内において2種類の受容体(V1受容体及びV2受容体)を介し,様々な生理活性を示すことが知られている。それらのうち,代表的な作用として以下の2つが挙げられる。
【0003】
(1)血管系においては,V1受容体を介してイノシトールリン脂質代謝系を亢進させ,平滑筋の収縮反応により昇圧作用を示す。
【0004】
(2)腎集合管においては,V2受容体を介してcAMPを増加させ,水再吸収促進により抗利尿作用を示す。
【0005】
上記の作用によりAVPは体液の恒常性維持に重要な役割を果たしている為,AVPの産生・分泌異常又はAVPに対する各種臓器の反応性の異常は,種々の疾患(心不全,低ナトリウム血症,腎疾患,高血圧,浮腫等)の発症や悪化因子として関与していると考えられている。
【0006】
【発明が解決しようとする課題】
こうした背景のもと,先に本発明者らは,アルギニンバソプレシン拮抗作用を有する新規化合物の合成について鋭意研究を行った結果,下式で示される新規なベンズアゼピン誘導体が意外にも優れたアルギニンバソプレシン拮抗作用を有することを初めて知見し,特許出願した(国際出願番号第94/01409号明細書参照)。
【0007】
【化22】
【0008】
(上式中の各記号の意味については,上記国際出願明細書中の記載を参照。)
【0009】
【課題を解決するための手段】
本発明者等は,上記ベンズアゼピン誘導体の別途製造法について更に研究を進めた結果,下記第1製法及び第2製法で示される新規製造法が上記縮合ベンズアゼピン誘導体の優れた製造法であること,及び各製法において中間体として用いられる下式(II)、(III)、(IIc)及び(IIIc)で示される新規化合物が,上記ベンズアゼピン誘導体を収率よく合成するための優れた中間体であることを知見して本発明を完成した。
以下,本発明の製造法につき詳述する。
【0010】
【化23】
第一製法
[式中の記号は以下の意味を示す。
【0011】
【化24】
p:0又は1乃至3の整数
R8:水素原子;低級アルキル基;低級アルケニル基;シクロアルキル基;水酸基;低級アルコキシ基;カルボキシル基;低級アルコキシカルボニル基;シアノ基;置換されていてもよいアリール基;置換されていてもよい含窒素芳香族5若しくは6員複素環基;架橋を有していてもよく、環窒素原子上で低級アルキル基で置換されていてもよい含窒素飽和5乃至8員複素環基;
【0012】
【化25】
s及びt:同一又は異って、1乃至3の整数(但し、s及びtの総和は3乃至5の整数)、
u:2乃至7の整数
A3、A4及びA5:同一又は異って、単結合、低級アルキレン基、又は低級アルケニレン基(但し、A3又はA5は、隣接する基が窒素原子又は酸素原子を介してA3又はA5と結合する基であるときは、単結合以外の基を意味する)、
R9:水素原子又は低級アルキル基、
q及びr:同一又は異って1乃至3の整数(但し、q及びrの総和は3乃至5の整数)、
X:式−O−又は−S(O)w−で示される基、
w:0、1又は2、
R3及びR4:同一又は異って、水素原子;ハロゲン原子;低級アルキル基;低級アルコキシ基;又は低級アルキル基で置換されていてもよいアミノ基;
R5及びR6:同一又は異って、水素原子又は低級アルキル基(但し、R5とR6とは一体となって低級アルキレン基を意味し、隣接炭素原子と共に飽和炭素環を形成していてもよい)、
n:0又は1、
R7:置換されていてもよいアリール基又は置換されていてもよい芳香族5若しくは6員複素環基、
R1:水素原子またはカルボキシ基の保護基、
R10:水素原子またはアミノ基の保護基。
尚、前記式(I)中の波線は(Z)及び(E)のいずれの立体配置でもよいことを示す。以下同様。]
【0013】
本製法は、化合物(II)又はその塩を原料化合物として、(工程a)所望により前記化合物(II)のR10アミノ基の保護基を除去後、化合物(VI)又はその反応性誘導体とのアミド化工程、及び(工程b)所望により化合物(II)のR1のカルボキシ基の保護基を除去後、化合物(VII)又はその塩とのアミド化反応を任意の順序で実施することにより、目的化合物(I)を得る製法である。
式中、(工程a)次いで(工程b)の順序で実施する方法を〈A−1〉及び〈B−2〉で示す。また、(工程b)次いで(工程a)の順序で実施する方法を〈B−1〉及び〈A−2〉で示す。
本製法中の(工程a)すなわち、〈A−1〉及び〈A−2〉は、式(II)又は式(IIc)で示される化合物又はその塩を、所望によりR10のアミノ基の保護基を除去した後に、式(VI)で示される置換安息香酸又はその反応性誘導体と常法によりアミド化させることにより行われる。
ここに,化合物(VI)の反応性誘導体としては,そのメチルエステル,エチルエステル,イソブチルエステル,tert−ブチルエステルなどの通常のエステル;酸クロライド,酸ブロマイドの如き酸ハライド;酸アジド;p−ニトロフェノールなどのフェノール系化合物や1−ヒドロキシスクシンイミド,1−ヒドロキシベンゾトリアゾールなどのN−ヒドロキシルアミン系化合物等と反応させて得られる活性エステル;対称型酸無水物:アルキル炭酸ハライドなどのハロカルボン酸アルキルエステルやピバロイルハライドなどのハロカルボン酸アルキルエステルやピバロイルハライドなどと反応させて得られる有機酸系混合酸無水物,あるいは塩化ジフェニルホスホリル,N−メチルモルホリンと反応させて得られるリン酸系混合酸無水物等の混合酸無水物;が挙げられる。
【0014】
また,化合物(VI)を遊離酸で反応させるとき,あるいは活性エステルを単離せずに反応させるときなど,ジシクロヘキシルカルボジイミド,カルボニルジイミダゾール,ジフェニルホスホリルアジド,ジエチルホスホリルシアニドや1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド・塩酸塩などの縮合剤を使用するのが好適である。
反応は使用する反応性誘導体や縮合剤などによっても異なるが,通常ジクロロメタン,ジクロロエタン,クロロホルムなどのハロゲン化炭化水素類,ベンゼン,トルエン,キシレン等の芳香族炭化水素類,エーテル,テトラヒドロフラン等のエーテル類,酢酸エチル等のエステル類,アセトニトリル,アセトン,N,N−ジメチルホルムアミドやジメチルスルホキシド等の反応に不活性な有機溶媒中又は水の存在下,反応性誘導体によっては冷却下,冷却下乃至室温下,あるいは室温乃至加熱下に行われる。
【0015】
尚,反応に際して,化合物(VI)を過剰に用いたり,N−メチルモルホリン,トリメチルアミン,トリエチルアミン,ジイソプロピルエチルアミン,N,N−ジメチルアニリン,ピリジン,4−(N,N−ジメチルアミノ)ピリジン,ピコリン,ルチジンなどの有機塩基又は炭酸水素ナトリウム,炭酸水素カリウム,炭酸ナトリウム,炭酸カリウム,水酸化ナトリウム,水酸化カリウム等の無機塩基の存在下に反応させるのが,反応を円滑に進行させる上で有利な場合がある。また,ピリジン塩酸塩,ピリジン p−トルエンスルホン酸塩,N,N−ジメチルアニリン塩酸塩等の弱塩基と強酸からなる塩を用いてもよい。ピリジンは溶媒とすることもできる。
【0016】
本反応においては,他にメルカプト基や反応性のアミノ基,カルボキシ基,ヒドロキシ基などが存在しない方が好ましいが,保護基を導入して反応させた後保護基を除去することによって目的物とすることができる。
保護基の脱離は,保護基の種類によって異なる。
例えばアミノ基の保護基が置換又は未置換のベンジルオキシカルボニル基などである場合には接触還元が好適であり,場合によっては臭化水素酸/酢酸,臭化水素酸/トリフルオロ酢酸,フッ化水素酸,トリメチルシリルヨージドなどによる酸処理が用いられる。tert−ブトキシカルボニル基などの他のウレタン型保護基は臭化水素酸/酢酸,トリフルオロ酢酸,塩酸,塩酸/酢酸,塩酸/ジオキサン,トリメチルシリルヨージドなどによる酸処理が有利である。トシル基(p−トルエンスルホニル基)等の芳香族スルホニル基、又は、ベンゾイル基などのアシル型の保護基である場合は濃硫酸、塩酸などによる酸処理又は炭酸ナトリウム、水酸化ナトリウム等の塩基処理による加水分解が有利である。
また,アミノ基の保護基がアミノ窒素と一体となって形成するフタルイミド基のときはヒドラジン,メチルヒドラジン,エチルヒドラジンなどのヒドラジン類,アンモニアやメチルアミン,エチルアミン,プロピルアミンなどの一級アミンで処理することによりフタロイル基を脱離させて一級アミノ基とすることができる。
【0017】
また、カルボキシ基の保護基が、メチル基、エチル基であるときは、ケン化により、ベンジル基や各種置換ベンジル基は接触還元やケン化により、tert−ブチル基は上記と同様の酸処理により、トリメチルシリル基は水と接触させることにより、それぞれ容易に除去される。
メルカプト基や水酸基の保護基は、大方、ナトリウム/液体アンモニア処理やフッ化水素処理により除去できる他、保護基の種類によっては(例えばO−ベンジル、O−ベンジルオキシカルボニル、S−p−ニトロベンジル)接触還元を適用して、また、アシル系の保護基であるときは酸又はアルカリの存在下加水分解することにより除去することができる。
これらの処理は、常法によって行うことが可能である。
なお、化合物(II)が、ベンズアゼピン環の窒素原子に保護基を有する下式(IIa’)で示される化合物である場合は保護基を除去し、化合物(IIa)とした後、アミド化反応に用いる。アミノ基の保護基の除去は前記と同様に行われる。
【0018】
【化26】
(式中、R1及びR3は前記の意味を、R11はアミノ基の保護基を示す。)
【0019】
【化27】
【0020】
【化28】
第二製法
【0021】
(上記工程図中、各一般式中の各記号は、前記と同様の意味を有する。)
本製法は、一般式(III)で示される化合物又はその塩を原料化合物として、(工程C)化合物(III)のRbがニトロ基の場合はニトロ基をアミノ基に還元し、化合物(VIII)又はその反応性誘導体とのアミド化反応、及び(工程d)所望により化合物(III)のR1のカルボキシ基の保護基を除去後、化合物(VII)又はその塩とのアミド化反応を任意の順序で実施することにより、目的化合物(I)を得る方法である。
式中、(工程c)次いで(工程d)の順序で実施する方法を〈C−1〉及び〈D−2〉で示す。また、(工程d)次いで(工程c)の順序で実施する方法を〈D−1〉及び〈C−2〉で示す。
本製法中の(工程c)すなわち、〈C−1〉及び〈C−2〉は、前記第一製法に記載の(工程a)と同様にして、又本製法中の(工程d)すなわち、〈D−1〉及び〈D−2〉は前記第一製法に記載の(工程b)と同様にして行うことができる。
反応性誘導体の種類、反応条件、保護基の脱離等は、第一製法と同様であり、これと同様に実施できる。
なお、原料化合物(III)が、ニトロ基を有する下式(IIIa)で示される化合物である場合には、常法、例えば金属(粒状スズ,鉄粉等)や金属塩(塩化スズ等)と酸を用いた方法やラネーニッケルやパラジウム等を用いた接触還元にて還元することによりアミノ基である化合物(IVa)とした後にアミド化できる。
【0022】
【化29】
【0023】
(上式中、R1、R3及びR4は前記の意味を有する。)
なお、前記第一製法及び第二製法で、目的化合物(I)の原料及び中間体として用いられる化合物(II)、(III)、(IIc)及び(IIIc)は新規化合物であることが確認されており、これらの化合物が目的化合物(I)を合成するための優れた中間体であることは、本発明により初めて知見された。
【0024】
以下、上記の新規原料化合物及び中間体の製造方法につき、説明する。
(原料化合物(II)の製造方法)
【0025】
【化30】
【0026】
(式中、R1、R3、R8、R11、B、pは前記の意味を有し、R12は低級アルキル基又は低級アルカノイル基を、Phはフェニル基を、Yはハロゲン原子を意味する。)
前記原料化合物(II)は、上記反応工程図に従い製造することができる。
すなわち、ベンズアゼピン−5−オン誘導体(IX)を原料とするときは、これをN−フルオロベンゼンイミド、N−フルオロピリジニウムトリフルオロメタンスルホネートなどのフッ素化剤で段階的にフルオロ化する((IX)→(X)→(XII))か、または塩基又は酸性条件下エノールエーテル化して化合物(XI)とし同様のフッ素化剤で一挙にジフルオロ化する((IX)→(XI)→(XII))ことにより化合物(XII)を製する。また、テトラヒドロキノリン−4−オン誘導体(XIII)を原料とするときは、Chem,Pharm,Bull.,27(12),3123(1979)に記載された方法に準じ、これを前記と同様にエノールエーテル化し、クロロジフルオロ酢酸ナトリウムより発生されるジフルオロカルベン等で3員環を形成し、次いで水酸化リチウムの如き塩基又は酸性条件下で環拡大する((XIII)→(XIV)→(XV)→(XII))ことにより化合物(XII)を製する。
次に、化合物(XII)又は(XVI)より、化合物(IIa’)又は(IIa)を製造する工程について説明する。
即ち、化合物(IIa’)又は(IIa)は、一般式(XII)又は(XVI)で示される化合物に一般式(XVII)で示されるホスホニウム塩、又は一般式(XVIII)で示されるホスホナートを反応させることにより得ることができる。
また、ピーターソン反応(DAVID J.AGER著Organic Reaction vol,38.P1〜223),クライゼン縮合等オレフィンを合成する一般的反応でも合成できる。
【0027】
ホスホニウム塩(XVII)との反応は、通常Wittig反応によるオレフィンの合成として用いられる条件であれば、特に制限はなく、反応溶媒としては、例えば、エーテル、テトラヒドロフラン、ベンゼン、トルエン、ジクロロメタン、クロロホルム等であり、反応温度は、−78℃乃至加温下である。また、反応系に塩基を添加するのが好ましく、この場合の塩基としては水酸化ナトリウム、炭酸ナトリウム等の無機塩基、ナトリウムメトキシド、ナトリウムエトキシド、カリウム tert−ブトキシド等のアルコラート、トリエチルアミン、ピリジン等の有機塩基、n−ブチルリチウム等の有機金属等である。なお、Yの意味するハロゲン原子としては塩基原子、臭素原子等を意味する。
また、ホスホナート(XVIII)との反応も、メタノール、エタノール、ベンゼン、トルエン、テトラヒドロフラン、1,2−ジメトキシエタン、エーテル、ジメチルホルムアミド、ジメチルスルホキシド等の反応に不活性な溶媒中、水素化ナトリウム、ナトリウムアミド、ナトリウムメトキシド、ナトリウムエトキシド、トリエチルアミン、1,8−ジアザビシクロ[5,4,0]ウンデク−7−エン、ポタシウムヘキサメチルジシラジド、リチウムヘキサメチルジシラジド,ナトリウムヘキサメチルジシラジド等の塩基を添加して行われる。
又、この際、リチウムクロライド、マグネシウムブロマイド等のルイス酸や、18−クラウン−6−エーテル等の相間移動触媒を用いても良い。
(原料化合物(III)の製造方法)
【0028】
【化31】
(式中の各記号は、前記と同様の意味を有する。)
原料化合物(III)は、上記工程図に従い製造できる。
即ち、化合物(XVIV)と化合物(XXI)とをアミド化し、更に所望により還元することにより、化合物(III)を得ることができる。アミド化は前記第一製法に記載の方法と同様にして行うことができ、還元は常法を用いて行うことができる。
また、化合物(III)は、化合物(XX)と、化合物(XVII)又は(XVIII)とをオレフィン合成に付すことにより製造することも可能である。このオレフィン合成は、前記(原料化合物(II)の製造方法)に記載した方法と同様にして行うことができる。
(中間体(IIc)及び(IIIc)の製造法)
【0029】
【化32】
【0030】
(式中の各記号は前記の意味を有する。)
化合物(IIIc)及び(IIc)は、前記第一及び第二製法により合成される他、夫々対応する化合物(XX)及び(XII)に、化合物(XXII)又は(XXIII)を反応させるオレフィン合成により製造することが可能である。オレフィン合成は、前記と同様にして行うことができる。
上記各製法により得られた反応生成物は遊離化合物、その塩、水和物あるいは各種の溶媒和物として単離され、精製される。塩は通常の造塩反応に付すことにより製造できる。
単離、精製は、抽出、濃縮、留去、結晶化、濾過、再結晶、各種クロマトグラフィー等通常の化学操作を適用して行なわれる。
なお、本発明の製造法により製造し得る目的化合物(I)並びに本発明の新規中間体(II)、(III)、及び(IIc)、(IIIc)には二重結合に基づく立体異性体の他、ラセミ体、光学活性体、ジアステレオマー等の異性体が単独であるいは混合物として存在する場合がある。例えば立体異性体はクロマトグラフィーまたは分別結晶化等により分離できる。ラセミ化合物は適当な原料化合物を用いることにより、あるいは一般的なラセミ分割法により〔例えば、一般的な光学活性酸(酒石酸等)とのジアステレオマー塩に導き、光学分割する方法。〕立体化学的に純粋な異性体に導くことができる。また、ジアステレオマーの混合物は常法、例えば分別結晶化またはクロマトグラフィー等により分離できる。
以下、上記の本発明の製造法により製造し得る目的化合物(I)やその原料化合物について詳細に説明する。
【0031】
本発明の製造法により製造される目的化合物や、その原料化合物の一般式の定義において特に断らない限り、「低級」なる用語は、炭素数1〜6個の直鎖状又は分岐状の炭素鎖を意味する。
「低級アルキル基」は炭素数が1〜6個の直鎖又は分岐状のアルキル基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、1−メチルブチル基、2−メチルブチル基、1,2−ジメチルプロピル基、ヘキシル基、イソヘキシル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、1,1−ジメチルブチル基、1,2−ジメチルブチル基、2,2−ジメチルブチル基、1,3−ジメチルブチル基、2,3−ジメチルブチル基、3,3−ジメチルブチル基、1−エチルブチル基、2−エチルブチル基、1,1,2−トリメチルプロピル基、1,2,2−トリメチルプロピル基、1−エチル−1−エチルプロピル基、1−エチル−2−メチルプロピル基等を挙げることができる。
【0032】
「低級アルケニル基」は炭素数が2〜6個の直鎖又は分岐状のアルケニル基であり、具体的にはビニル基、アリル基、1−プロペニル基、イソプロペニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、2−メチル−1−プロペニル基、2−メチルアリル基、1−メチル−1−プロペニル基、1−メチルアリル基、1−ペンテニル基、2−ペンテニル基、3−ペンテニル基、4−ペンテニル基、3−メチル−1−ブテニル基、3−メチル−2−ブテニル基、3−メチル−3−ブテニル基、2−メチル−1−ブテニル基、2−メチル−2−ブテニル基、2−メチル−3−ブテニル基、1−メチル−1−ブテニル基、1−メチル−2−ブテニル基、1−メチル−3−ブテニル基、1,1−ジメチルアリル基、1,2−ジメチル−1−プロペニル基、1,2−ジメチル−2−プロペニル基、1−エチル−1−プロペニル基、1−エチル−2−プロペニル基、1−ヘキセニル基、2−ヘキセニル基、3−ヘキセニル基、4−ヘキセニル基、5−ヘキセニル基、1,1−ジメチル−1−ブテニル基、1,1−ジメチル−2−ブテニル基、1,1−ジメチル−3−ブテニル基、3,3−ジメチル−1−ブテニル基、1−メチル−1−ペンテニル基、1−メチル−2−ペンテニル基、1−メチル−3−ペンテニル基、1−メチル−4−ペンテニル基、4−メチル−1−ペンテニル基、4−メチル−2−ペンテニル基、4−メチル−3−ペンテニル基等を挙げることができる。
【0033】
「低級アルキニル基」は、炭素数が2〜6個の直鎖又は分岐状のアルキニル基であって、エチニル基、1−プロピニル基、2−プロピニル基、1−ブチニル基、2−ブチニル基、3−ブチニル基、1−メチル−2−プロピニル基、1−ペンチニル基、2−ペンチニル基、3−ペンチニル基、4−ペンチニル基、3−メチル−1−ブチニル基、2−メチル−3−ブチニル基、1−メチル−2−ブチニル基、1−メチル−3−ブチニル基、1,1−ジメチル−2−プロピニル基、1−ヘキシニル基、2−ヘキシニル基、3−ヘキシニル基、4−ヘキシニル基、5−ヘキシニル基等を例示することができる。
「シクロアルキル基」は、好ましくは炭素数3〜8個のシクロアルキル基であり、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等である。
「低級アルコキシ基」は、アルキル部分に前記低級アルキル基を有する低級アルコキシ基であり、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ(アミルオキシ)基、イソペンチルオキシ基、tert−ペンチルオキシ基、ネオペンチルオキシ基、2−メチルブトキシ基、1,2−ジメチルプロポキシ基、1−エチルプロポキシ基、ヘキシルオキシ基等である。「低級アルキルチオ基」は、アルキル部分に前記低級アルキル基を有する低級アルキルチオ基であり、例えばメチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、ペンチルチオ基、イソペンチルチオ基、ヘキシルチオ基、イソヘキシルチオ基などである。
「低級アルカノイル基」は飽和脂肪族カルボン酸から誘導された炭素数1〜6個の低級アシル基であり、例えば、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基又はヘキサノイル基等が好適である。
「低級アルカノイルオキシ基」は前記の低級アルカノイル基をアルカノイル部分として含む基であり、例えば、アセトキシ基やプロピオニルオキシ基が挙げられる。
【0034】
「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
「低級アルキル基で置換されていてもよいアミノ基」は、アミノ基の他、前記低級アルキル基でモノ又はジ置換されたアミノ基を意味し、具体的には例えばメチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、sec−ブチルアミノ基、tert−ブチルアミノ基、ペンチル(アミル)アミノ基、イソペンチルアミノ基、ネオペンチルアミノ基、tert−ペンチルアミノ基、ヘキシルアミノ基などのモノ低級アルキルアミノ基やジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基、ジブチルアミノ基、ジイソブチルアミノ基、エチルメチルアミノ基、メチルプロピルアミノ基などの対称型若しくは非対称型のジ低級アルキルアミノ基が挙げられる。
「低級アルコキシカルボニル基」は、アルキル部分に前記低級アルキル基を有する低級アルコキシカルボニルであり、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec−ブトキシカルボニル基、tert−ブトキシカルボニル基、ペンチルオキシカルボニル基、イソペンチルオキシカルボニル基、ネオペンチルオキシカルボニル基、tert−ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基等の炭素数1〜6個の直鎖又は分岐状のアルコールと、カルボニル基とでエステル形成された基を挙げることができる。
【0035】
同様に、「低級アルキルアミノカルボニル基」も、例えばアルキルアミノ部分に前記の低級アルキル基で置換されたアミノ基を有する低級アルキルアミノカルボニル基である。
「低級アルキレン基」は、炭素数1〜6個の直鎖または分岐状の2価の炭素鎖であり、具体的には例えば、メチレン基、メチルメチレン基、エチレン基、トリメチレン基、テトラメチレン基、2−メチルトリメチレン基、1−エチルエチレン基、ペンタメチレン基、1,2−ジエチルエチレン基、ヘキサメチレン基等が挙げられる。
「低級アルケニレン基」は、炭素数2〜6個の直鎖または分岐状の2価の炭素鎖であり、具体的には例えば、ビニレン基、プロペニレン基、2−プロペニレン基、1−メチルビニレン基、2−メチルビニレン基、ブテニレン基、2−ブテニレン基、3−ブテニレン基、1−メチルプロペニレン基、1−メチル−2−プロペニレン基、2−ペンテニレン基、1−メチル−1−ブテニレン基、2−ヘキセニレン等が挙げられる。
「アミノ基の保護基」としては、一般的に用いられるアミノ基の保護基であればいずれでもよいが、例えば低級アルキル基、低級アルコキシ基、ハロゲン基、ニトロ基、フェニルアゾ基若しくはp−フェニルアゾ基で置換されていてもよいベンジルオキシカルボニル基、tert−ブトキシカルボニル基、メトキシカルボニル基、2,2,2−トリクロロエトキシカルボニル基,tert−アミルオキシカルボニル基などのウレタン型の保護基、ホルミル基、アセチル基、トリフルオロアセチル基、ベンゾイル基などのアシル型の保護基、ベンジル基、ベンズヒドリル基、トリチル基などのアラルキル型保護基、メタンスルホニル基、エタンスルホニル基、トリフルオロメタンスルホニル基などのアルカンスルホニル基、ベンゼンスルホニル基、トルエンスルホニル基、(特にp−トルエンスルホニル基)などの芳香族スルホニル基などの有機スルホニル型の保護基、トリメチルシリル基、トリイソプロピルシリル基、tert−ブチルジメチルシリル基,tert−ブチルジメチルシリル基などのシリル型の保護基などが挙げられる。
好ましくは、p−トルエンスルホニル基、アセチル基、トリフルオロアセチル基、ベンゾイル基、t−ブトキシカルボニル基、メトキシカルボニル基、ベンジルオキシカルボニル基である。
「カルボキシ基の保護基」としては、一般に用いられるカルボキシ基の保護基であれば、いずれでもよいが、例えば、メチル基、エチル基、プロピル基、t−ブチル基等の低級アルキル基、ベンジル基、ニトロベンジル基、低級アルコキシベンジル基等のアラルキル基、トリメチルシリル基、tert−ブチルジメチルシリル基等の低級アルキルシリル基等が挙げられる。好ましくは、メチル基、エチル基、t−ブチル基又はベンジル基である。
【0036】
本発明の製造法により製造し得る目的化合物(I)並びに本発明の新規中間体(II)、(III)(IIc)及び(IIIc)の塩としては、無機酸若しくは有機酸との酸付加塩、あるいは無機若しくは有機塩基との塩であり、製薬学的に許容しうる塩が好ましい。これらの塩としては、具体的には塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸若しくはリン酸等の鉱酸、又は、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、乳酸、リンゴ酸、酒石酸、クエン酸、メタンスルホン酸若しくはエタンスルホン酸等の有機酸、又はアスパラギン酸若しくはグルタミン酸などの酸性アミノ酸との酸付加塩、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウムなど無機塩基、メチルアミン、エチルアミン、エタノールアミンなどの有機塩基、リジン、オルニチンなどの塩基性アミノ酸との塩等を挙げることができる。更に、4級アンモニウム塩であることもできる。4級アンモニウム塩は、具体的には低級アルキルハライド、低級アルキルトリフラート、低級アルキルトシラートまたはベンジルハライド等との反応で得られる塩であり、好ましくはメチルヨードまたはベンジルクロリド等との塩である。
本発明の製造法により製造される目的化合物(I)並びに本発明の新規中間体(II)、(III)、(IIc)及び(IIIc)には、ベンゾアゼピン環に結合する2重結合の存在により(Z)及び(E)の立体異性体が存在する。これらの立体異性体は常法、例えばクロマトグラフィー、分別結晶化等により分離できる。又、光、熱、酸又は塩基触媒、ラジカル等により相互変換が可能であることは良く知られている。本発明の目的化合物(I)並びに新規中間体(II)、(III)、(IIc)及び(IIIc)は、これらの分離したもの並びに混合物を包含する。
【0037】
更に、本発明の製造法により製造される目的化合物(I)並びに本発明新規中間体(II)、(III)、(IIc)及び(IIIc)には、不斉炭素原子に基づく光学異性体や二重結合やシクロヘキサン環に基づく幾何異性体が存在することがある。本発明はこれら幾何異性体、光学異性体など各種異性体の混合物及び分離されたものを包含する。また、本発明の製造法により製造される目的化合物(I)並びに本発明新規中間体(II)、(III)、(IIc)及び(IIIc)の化合物には、水和物、各種溶媒和物、互変異性体、結晶多形等が存在する場合もあり、上記化合物はそれらをすべて包含するものである。
【0038】
また、本発明の新規中間体(II)、(III)、(IIc)及び(IIIc)が本発明反応に関与しない部位にアミノ基、カルボニル基、ヒドロキシ基、メルカプト基を有する場合には、適当な保護基、すなわち容易にアミノ基、カルボニル基、ヒドロキシ基、メルカプト基に転化可能な官能基に置き換えておくことがその後の製造工程上好ましい場合がある。このような保護基としては、例えばグリーン( Greene )及びウッツ( Wuts )著、「 Protective Groups in Organic Synthesis 」、第2版に記載の保護基を挙げることができ、これらを反応条件に応じて適宜用いることができる。そのほか、例えば容易にカルボニル基に転化可能な官能基としては、例えばヒドロキシメチレン基( CH−OH )を挙げることができ、このような官能基もカルボニル基の保護基として使用することができる。本発明の新規中間体(II)、(III)、(IIc)及び(IIIc)には、これらの保護基に置き換えられた化合物をも包含される。
【0039】
【発明の効果】
本発明の製造法は、医薬品として有用性の高い目的化合物(I)又はその塩を収率良く製造し得る工業的な製造法として有用である。
また、本発明の新規中間体(II)、(III)、(IIc)及び(IIIc)は、目的化合物(I)を、収率よく合成するための優れた合成中間体として有用である。
【0040】
【実施例】
以下に実施例として、本発明の製造法による目的化合物の製造例を掲げ、具体的に説明する。
なお、目的化合物の原料化合物には新規なものも含まれており、それらの化合物の製造例についても参考例として説明する。
【0041】
参考例1
(フッ素化A−1法)
(a−1)60%水素化ナトリウム165mgをジメチルホルムアミド10mlに懸濁し、氷冷下で1−トシル−2,3,4,5−テトラヒドロー1H−1−ベンズアゼピン−5−オン1.0gを加え、氷冷下一時間撹拌した。ジメチル硫酸0.90mlを滴下しさらに30分撹拌した。反応溶液に塩化アンモニウム水溶液を加え溶媒を留去後、残留物をクロロホルム及び水を用いて分液操作を行ない、有機層を無水硫酸マグネシウムにて乾燥した。溶媒を留去して得られる残渣をカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(4:1,v/v)溶出部より5−メトキシ−1−トシル−2,3−ジヒドロ−1H−1−ベンズアゼピン−5−オン621mgを得た。
1H−NMR(δppm in CDCl3,TMS内部標準):
2.09(2H,m),2.38(3H,s),3.21(3H,s),
4.02(2H,m),4.60(1H,t),7.20−7.60(計8H)
MS m/z(El):329(M+)
【0042】
(a−2)5−メトキシ−1−トシル−2,3−ジヒドロ−1H−1−ベンズアゼピン−5−オン213mg及び、N−フルオロピリジニウムトリフルオロメタンスルホネート480mgをジクロロエタン6mlに懸濁し、1夜加熱還流した。水を加え有機層を分離後、飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸マグネシウムにて乾燥した。溶媒を留去して得られる残留物を、カラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(4:1,v/v)溶出部より4,4−ジフルオロ−1−トシル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン621mgを得た。
【0043】
(フッ素化A−2法)
(b−1)ジイソプロピルアミン3.55mlをテトラヒドロフラン150mlに溶解し、アルゴン気流下−78℃撹拌下にn−ブチルリチウム14.9mlを滴下した。氷冷下にて30分撹拌後、−78℃に冷却し、1−トシル−2,3,4,5−テトロヒドロ−1H−1−ベンズアゼピン−5−オン6.39gのテトラヒドロフラン溶液60mlを滴下し30分撹拌した。次いでN−フルオロベンゼンスルホンイミド8.94gのテトラヒドロフラン溶液90mlを滴下後、0℃まで徐々に昇温しながら1時間撹拌した。反応液に飽和塩化アンモニウム水溶液を加えた後、減圧にて濃縮した。酢酸エチルを加え水層を分離後、有機層を飽和チオ硫酸ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。有機層を無水硫酸マグネシウムにて乾燥後、減圧にて濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーに付し、クロロホルム溶出部より4−フルオロ−1−トシル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン5.31gを得た。
【0044】
【0045】
(b−2)ジイソプロピルアミン2.62g及びカリウムt−ブトキシド2.91gのテトラヒドロフラン溶液300mlに、−78℃でn−ブチルリチウムのn−ヘキサン1.6規定溶液16.2mlを加え、−78℃で30分撹拌した。反応液に4−フルオロ−1−トシル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン7.2gのテトラヒドロフラン溶液70mlを加え、−78℃で1時間撹拌した。反応液にN−フルオロベンゼンスルホンイミド10.22gのテトラヒドロフラン溶液70mlを加え、−78℃で2時間、さらに室温で1時間撹拌した。反応液に0.1規定塩酸水溶液500mlを加え、酢酸エチルで抽出した。有機層を10%チオ硫酸ナトリウム、1規定水酸化ナトリウム、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、n−ヘキサンと酢酸エチルとの混合溶媒(4:1,v/v)溶出部より、4,4−ジフルオロ−1−トシル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン2.31gを得た。
【0046】
(フッ素化A−2別法)
(b−3)4−フルオロ−1−トシル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン1.80gとトリエチルアミン4.52mlの塩化メチレン溶液に、トリメチルシリルトリフルオロメタンスルホネート5.22mlを氷冷下滴下し、室温で1時間撹拌した。反応溶液をエーテルで希釈し、飽和炭酸水素ナトリウム水溶液、氷冷した1規定塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。無水硫酸マグネシウムで乾燥後、減圧にて溶媒を留去し、シリルエノールエーテル誘導体を得た。上記シリルエノールエーテル及びN−フルオロピリジニウムトリフルオロメタンスルホネート2.67gをジクロロエタン20mlに溶解し、2時間加熱還流した。反応溶液にクロロホルムを加え、飽和食塩水で洗浄した後、無水硫酸マグネシウムにて乾燥後減圧にて溶媒を留去した。得られた残渣を、シリカゲルカラムクロマトグラフィーに付し、酢酸エチルとヘキサンとの混合溶媒(3:7,v/v)溶出部より、1.78gの4,4−ジフルオロ−1−トシル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オンを得た。
【0047】
IR(KBr,cm−1):1724
1H−NMR(δppm in CDCl3,TMS内部標準):
2.41(2H,m),2.43(3H,s),4.09(2H,m),
7.25(2H,d),7.40(1H,m),7.48(2H,d),
7.55(3H,m)
MS(EI):351(M+)
【0048】
(フッ素化B法)
(c−1)1,2,3,4−テトラヒドロキノリン−4−オン2.00g及びトシル酸114mgを酢酸イソプロペニルエーテル30mlに溶解し、酢酸を留去しながら2日間加熱還流した。飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルにて抽出し、無水硫酸マグネシウムにて乾燥を施した。溶媒を留去して得られる残留物を、クロロホルム−ジエチルエーテル−ヘキサンより結晶化を行ない4−アセトキシ−1−トシル−1,2−ジヒドロキノリン518mgを得た。
【0049】
1H−NMR(δppm in CDCl3,TMS内部標準):
2.16(3H,s),2.35(3H,s),4.60(2H,d),
5.43(1H,t),7.05(1H,d),7.11(2H,d),
7.19(1H,t),7.32(1H,t),7.39(2H,d),
7.74(1H,d)
MS m/z(El):343(M+)
【0050】
(c−2)4−アセトキシ−1−トシル−1,2−ジヒドロキノリン518mgをジグライム5mlに溶解し、加熱還流し、クロロジフルオロ酢酸ナトリウム2.62gのジグライム溶液を滴下した。冷後、酢酸エチルを加え、水洗し無水硫酸マグネシウムで乾燥を施した。溶媒を留去して得られる残留物を、カラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(4:1,v/v)溶出部より7b−アセトキシ−1,1−ジフルオロ−3−トシルシクロプロパ〔c〕−1,2,3,4−テトラヒドロキノリン225mgを得た。
1H−NMR(δppm in CDCl3,TMS内部標準):
1.99(3H,s),2.10(1H,m),2.41(3H,s),
4.04(1H,dd),4.25(1H,dd),7.21(1H,d),
7.28(2H,d),7.33(1H,t),7.55(1H,d),
7.60(1H,d),7.62(2H,d)
MS m/z(El):393(M+)
【0051】
(c−3)7b−アセトキシ−1,1−ジフルオロ−3−トシルシクロプロパ〔c〕−1,2,3,4−テトラヒドロキノリン40mgをメタノール2ml、テトラヒドロフラン2mlに溶解し、水酸化リチウム7mgの水溶液1mlを滴下し室温にて2日撹拌した。溶媒を留去後水を加え、酢酸エチルにて抽出し、有機層を水洗し無水硫酸マグネシウムで乾燥を施した。溶媒を留去して得られる残留物をカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(4:1,v/v)溶出部より1−トシル−4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン27mgを得た。
【0052】
参考例2−1
(1)4,4−ジフルオロ−1−トシル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン3.00gを酢酸14mlに溶解し、濃硫酸7mlを加え、60℃にて10時間加熱した。反応液を氷冷後、水酸化カリウムを用いて塩基性にし酢酸エチルを用いて3回抽出後、有機層を無水炭酸カリウムで乾燥した。反応溶媒を留去し、4,4−ジフルオロー2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オンを得た。本品は精製することなく次の反応に用いた。
【0053】
(2)上記ケトン及びトリエチルアミン1.55mlの塩化メチレン溶液20mlに、氷冷下4−ニトロベンゾイルクロリド1.9gを加え、室温にて12時間撹拌した。反応液を酢酸エチルで希釈し、1規定塩酸水溶液、1規定水酸化ナトリウム水溶液及び飽和食塩水で、順次洗浄した。有機層を無水硫酸マグネシウムで乾燥し、減圧にて溶媒を留去後、クロロホルム−エーテルを用いて再結晶を行い、1.65gの4,4−ジフルオロ−1−(4−ニトロベンゾイル)−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オンを得た。母液を減圧にて留去し、得られた残渣をシリカゲルカラムクロマトグラフィーに付し、クロロホルム溶出部より更に649mgの4,4−ジフルオロ−1−(4−ニトロベンゾイル)−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オンを得た。
【0054】
融点:192−195℃
【0055】
(3)4,4−ジフルオロ−1−(4−ニトロベンゾイル)−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン940mgを酢酸エチル20mlに溶解し、室温にて塩化第一スズ3.07gを加え、5時間加熱還流した。氷冷後反応溶液に1規定水酸化ナトリウム水溶液を加え塩基性にし、有機層を分離後、水層から酢酸エチルにて抽出した。有機層を、無水炭酸カリウムで乾燥した後、減圧にて溶媒を留去した。得られた残渣を、クロロホルム−ヘキサンから再結晶し、711mgの1−(4−アミノベンゾイル)−4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オンを得た。
IR(KBr,cm−1):1712,1628
1H−NMR(δppm in CDCl3,TMS内部標準):
1.59(2H,m),2.66(2H,m),3.88(1H,m),
4.24(1H,m),6.45(2H,m),6.76(1H,m),
7.17(2H,d),7.24(2H,m),7.95(1H,m)
MS(EI):316(M+)
【0056】
参考例2−2
4,4−ジフルオロ−1−トシル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン1.00gを濃硫酸5mlに溶解し、室温にて3時間撹拌した。反応溶液を氷冷した飽和炭酸ナトリウム水溶液に滴下し、酢酸エチルにて抽出後、無水硫酸ナトリウムにて乾燥した。溶媒を留去して得られる残渣を、シリカゲルカラムクロマトグラフィーにて精製し、酢酸エチル−ヘキサン(3:7,v/v)溶出部より4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン556mgを得た。
【0057】
1H−NMR(δppm in CDCl3,TMS内部標準):
2.62(2H,m),3.39(2H,m),4.69(1H,m),
6.72(1H,d),6.84(1H,dt),7.31(1H,dt),
7.74(1H,dd)
MS(FAB):198(M++1)
【0058】
参考例3−1
4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン110mg及びトリエチルアミン0.313mlを塩化メチレンに溶解し、氷冷下トリフルオロ酢酸無水物0.236mlを滴下し6時間撹拌した。水を加え塩化メチレンを用いて抽出し、無水硫酸ナトリウムにて乾燥した。溶媒を留去後得られる残渣をシリカゲルカラムクロマトグラフィーにて精製し、酢酸エチル−ヘキサン(3:7,v/v)溶出部より4,4−ジフルオロ−1−トリフルオロアセチル−1H−1−ベンズアゼピン−5−オン132mgを得た。本品は4,4−ジフルオロ−5,5−ジハイドロキシ−1−トリフルオロアセチル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピンとの混合物として観測された。
【0059】
1H−NMR(δppm in CDCl3,TMS内部標準):
2.16(0.25H,m),2.39(0.75H,m),
2.65(0.25H,m),2.82(0.75H,m),
3.41(0.75H,m),4.62(0.25H,m),
4.82(0.75H,m),7.35(0.75H,m),
7.47(0.5H,m),7.56(0.75H,m),
7.65(1H,m),7.88(0.75H,m),
8.00(0.25H,m)
MS(FAB):294and312(M++1)
【0060】
参考例3−2
4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン31mg、ピリジン0.1ml及びアセチルクロリド0.056mlを用い参考例3−1と同様の操作により1−アセチル−4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン32mgを得た。
1H−NMR(δppm in CDCl3,TMS内部標準):
2.04(3H,s),2.58(2H,m),4.03(2H,m),
7.26(1H,dd),7.44(1H,dt),7.64(1H,dt),
7.91(1H,dd)
MS(FAB):239(M+)
【0061】
参考例4−1
60%水素化ナトリウム409mgをテトラヒドロフラン20mlに懸濁し、ジメチルホスホノ酢酸メチル1.84mlを滴下し30分撹拌した。−40℃にて反応溶液に4,4−ジフルオロ−1−トシル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン2.00gのテトラヒドロフラン溶液を滴下し、徐々に0℃まで昇温しながら一夜撹拌した。反応溶液を濃縮後、水を加え酢酸エチルを用いて抽出し、有機層を飽和食塩水にて洗浄の後、無水硫酸ナトリウムにて乾燥した。溶媒を留去後、得られる残渣をシリカゲルカラムクロマトグラフィーにて精製し、酢酸エチル−ヘキサン(3:7,v/v)溶出部より(4,4−ジフルオロ−1−トシル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸メチル2.30gを(Z):(E)=2:1の混合物として得た。本品をエタノールから結晶化し(Z):(E)=1:1の混合物を得た。
【0062】
1H−NMR(δppm in CDCl3,TMS内部標準):
2.23(2H,m),2.36(1.5H,s),
2.39(1.5H,s),3.45(0.5H,m),
3.59(1.5H,s),3.74(1.5H,s),
3.99(1H,m),4.40(1H,m),
5.39(0.5H,s),6.18(0.5H,s),
7.15−7.67(計8H)
MS(FAB):408(M++1)
【0063】
参考例4−2
4,4−ジフルオロ−1−トリフルオロアセチル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン106mgを用い、参考例4−1と同様の操作の後、得られる残渣をシリカゲルカラムクロマトグラフィーにて精製し、酢酸エチル−ヘキサン(3:7,v/v)溶出部より初めに(E)−(4,4−ジフルオロ−1−トリフルオロアセチル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸メチル34mgを得た。
1H−NMR(δppm in CDCl3,TMS内部標準):
2.31−2.60(計2H),3.23(1H,m),
3.58(3H,s),4.66(1H,m),6.51(1H,m),
7.26(1H,m),7.40−7.49(計3H)
MS(FAB):350(M++1)
【0064】
更に溶出を続け、(Z)−(4,4−ジフルオロ−1−トリフルオロアセチル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸メチル30mgを得た。
1H−NMR(δppm in CDCl3,TMS内部標準):
2.34(1H,m),2.74(1H,m),3.24(1H,m),
3.81(3H,s),4.71(1H,m),6.07(1H,s),
7.27(1H,m),7.39−7.50(計3H)
MS(FAB):350(M++1)
【0065】
参考例4−3
1−アセチル−4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン21mgを用い、参考例4−1と同様の操作の後、得られる残渣をシリカゲルカラムクロマトグラフィーにて精製し、酢酸エチル−ヘキサン(1:1,v/v)溶出部より(1−アセチル−4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸メチル34mgを(E):(Z)=1:2の混合物として得た。
1H−NMR(δppm in CDCl3,TMS内部標準):
1.81(2H,s),1.90(1H,s),2.25(1H,m),
2.47(0.33H,m),2.71(0.77H,m),
3.61(1H,s),3.80(2H,s),
4.61−4.82(計1H),6.10(0.77H,s),
6.46(0.33H,s),7.19−7.30(計2H),
7.35−7.48(計2H)
MS(FAB):296(M++1)
【0066】
参考例5
4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン500mgを用い,参考例4−1と同様の反応操作により,得られる残渣をシリカゲルカラムクロマトグラフィーにて精製し,酢酸エチル−ヘキサン(3:7,v/v)溶出部より初めに(Z)−(4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸メチル100mgを得た。
1H−NMR(δppm in CDCl3,TMS内部標準):
2.58(2H,m),3.41(2H,m),3.80(3H,s),
4.07(1H,m),6.17(1H,s),6.59(1H,d),
6.81(1H,t),7.14(1H,t),7.21(1H,d)
MS(FAB):254(M++1)
【0067】
更に溶出を続け,(E)−(4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸メチル400mgを得た。
1H−NMR(δppm in CDCl3,TMS内部標準):
2.43(2H,m),3.34(2H,m),3.60(3H,s),
3.97(1H,m),6.35(1H,s),6.67(1H,dd),
6.81(1H,dt),7.09(1H,dd),7.16(1H,dt)
MS(FAB):254(M++1)
【0068】
参考例6−1
(4,4−ジフルオロ−1−トシル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸メチル(E):(Z)の約1:1の混合物200mgを濃硫酸1mlに溶解し,室温にて1日攪拌した。反応溶液に氷冷下メタノール10mlを加え,4時間攪拌した後,氷冷した飽和炭酸ナトリウム水溶液に滴下し,酢酸エチルを用いて抽出した。有機層を無水硫酸ナトリウムにて乾燥後濃縮し,得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し,酢酸エチル−ヘキサン(3:7,v/v)溶出部より初めに(Z)−(4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸メチル48mgを得た。更に溶出を続け,(E)−(4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸メチル49mgを得た。
【0069】
参考例6−2
(Z)−(4,4−ジフルオロ−1−トリフルオロアセチル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸メチル25mgをメタノール10mlに溶解し,飽和炭酸カリウム水溶液5mlを加え室温にて一夜攪拌した。一規定塩酸水溶液にて中和した後溶媒を濃縮し,飽和炭酸水素ナトリウム水溶液を加え,塩化メチレンにて抽出した。有機層を無水硫酸ナトリウムにて乾燥後濃縮し,得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し,酢酸エチル−ヘキサン(3:7,v/v)溶出部より(Z)−(4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸メチル13mgを得た。
【0070】
参考例7
(4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸メチル(E):(Z)の約1:2の混合物20mg及びN,N−ジメチルアニリン0.043mlをアセトニトリル1mlに溶解し,氷冷下4−ニトロベンゾイルクロリド47mgを加え,室温にて2時間攪拌した。飽和炭酸水素ナトリウム水溶液を加え,塩化メチレンにて抽出した。有機層を無水硫酸ナトリウムにて乾燥後濃縮し,得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し,酢酸エチル−ヘキサン(3:7,v/v)溶出部より初めに(E)−[4,4−ジフルオロ−1−(4−ニトロベンゾイル)−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸メチル6mgを得た。
1H−NMR(δppm in CDCl3,TMS内部標準):
2.50(2H,m),3.29(1H,m),3.77(3H,s),
5.01(1H,m),6.65(1H,d),6.66(1H,s),
7.12(1H,m),7.24(1H,m),7.30(1H,d),
7.62(2H,d),8.04(2H,d)
MS(FAB):403(M++1)
【0071】
更に溶出を続け,(Z)−[4,4−ジフルオロ−1−(4−ニトロベンゾイル)−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸メチル16mgを得た。
1H−NMR(δppm in CDCl3,TMS内部標準):
2.47(1H,m),2.74(1H,m),3.30(1H,m),
3.85(3H,s),5.03(1H,m),6.23(1H,s),
6.67(1H,m),7.10(1H,m),7.27(1H,m),
7.30(2H,d),7.40(1H,d),8.03(2H,d)
MS(FAB):403(M++1)
【0072】
参考例8
4,4−ジフルオロ−1−(4−ニトロベンゾイル)−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン1.00gを用い,参考例4−1と同様の反応操作により,得られる残渣をシリカゲルカラムクロマトグラフィーにて精製し,酢酸エチル−ヘキサン(3:7,v/v)溶出部より初めに(E)−[4,4−ジフルオロ−1−(4−ニトロベンゾイル)−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸メチル230mgを得た。
更に溶出を続け,(Z)−[4,4−ジフルオロ−1−(4−ニトロベンゾイル)−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸メチル427mgを得た。これらの物性値は参考例7で得られたものと一致した。
【0073】
参考例9−1
60%水素化ナトリウム228mgをテトラヒドロフラン10mlに懸濁し,氷冷下ジメチルホスホノ酢酸メチル0.984mlを滴下し,室温にて30分攪拌した。次いで−78℃にて1−(4−アミノベンゾイル)−4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン600mgのテトラヒドロフラン溶液20mlを滴下し,10時間かけて温度を0℃まで昇温した。飽和塩化アンモニウム水溶液及び水を加え,クロロホルムにて抽出した。有機層を無水硫酸マグネシウムにて乾燥後,減圧下溶媒を留去し,得られる残渣をシリカゲルカラムクロマトグラフィーに付し,酢酸エチルとヘキサンとの混合溶媒(4.5:5.5,v/v)で溶出し,始めに,170mgの(E)−[1−(4−アミノベンゾイル)−4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸メチルを得た。
【0074】
1H−NMR(δppm in CDCl3,TMS内部標準):
2.40(2H,m),3.18(1H,m),3.71(3H,s),
3.78(2H,m),5.08(1H,m),6.42(2H,d),
6.59(1H,s),6.73(1H,d),7.14(1H,m),
7.20(1H,m),7.29(3H,m)
MS(El):372(M+)
更に溶出を続け,536mgの(Z)−[1−(4−アミノベンゾイル)−4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸メチルを得た。
【0075】
1H−NMR(δppm in CDCl3,TMS内部標準):
2.50(2H,m),3.20(1H,m),3.78(2H,m),
3.82(3H,s),5.05(1H,m),6.18(1H,s),
6.39(2H,d),6.73(1H,d),6.97(2H,d),
7.12(1H,m),7.23(1H,m),7.37(1H,m)
MS(El):372(M+)
【0076】
参考例9−2
60%水素化ナトリウム734mgをテトラヒドロフラン懸濁液70mlに,氷冷下,ジエチルホスホノ酢酸エチル4.12gを加え,氷冷下30分攪拌した。反応液に1−(4−アミノベンゾイル)−4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−オン1.16gを加え,室温下3時間攪拌した。反応液を氷水にあけ,酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し,無水硫酸マグネシウムで乾燥後,溶媒を留去して(E)及び(Z)−[1−(4−アミノベンゾイル)−4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸エチルの混合物1.41gを得た。
1H−NMR(δppm in CDCl3,TMS内部標準):
1.10−1.50(計3H),2.50(2H,m),
3.78(2H,m),4.05−4.30(2H,m),
6.17(0.5H,s),6.40(2H,m),
6.58(0.5H,t),6.74(1H,m),
6.90−7.45(計5H)
MS(FAB):387(M++1)
【0077】
【化33】
実施例1
【0078】
(1)(Z)−[4,4−ジフルオロ−1−(4−ニトロベンゾイル)−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸メチル210mgを酢酸エチル10mlに溶解し,塩化第一スズ2水和物589mgを加え6時間加熱還流した。飽和炭酸水素ナトリウム水溶液を加え,酢酸エチルにて抽出を行い,有機層を無水硫酸ナトリウムにて乾燥後濃縮し,得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し,酢酸エチル−ヘキサン(6:4,v/v)溶出部より(Z)−[1−(4−アミノベンゾイル)−4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸メチル190mgを得た。このものの物性値は参考例9−1で得られた化合物と一致した。
【0079】
(2)o−フェニル安息香酸396mgを塩化メチレン5mlに溶解し,触媒量のN,N−ジメチルホルムアミドを滴下後,オキザリルクロリド0.290mlを滴下した。室温にて3時間攪拌後,ベンゼンを加え溶媒を留去し,o−フェニル安息香酸塩化物を得た。
【0080】
(Z)−[1−(4−アミノベンゾイル)−4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸メチル620mg及びピリジン5mlを塩化メチレン10mlに溶解し,氷冷下前記o−フェニル安息香酸塩化物の塩化メチレン溶液10mlを滴下した。室温にて1時間攪拌後,減圧にて溶媒を留去し,得られた残渣を酢酸エチルに溶解し,飽和炭酸ナトリウム水溶液,1規定塩酸水溶液及び飽和食塩水にて順次洗浄した。無水硫酸マグネシウムにて乾燥し,減圧にて溶媒を留去後,得られた残渣をカラムクロマトグラフィーに付し,酢酸エチルとヘキサンとの混合溶媒(2:3,v/v)で溶出し,878mgの(Z)−[4,4−ジフルオロ−1−[4−(2−フェニルベンゾイルアミノ)ベンゾイル]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸メチルを得た。
【0081】
1H−NMR(δppm in CDCl3,TMS内部標準):
2.30−2.80(計2H),3.21(1H,m),
3.83(3H,s),5.03(1H,m),6.17(1H,s),
6.66(1H,m),6.91(3H,m),7.01(2H,m),
7.09(1H,t),7.24(1H,t),
7.33−7.45(計7H),7.52(1H,t),
7.56(1H,t),7.83(1H,d)
MS(El):552(M+)
【0082】
(3)(Z)−[4,4−ジフルオロ−1−[4−(2−フェニルベンゾイルアミノ)ベンゾイル]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸メチル857mgをメタノール10mlに溶解し,氷冷下水酸化リチウム−水和物195mgの水溶液2mlを滴下し,室温で7時間攪拌した。減圧下溶媒を留去後,1規定塩酸水溶液を加え,クロロホルムにて抽出し,無水硫酸マグネシウムにて乾燥した。減圧にて溶媒を留去後,得られた残渣を酢酸エチル−ヘキサンから再結晶を行い,(Z)−[4,4−ジフルオロ−1−[4−(2−フェニルベンゾイルアミノ)ベンゾイル]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸633mgを得た。
【0083】
融点:224−226℃
1H−NMR(δppm in CDCl3,TMS内部標準):
2.41(1H,m),2,67(1H,m),3.24(1H,m),
3.68(1H,m),5.00(1H,m),6.19(1H,s),
6.67(1H,m),6.92(2H,m),6.98(3H,m),
7.10(1H,m),7.24(1H,d),
7.30−7.50(計8H),7.53(1H,m),7.80(1H,m)
MS(El):538(M+)
【0084】
(4)(Z)−[4,4−ジフルオロ−1−[4−(2−フェニルベンゾイルアミノ)ベンゾイル]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸196mg及び1−ヒドロキシベンゾトリアゾール59mgを,塩化メチレン10ml及びアセトニトリル10mlの混合溶媒に溶解し,氷冷下1−エチル−3−(ジメチルアミノプロピル)カルボジイミド塩酸塩84mgの塩化メチレン溶液1mlを滴下した。次いで4−ジメチルアミノピペリジン56mgを加え室温にて一夜攪拌した。反応液に1規定水酸化ナトリウム水溶液を加え,クロロホルムにて抽出し,無水炭酸カリウムにて乾燥した。溶媒を留去し,得られた残渣をシリカゲルカラムクロマトグラフィーに付し,クロロホルムとメタノールの混合溶媒(95:5,v/v)で溶出し,遊離塩基210mgを得た。
1H−NMR(δppm in CDCl3,TMS内部標準):
1.51(2H,m),1.91(2H,m),2.33(6H,s),
2.47(3H,m),2.73(1H,m),3.16(1H,m),
3.20(1H,m),3.97(1H,m),4.64(1H,m),
5.02(1H,m),6.31(1H,s),6.65(1H,m),
6.87(1H,s),6.92(2H,m),7.07(3H,m),
7.22(1H,t),7.33−7.44(計7H),
7.47(1H,t),7.52(1H,t),7.84(1H,d)
MS(FAB):649(M++1)
次いで本品をメタノールに溶解し,4規定塩酸酢酸エチル溶液を加え塩酸塩とした後,減圧にて溶媒を留去した。得られた残渣をクロロホルムエーテルから再結晶し,(Z)−4´−[[4,4−ジフルオロ−5−[(4−ジメチルアミノピペリジノ)カルボニルメチルン]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−1−イル]カルボニル]−2−フェニルベンズアニリド塩酸塩160mgを得た。
【0085】
融点:230℃以上分解
1H−NMR(δppm in DMSO−d6,TMS内部標準):
1.39−1.80(計2H),2.07(2H,m),
2.41(2H,m),2.66(1H,m),2.72(6H,s),
2.95−3.20(計2H),3.43(1H,m),
4.04(1H,m),4.52(1H,m),4.86(1H,m),
6.78(1H,s),6.81(1H,m),7.01(2H,m),
7.19(1H,m),7.26−7.43(計8H),
7.44−7.60(計5H),10.35(1H,s),
10.41(1H,m)
MS(El):649(M++1)
実施例2
【0086】
【化34】
4−(2−ビフェニルイルカルボニルアミノ)ベンゾイックアシド139mgをテトラヒドロフラン5mlに懸濁し、オキザリルクロリド0.050ml及び触媒量のN,N−ジメチルホルムアミドを加え室温にて2時間攪拌した。溶媒を留去し、酸クロリドを得た。(4,4−ジフルオロー2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸メチル(E):(Z)の約1:2の混合物74mg及びトリエチルアミン0.122mlを塩化メチレン5mlに溶解し、上記酸クロリドの塩化メチレン溶液1mlを冷却下滴下し、室温にて1夜攪拌した。飽和炭酸水素ナトリウム水溶液を加え、塩化メチレンにて抽出した。有機層を無水硫酸ナトリウムにて乾燥後濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、酢酸エチル−ヘキサン(3:7,v/v)溶出部より初めに(E)−[1−[4−(2−ビフェニルイルカルボニルアミノ)ベンゾイル]−4,4−ジフルオロ−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸メチル37mgを得た。
1H−NMR(δppm in CDCl3,TMS内部標準):
2.20−2.70(計2H),3.30(1H,m),
3.67(3H,s),4.98(1H,m),
6.55−6.74(計2H),6.85−7.70(計15H),
7.84(1H,m)
MS(El):553(M++1)
更に溶出を続け、(Z)−[1−[4−(2−ビフェニルイルカルボニルアミノ)ベンゾイル]−4,4−ジフルオロー2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸メチル72mgを得た。
このものの物性値は、実施例1(2)で得られたものと一致した。
【0087】
【化35】
実施例3
[式中、Tsはトシル基を意味する。以下同様。]
(1)(4,4−ジフルオロ−1−トシル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸メチル(E):(Z)の約1:2の混合物1.00gをメタノール10ml及びテトラヒドロフラン10mlの混合溶媒に溶解し、1規定水酸化ナトリウム水溶液5mlを加え、室温にて一夜攪拌した。溶媒を留去して得られる残渣に、一規定塩酸水溶液を加え塩化メチレンにて抽出した。無水硫酸ナトリウムにて乾燥後、溶媒を留去し、得られる残渣を塩化メチレンに溶解しヘキサンを加え(4,4−ジフルオロ−1−トシル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸745mgを(E):(Z)=1:3の混合物として得た。
【0088】
1H−NMR(δppm in CDCl3,TMS内部標準):
2.35(2H,m),2.36(2.25H,s),
2,42(0.75H,s),3.47(0.25H,m),
4.02(1.5H,m),4.42(0.25H,m),
5.42(0.75H,s),6.38(0.25H,s),
7.07−7.66(計8H)
MS(FAB):393(M++1)
【0089】
(2)(4,4−ジフルオロー1−トシル−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン)酢酸(E):(Z)の約1:3の混合物500mg、1−ヒドロキシベンゾトリアゾール189mg及び1−エチル−3−(ジメチルアミノプロピル)カルボジイミド293mgを塩化メチレン10mlに溶解し、室温にて30分攪拌した。4−(N,N−ジメチルアミノ)ピペリジン244mgを加え一夜攪拌し、反応混合物に一規定水酸化ナトリウム水溶液を加え、塩化メチレンにて抽出した。有機層を無水硫酸ナトリウムにて乾燥後濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、メタノール−クロロホルム(1:9,v/v)溶出部より[5−[(4−ジメチルアミノピペリジノ)カルボニル]メチレン−4,4−ジフルオロ−1−トシル]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン587mgを(E):(Z)の約1:3の混合物として得た。
【0090】
1H−NMR(δppm in CDCl3,TMS内部標準):
1.44(2H,m),1.76(0.5H,m),
1.88(1.5H,m),2.20(0.75H,s),
2.29(2.25H,s),2.40(2.25H,s),
2.47(0.75H,s),2.70(0.75H,dt),
3.08(0.75H,dt),3.81−4.03(計2H),
4.55(1H,m),5.89(0.75H,s),
6.68(0.25H,s),7.12(0.25H,m),
7.21−7.48(計5.5H),7.63(1.5H,d),
7.86(0.75H,d)
MS(FAB):504(M++1)
上記遊離塩基をエタノールに溶解し、4規定塩酸酢酸エチル溶液を加え塩酸塩を得た。
【0091】
1H−NMR(δppm in DMSO−d6,TMS内部標準):
1.20−1.60(計2H),1.92−2.16(計2H),
2.33(1H,m),2.40(2.25H,s),
2,44(0.75H,s),2.62(2H,m),
2.70(3H,m),2.87(0.75H,m),
3.09(0.75H,m),3.40(1H,m),
3.60−4.07(計3H),4.40−4.56(計1H),
6.28(0.75H,s),6.78(0.25H,s),
7.09−7.50(計6.25H),7.69(1.5H,d),
7.92(0.25H,d),10.80(1H,m)
MS(FAB):504(M++1)
【0092】
(3)[5−[(4−ジメチルアミノピペリジノ)カルボニル]メチレン−4,4−ジフルオロ−1−トシル]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン塩酸塩(E):(Z)の約1:3の混合物100mgを濃硫酸2mlに溶解し、温室にて33時間攪拌した。氷冷した飽和炭酸ナトリウムに加え中和し、1規定水酸化ナトリウムを加え塩化メチレンを用いて抽出した。有機層を無水硫酸ナトリウムにて乾燥後濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、メタノール−クロロホルム−アンモニア水(1:9:0.05,v/v/v)溶出部より(Z)−5−[(4−ジメチルアミノピペリジノ)カルボニル]メチレン−4,4−ジフルオロ]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン21mgを得た。
1H−NHR(δppm in CDCl3,TMS内部標準):
1.40−1.60(計2H),1.87(2H,m),
2.29(6H,s),2.41(1H,m),2.50(2H,m),
2.71(1H,dt),3.13(1H,dt),3.42(2H,m),
4,00(1H,m),4.06(1H,m),4.59(1H,m),
6.26(1H,s),6.59(1H,dd),6.80(1H,dt),
7.13(1H,dt),7.18(1H,dd)
MS(FAB):350(M++1)
(4)4−(2−ビフェニルイルカルボニルアミノ)ベンゾイックアシドと(Z)−5−[(4−ジメチルアミノピペリジノ)カルボニル]メチレン−4,4−ジフルオロ]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピンとを、実施例2と同様の反応操作により処理し、(Z)−4−[[4,4−ジフルオロ−5−[[(4−ジメチルアミノピペリジノ)カルボニル]メチレン]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−1−イル]カルボニル]−2−フェニルベンズアニリドを製造できる。
【0093】
【化36】
実施例4
【0094】
(1)(Z)−[4,4−ジフルオロ−1−(4−ニトロベンゾイル)−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸メチル180mgを用い実施例3(1)と同様の反応操作により、(Z)−[4,4−ジフルオロ−1−(4−ニトロベンゾイル)−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸117mgを得た。
1H−NMR(δppm in CDCl3,TMS内部標準):
2.48(1H,m),2.78(1H,m),3.31(1H,m),
4,60(1H,m),5.04(1H,m),6.26(1H,s),
6.68(1H,d),7.11(1H,m),7.28(3H,m),
7.41(1H,m),8.03(2H,m)
MS(FAB):389(M++1)
【0095】
(2)(Z)−[4,4−ジフルオロ−1−(4−ニトロベンゾイル)−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−5−イリデン]酢酸210mgを用い実施例3(2)と同様の反応操作により、(Z)−[5−[(4−ジメチルアミノピペリジノ)カルボニル]メチレン−4,4−ジフルオロ−1−(4−ニトロベンゾイル)]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン218mgを得た。
【0096】
1H−NMR(δppm in CDCl3,TMS内部標準):
1.49(2H,m),1.90(2H,m),2.31(6H,s),
2.42(2H,m),2.77(2H,m),3.20(1H,m),
3.29(1H,m),3.97(1H,m),4.60(1H,m),
5.03(1H,m),6.35(1H,s),6.66(1H,m),
7.07(1H,m),7.25(1H,m),7.37(3H,m),
8.01(2H,m)
MS(FAB):499(M++1)
上記遊離塩基をエタノールに溶解し、4規定塩酸酢酸エチル溶液を加え塩酸塩を得た。
【0097】
1H−NMR(δppm in DMSO−d6,TMS内部標準):
1.40−1.70(計2H),2.09(2H,m),
2.69(1H,m),2.73(6H,s),3.17(2H,m),
3.43(1H,m),4.06(1H,m),4.54(1H,m),
4.84(1H,m),6.80(1H,s),6.96(1H,m),
7.15(1H,m),7.30(1H,m),7.36(2H,m),
7.52(1H,m),8.06(2H,m),10.19(1H,m)
MS(FAB):499(M++1)
【0098】
(3)(Z)−[5−[(4−ジメチルアミノピペリジノ)カルボニル]メチレン−4,4−ジフルオロ−1−(4−ニトロベンゾイル)]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン114mgを用い実施例1(1)と同様の反応操作により、(Z)−[(4−アミノベンゾイル)−5−[1−(4−ジメチルアミノピペリジノ)カルボニル]メチレン−4,4−ジフルオロ]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン79mgを得た。
【0099】
1H−NMR(δppm in CDCl3,TMS内部標準):
1.48(2H,m),1.88(2H,m),2.30(6H,s),
2.39(1H,m),2.50(2H,m),2.73(1H,dt),
3.14(1H,dt),3.96(1H,m),4.62(1H,m),
6,31(1H,s),6.38(2H,d),6.73(1H,d),
7.02(2H,d),7.11(1H,t),7.22(1H,t),
7.38(1H,d)
MS(FAB):469(M++1)
【0100】
(4)(Z)−[(4−アミノベンゾイル)−5−[1−(4−ジメチルアミノピペリジノ)カルボニル]メチレン−4,4−ジフルオロ]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン18mgを用い実施例1(2)と同様の反応操作により、(Z)−4’−[[4,4−ジフルオロ−5−[[(4−ジメチルアミノピペリジノ)カルボニル]メチレン]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン−1−イル]カルボニル]−2−フェニルベンズアニリド11mgを得た。
このものの物性値は前記実施例1(4)で得られた化合物(遊離塩基)の物性値と一致した。
【0101】
実施例5
(Z)−5−[(4−ジメチルアミノピペリジノ)カルボニル]メチレン−4,4−ジフルオロ]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン12mg及びピリジン塩酸塩13mgを塩化メチレン5mlに溶解し、氷冷下4−ニトロベンゾイルクロリド47mgを加え、室温にて2時間攪拌した。1規定水酸化ナトリウム水溶液を加え、塩化メチレンにて抽出した。有機層を無水硫酸ナトリウムにて乾燥後濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーにて精製し、メタノール−クロロホルム−アンモニア水(1:9:0.05,v/v/v)溶出部より(Z)−[5−[(4−ジメチルアミノピペリジノ)カルボニル]メチレン−4,4−ジフルオロ1−(4−ニトロベンゾイル)]−2,3,4,5−テトラヒドロ−1H−1−ベンズアゼピン18mgを得た。このものの物性値は実施例4(2)で得たものと一致した。
【0102】
以下に、本発明の製造法により製造される目的化合物(I)又はその原料化合物の中、前記参考例1〜9及び実施例1〜5に記載のものとは別の化合物につき掲記する。
これらの化合物は前記参考例1〜9や実施例1〜5に記載した方法、また前記製造法に記載した方法やそれらの若干の変法を適用して容易に製造することが可能である。
【0103】
【化37】
・参考例3及び4と同様にして以下の化合物を合成できる。
【0104】
【化38】
・参考例5若しくは参考例6と同様にして以下の化合物を合成できる
【0105】
【化39】
・参考例7若しくは参考例8と同様にして以下の化合物を合成できる。
【0106】
【化40】
・実施例1(1)と同様にして以下の化合物を合成できる。
また、これらの化合物を原料として、実施例1(2)〜(4)の方法と同様にして実施例1(4)で得られた化合物を合成できる。
・実施例1若しくは実施例2と同様にして適当な原料化合物を用いて以下の化合物を合成できる。
【0107】
【化41】
・実施例3(1)および(2)と同様にして以下の化合物(IIc’)を合成できる。
【0108】
【化42】
【0109】
【化43】
【0110】
・実施例4(1)〜(3)と同様にして以下の化合物(IVc)を合成できる。
【0111】
【化44】
【0112】
【化45】
[0001]
[Industrial applications]
The present invention relates to a novel method for producing a novel benzazepine derivative useful as an arginine vasopressin antagonist, and a novel useful synthetic intermediate.
[0002]
[Prior art]
Arginine vasopressin (AVP) is a peptide consisting of 9 amino acids that is biosynthesized and secreted in the hypothalamus-pituitary system. AVP has two types of receptors (V 1 Receptor and V 2 Receptors) are known to exhibit various physiological activities. Among them, the following two are mentioned as typical actions.
[0003]
(1) In the vascular system, V 1 It enhances the metabolic system of inositol phospholipids via receptors, and exerts a pressor action by the contractile response of smooth muscle.
[0004]
(2) In the renal collecting tube, V 2 Increases cAMP via the receptor and exhibits antidiuretic effect by promoting water reabsorption.
[0005]
Since AVP plays an important role in maintaining body fluid homeostasis due to the above-mentioned effects, abnormalities in AVP production / secretion or abnormal reactivity of various organs to AVP can be caused by various diseases (heart failure, hyponatremia, renal Disease, hypertension, edema, etc.).
[0006]
[Problems to be solved by the invention]
Against this background, the present inventors have previously conducted intensive studies on the synthesis of a novel compound having an arginine vasopressin antagonistic activity. As a result, a novel benzazepine derivative represented by the following formula was unexpectedly superior in arginine vasopressin antagonistic activity. It was found for the first time that it had an effect, and a patent application was filed (see International Application No. 94/01409).
[0007]
Embedded image
[0008]
(For the meaning of each symbol in the above formula, see the description in the above international application specification.)
[0009]
[Means for Solving the Problems]
The present inventors have further researched on a separate production method of the above-mentioned benzazepine derivative, and as a result, the novel production method shown in the following first production method and second production method is an excellent production method of the above-mentioned condensed benzazepine derivative, and The novel compounds represented by the following formulas (II), (III), (IIc) and (IIIc) used as intermediates in each production method are excellent intermediates for synthesizing the above benzazepine derivatives in good yield. The present invention was completed based on the findings.
Hereinafter, the production method of the present invention will be described in detail.
[0010]
Embedded image
First manufacturing method
[The symbols in the formula have the following meanings.
[0011]
Embedded image
p: 0 or an integer of 1 to 3
R 8 : A hydrogen atom; a lower alkyl group; a lower alkenyl group; a cycloalkyl group; a hydroxyl group; a lower alkoxy group; a carboxyl group; a lower alkoxycarbonyl group; a cyano group; an optionally substituted aryl group; Aromatic 5- or 6-membered heterocyclic group; a nitrogen-containing saturated 5- to 8-membered heterocyclic group which may have a bridge and may be substituted on the ring nitrogen atom by a lower alkyl group;
[0012]
Embedded image
s and t: the same or different, and an integer of 1 to 3 (where the sum of s and t is an integer of 3 to 5);
u: integer from 2 to 7
A 3 , A 4 And A 5 : Identical or different, a single bond, a lower alkylene group, or a lower alkenylene group (however, A 3 Or A 5 Is a group in which the adjacent group is A via a nitrogen atom or an oxygen atom. 3 Or A 5 A group other than a single bond when the group is bonded to)
R 9 : Hydrogen atom or lower alkyl group,
q and r: the same or different and an integer of 1 to 3 (where the sum of q and r is an integer of 3 to 5);
X: a group represented by the formula -O- or -S (O) w-,
w: 0, 1 or 2,
R 3 And R 4 : Identical or different, a hydrogen atom; a halogen atom; a lower alkyl group; a lower alkoxy group; or an amino group which may be substituted with a lower alkyl group;
R 5 And R 6 : Identical or different, a hydrogen atom or a lower alkyl group (provided that R 5 And R 6 Means a lower alkylene group together and may form a saturated carbocyclic ring with adjacent carbon atoms),
n: 0 or 1,
R 7 : An optionally substituted aryl group or an optionally substituted aromatic 5- or 6-membered heterocyclic group,
R 1 : A protecting group for a hydrogen atom or a carboxy group,
R 10 : A protecting group for a hydrogen atom or an amino group.
The wavy line in the formula (I) indicates that any one of the configurations (Z) and (E) may be used. The same applies hereinafter. ]
[0013]
In this production method, the compound (II) or a salt thereof is used as a starting compound (Step a), 10 After removing the amino-protecting group, an amidation step with compound (VI) or a reactive derivative thereof, and (step b) an R 1 After removing the protecting group of the carboxy group of the above, the amidation reaction with the compound (VII) or a salt thereof is carried out in an arbitrary order to obtain the desired compound (I).
In the formula, <A-1> and <B-2> show the method of carrying out in the order of (step a) and then (step b). In addition, <B-1> and <A-2> show a method of carrying out in the order of (step b) and then (step a).
(Step a) in the present production method, that is, <A-1> and <A-2> are compounds of the formula (II) or (IIc) or a salt thereof, if desired, 10 After removing the protecting group for the amino group of formula (VI), the amino group is amidated by a conventional method with a substituted benzoic acid represented by the formula (VI) or a reactive derivative thereof.
Here, as the reactive derivative of the compound (VI), its usual ester such as methyl ester, ethyl ester, isobutyl ester and tert-butyl ester; acid halide such as acid chloride and acid bromide; acid azide; Active ester obtained by reacting with a phenol compound such as phenol or an N-hydroxylamine compound such as 1-hydroxysuccinimide or 1-hydroxybenzotriazole; symmetric acid anhydride: halocarboxylic acid alkyl ester such as alkyl carbonate halide Mixed acid anhydride obtained by reacting with halocarboxylic acid alkyl esters such as pivaloyl halide and pivaloyl halide, or phosphoric acid mixture obtained by reacting with diphenylphosphoryl chloride and N-methylmorpholine Acid Mixed acid anhydrides such as object; and the like.
[0014]
Further, when compound (VI) is reacted with a free acid or when an active ester is reacted without isolation, dicyclohexylcarbodiimide, carbonyldiimidazole, diphenylphosphorylazide, diethylphosphoryl cyanide, 1-ethyl-3- ( It is preferable to use a condensing agent such as (3-dimethylaminopropyl) carbodiimide hydrochloride.
The reaction varies depending on the reactive derivative used and the condensing agent, but is usually halogenated hydrocarbons such as dichloromethane, dichloroethane and chloroform; aromatic hydrocarbons such as benzene, toluene and xylene; ethers such as ether and tetrahydrofuran. , Ethyl acetate and other esters, acetonitrile, acetone, N, N-dimethylformamide, dimethylsulfoxide, and other organic solvents or in the presence of water, under cooling, depending on the reactive derivative, or under cooling to room temperature Or at room temperature or under heating.
[0015]
In the reaction, compound (VI) was used in excess, or N-methylmorpholine, trimethylamine, triethylamine, diisopropylethylamine, N, N-dimethylaniline, pyridine, 4- (N, N-dimethylamino) pyridine, picoline, The reaction in the presence of an organic base such as lutidine or an inorganic base such as sodium bicarbonate, potassium bicarbonate, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, etc. is advantageous for the smooth progress of the reaction. There are cases. Further, a salt composed of a weak base and a strong acid such as pyridine hydrochloride, pyridine p-toluenesulfonate, N, N-dimethylaniline hydrochloride may be used. Pyridine can also be a solvent.
[0016]
In this reaction, it is preferable that no other mercapto group, reactive amino group, carboxy group, hydroxy group, etc. be present. However, after introducing and reacting with a protecting group, the target compound can be removed by removing the protecting group. can do.
The elimination of the protecting group depends on the type of the protecting group.
For example, when the protecting group of the amino group is a substituted or unsubstituted benzyloxycarbonyl group, catalytic reduction is suitable. In some cases, hydrobromic acid / acetic acid, hydrobromic acid / trifluoroacetic acid, and fluorinated acid are used. An acid treatment with hydroacid, trimethylsilyl iodide or the like is used. Other urethane-type protecting groups such as a tert-butoxycarbonyl group are advantageously treated with an acid such as hydrobromic acid / acetic acid, trifluoroacetic acid, hydrochloric acid, hydrochloric acid / acetic acid, hydrochloric acid / dioxane, and trimethylsilyl iodide. In the case of an aromatic sulfonyl group such as a tosyl group (p-toluenesulfonyl group) or an acyl-type protecting group such as a benzoyl group, acid treatment with concentrated sulfuric acid or hydrochloric acid or base treatment with sodium carbonate or sodium hydroxide. Is preferred.
When the protecting group of the amino group is a phthalimide group formed integrally with the amino nitrogen, the phthalazine group is treated with a hydrazine such as hydrazine, methylhydrazine, ethylhydrazine, or a primary amine such as ammonia, methylamine, ethylamine, or propylamine. As a result, the phthaloyl group can be eliminated to obtain a primary amino group.
[0017]
When the protecting group of the carboxy group is a methyl group or an ethyl group, the benzyl group or various substituted benzyl groups are subjected to catalytic reduction or saponification by saponification, and the tert-butyl group is subjected to the same acid treatment as described above. And trimethylsilyl groups are easily removed by contact with water.
The protecting groups for mercapto groups and hydroxyl groups can be mostly removed by sodium / liquid ammonia treatment or hydrogen fluoride treatment, and depending on the type of protecting group (for example, O-benzyl, O-benzyloxycarbonyl, Sp-nitrobenzyl) ) It can be removed by applying catalytic reduction and, when it is an acyl protecting group, by hydrolysis in the presence of an acid or alkali.
These processes can be performed by a conventional method.
When the compound (II) is a compound represented by the following formula (IIa ′) having a protecting group at the nitrogen atom of the benzazepine ring, the protecting group is removed to obtain a compound (IIa). Used. The removal of the protecting group for the amino group is performed in the same manner as described above.
[0018]
Embedded image
(Where R 1 And R 3 Is as defined above, and R is 11 Represents a protecting group for an amino group. )
[0019]
Embedded image
[0020]
Embedded image
Second manufacturing method
[0021]
(In the above process diagrams, each symbol in each general formula has the same meaning as described above.)
In this production method, a compound represented by the general formula (III) or a salt thereof is used as a starting compound, (Step C) b Is a nitro group, the nitro group is reduced to an amino group, an amidation reaction with the compound (VIII) or a reactive derivative thereof, and (Step d) the R of the compound (III) 1 After removing the protecting group of the carboxy group of compound (VII) or an amidation reaction with compound (VII) or a salt thereof in an arbitrary order to obtain target compound (I).
In the formula, <C-1> and <D-2> show a method of performing the steps (step c) and then (step d). In addition, <D-1> and <C-2> show a method of carrying out in the order of (step d) and then (step c).
(Step c) in this production method, that is, <C-1> and <C-2> are the same as (Step a) described in the first production method, and (Step d) in this production method, <D-1> and <D-2> can be performed in the same manner as in (Step b) described in the first production method.
The type of the reactive derivative, reaction conditions, elimination of the protecting group, and the like are the same as those in the first production method, and can be carried out in the same manner.
When the raw material compound (III) is a compound having a nitro group and represented by the following formula (IIIa), a conventional method such as metal (granular tin or iron powder) or metal salt (tin chloride or the like) is used. The compound (IVa), which is an amino group, can be amidated by reduction by a method using an acid or catalytic reduction using Raney nickel, palladium, or the like.
[0022]
Embedded image
[0023]
(In the above formula, R 1 , R 3 And R 4 Has the meaning described above. )
In the first production method and the second production method, it was confirmed that the compounds (II), (III), (IIc) and (IIIc) used as a raw material and an intermediate of the target compound (I) were novel compounds. It has been found for the first time by the present invention that these compounds are excellent intermediates for synthesizing the target compound (I).
[0024]
Hereinafter, methods for producing the above-mentioned novel raw material compounds and intermediates will be described.
(Production method of starting compound (II))
[0025]
Embedded image
[0026]
(Where R 1 , R 3 , R 8 , R 11 , B, and p have the meaning described above, and R 12 Represents a lower alkyl group or a lower alkanoyl group, Ph represents a phenyl group, and Y represents a halogen atom. )
The starting compound (II) can be produced according to the above reaction scheme.
That is, when the benzazepin-5-one derivative (IX) is used as a raw material, it is stepwise fluorinated with a fluorinating agent such as N-fluorobenzeneimide, N-fluoropyridinium trifluoromethanesulfonate ((IX) → (X) → (XII)) or enol etherification under basic or acidic conditions to give compound (XI) and difluorination at once with the same fluorinating agent ((IX) → (XI) → (XII)). To produce compound (XII). When the tetrahydroquinolin-4-one derivative (XIII) is used as a raw material, Chem, Pharm, Bull. , 27 (12), 3123 (1979), followed by enol etherification in the same manner as described above to form a three-membered ring with difluorocarbene or the like generated from sodium chlorodifluoroacetate. Compound (XII) is produced by ring expansion under a base such as lithium or under acidic conditions ((XIII) → (XIV) → (XV) → (XII)).
Next, the step of producing the compound (IIa ′) or (IIa) from the compound (XII) or (XVI) will be described.
That is, the compound (IIa ′) or (IIa) is obtained by reacting the compound represented by the general formula (XII) or (XVI) with the phosphonium salt represented by the general formula (XVII) or the phosphonate represented by the general formula (XVIII) Can be obtained.
Further, it can also be synthesized by a general reaction for synthesizing an olefin such as the Peterson reaction (Organic Reaction vol., 38.P1 to 223, by DAVID J.AGER) and Claisen condensation.
[0027]
The reaction with the phosphonium salt (XVII) is not particularly limited as long as it is a condition usually used for the synthesis of an olefin by the Wittig reaction. Examples of the reaction solvent include ether, tetrahydrofuran, benzene, toluene, dichloromethane, chloroform and the like. The reaction temperature ranges from -78 ° C to heating. Further, it is preferable to add a base to the reaction system. Examples of the base include an inorganic base such as sodium hydroxide and sodium carbonate, an alcoholate such as sodium methoxide, sodium ethoxide and potassium tert-butoxide, triethylamine and pyridine. And organic metals such as n-butyllithium. Incidentally, the halogen atom represented by Y means a base atom, a bromine atom and the like.
The reaction with phosphonate (XVIII) can also be carried out in a solvent inert to a reaction such as methanol, ethanol, benzene, toluene, tetrahydrofuran, 1,2-dimethoxyethane, ether, dimethylformamide, dimethylsulfoxide, etc. Amide, sodium methoxide, sodium ethoxide, triethylamine, 1,8-diazabicyclo [5,4,0] undec-7-ene, potassium hexamethyldisilazide, lithium hexamethyldisilazide, sodium hexamethyldisilazide And the like.
In this case, a Lewis acid such as lithium chloride or magnesium bromide, or a phase transfer catalyst such as 18-crown-6-ether may be used.
(Production method of starting compound (III))
[0028]
Embedded image
(Each symbol in the formula has the same meaning as described above.)
Starting compound (III) can be produced according to the above process chart.
That is, compound (III) can be obtained by amidating compound (XVI) and compound (XXI) and, if desired, reducing the compound. The amidation can be carried out in the same manner as in the above-mentioned first production method, and the reduction can be carried out using a conventional method.
Compound (III) can also be produced by subjecting compound (XX) and compound (XVII) or (XVIII) to olefin synthesis. This olefin synthesis can be carried out in the same manner as in the method described above (the method for producing the starting compound (II)).
(Production of Intermediates (IIc) and (IIIc))
[0029]
Embedded image
[0030]
(Each symbol in the formula has the meaning described above.)
Compounds (IIIc) and (IIc) are synthesized by the first and second processes, and also by olefin synthesis in which the corresponding compounds (XX) and (XII) are reacted with the compound (XXII) or (XXIII), respectively. It is possible to manufacture. Olefin synthesis can be performed in the same manner as described above.
The reaction product obtained by each of the above production methods is isolated and purified as a free compound, its salt, hydrate or various solvates. The salt can be produced by subjecting the salt to a usual salt formation reaction.
Isolation and purification are performed by applying ordinary chemical operations such as extraction, concentration, distillation, crystallization, filtration, recrystallization, and various types of chromatography.
The target compound (I) which can be produced by the production method of the present invention and the novel intermediates (II), (III), (IIc) and (IIIc) of the present invention have a stereoisomer based on a double bond. In addition, isomers such as a racemate, an optically active substance, and a diastereomer may exist alone or as a mixture. For example, stereoisomers can be separated by chromatography or fractional crystallization. The racemic compound can be optically resolved by using an appropriate starting compound or by a general racemic resolution method [for example, a diastereomer salt with a general optically active acid (tartaric acid, etc.) is obtained. ] Can lead to stereochemically pure isomers. The mixture of diastereomers can be separated by a conventional method, for example, fractional crystallization or chromatography.
Hereinafter, the target compound (I) and its starting compound that can be produced by the production method of the present invention will be described in detail.
[0031]
Unless otherwise specified in the definition of the general formula of the target compound or the starting compound produced by the production method of the present invention, the term "lower" refers to a linear or branched carbon chain having 1 to 6 carbon atoms. Means
"Lower alkyl group" is a linear or branched alkyl group having 1 to 6 carbon atoms, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, hexyl group, isohexyl group, 1-methylpentyl group, 2 -Methylpentyl group, 3-methylpentyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,3-dimethylbutyl group , 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethyl Rupuropiru group, 1-ethyl-1-ethylpropyl group, and a 1-ethyl-2-methylpropyl group or the like.
[0032]
The “lower alkenyl group” is a linear or branched alkenyl group having 2 to 6 carbon atoms, specifically, a vinyl group, an allyl group, a 1-propenyl group, an isopropenyl group, a 1-butenyl group, -Butenyl group, 3-butenyl group, 2-methyl-1-propenyl group, 2-methylallyl group, 1-methyl-1-propenyl group, 1-methylallyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl Group, 4-pentenyl group, 3-methyl-1-butenyl group, 3-methyl-2-butenyl group, 3-methyl-3-butenyl group, 2-methyl-1-butenyl group, 2-methyl-2-butenyl Group, 2-methyl-3-butenyl group, 1-methyl-1-butenyl group, 1-methyl-2-butenyl group, 1-methyl-3-butenyl group, 1,1-dimethylallyl group, 1,2- Dimethyl-1-pro 1, 2-dimethyl-2-propenyl group, 1-ethyl-1-propenyl group, 1-ethyl-2-propenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 4-hexenyl Group, 5-hexenyl group, 1,1-dimethyl-1-butenyl group, 1,1-dimethyl-2-butenyl group, 1,1-dimethyl-3-butenyl group, 3,3-dimethyl-1-butenyl group , 1-methyl-1-pentenyl group, 1-methyl-2-pentenyl group, 1-methyl-3-pentenyl group, 1-methyl-4-pentenyl group, 4-methyl-1-pentenyl group, 4-methyl- Examples thereof include a 2-pentenyl group and a 4-methyl-3-pentenyl group.
[0033]
"Lower alkynyl group" is a linear or branched alkynyl group having 2 to 6 carbon atoms, and is an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 1-butynyl group, a 2-butynyl group, 3-butynyl group, 1-methyl-2-propynyl group, 1-pentynyl group, 2-pentynyl group, 3-pentynyl group, 4-pentynyl group, 3-methyl-1-butynyl group, 2-methyl-3-butynyl Group, 1-methyl-2-butynyl group, 1-methyl-3-butynyl group, 1,1-dimethyl-2-propynyl group, 1-hexynyl group, 2-hexynyl group, 3-hexynyl group, 4-hexynyl group , 5-hexynyl group and the like.
The "cycloalkyl group" is preferably a cycloalkyl group having 3 to 8 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
"Lower alkoxy group" is a lower alkoxy group having the lower alkyl group in the alkyl moiety, such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, butoxy, isobutoxy, sec-butoxy, tert- Butoxy, pentyloxy (amyloxy), isopentyloxy, tert-pentyloxy, neopentyloxy, 2-methylbutoxy, 1,2-dimethylpropoxy, 1-ethylpropoxy, hexyloxy, etc. It is. "Lower alkylthio group" is a lower alkylthio group having the lower alkyl group in the alkyl moiety, for example, methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, pentylthio, isopentylthio, and the like. Hexylthio group, isohexylthio group and the like.
The “lower alkanoyl group” is a lower acyl group having 1 to 6 carbon atoms derived from a saturated aliphatic carboxylic acid, for example, formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group , A pivaloyl group or a hexanoyl group are preferred.
The “lower alkanoyloxy group” is a group containing the lower alkanoyl group as an alkanoyl moiety, and includes, for example, an acetoxy group and a propionyloxy group.
[0034]
The “halogen atom” includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
"An amino group optionally substituted with a lower alkyl group" means, in addition to an amino group, an amino group mono- or di-substituted with the lower alkyl group, specifically, for example, a methylamino group, an ethylamino group , Propylamino group, isopropylamino group, butylamino group, isobutylamino group, sec-butylamino group, tert-butylamino group, pentyl (amyl) amino group, isopentylamino group, neopentylamino group, tert-pentylamino Symmetrical type such as mono-lower alkylamino group such as hexylamino group, dimethylamino group, diethylamino group, dipropylamino group, diisopropylamino group, dibutylamino group, diisobutylamino group, ethylmethylamino group, methylpropylamino group Or an asymmetric di-lower alkylamino group It is.
"Lower alkoxycarbonyl group" is a lower alkoxycarbonyl having the lower alkyl group in the alkyl moiety, for example, methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group, isobutoxycarbonyl group , Sec-butoxycarbonyl group, tert-butoxycarbonyl group, pentyloxycarbonyl group, isopentyloxycarbonyl group, neopentyloxycarbonyl group, tert-pentyloxycarbonyl group, hexyloxycarbonyl group, etc. Examples include a group formed by esterification of a linear or branched alcohol with a carbonyl group.
[0035]
Similarly, the “lower alkylaminocarbonyl group” is, for example, a lower alkylaminocarbonyl group having, in the alkylamino portion, an amino group substituted with the above-mentioned lower alkyl group.
The “lower alkylene group” is a linear or branched divalent carbon chain having 1 to 6 carbon atoms, specifically, for example, a methylene group, a methylmethylene group, an ethylene group, a trimethylene group, a tetramethylene group , 2-methyltrimethylene group, 1-ethylethylene group, pentamethylene group, 1,2-diethylethylene group, hexamethylene group and the like.
The “lower alkenylene group” is a straight or branched divalent carbon chain having 2 to 6 carbon atoms, and specifically, for example, a vinylene group, a propenylene group, a 2-propenylene group, a 1-methylvinylene group A 2-methylvinylene group, a butenylene group, a 2-butenylene group, a 3-butenylene group, a 1-methylpropenylene group, a 1-methyl-2-propenylene group, a 2-pentenylene group, a 1-methyl-1-butenylene group, 2-hexenylene and the like.
The “protecting group for amino group” may be any commonly used protecting group for an amino group, such as a lower alkyl group, a lower alkoxy group, a halogen group, a nitro group, a phenylazo group or a p-phenylazo group. A urethane-type protecting group such as a benzyloxycarbonyl group, a tert-butoxycarbonyl group, a methoxycarbonyl group, a 2,2,2-trichloroethoxycarbonyl group, a tert-amyloxycarbonyl group, a formyl group, Acyl protecting groups such as acetyl group, trifluoroacetyl group and benzoyl group, aralkyl protecting groups such as benzyl group, benzhydryl group and trityl group, and alkane sulfonyl groups such as methanesulfonyl group, ethanesulfonyl group and trifluoromethanesulfonyl group , Benzenesulfonyl Organic sulfonyl-type protecting group such as aromatic sulfonyl group such as toluenesulfonyl group (particularly p-toluenesulfonyl group), trimethylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group, tert-butyldimethylsilyl group, etc. And a silyl-type protecting group.
Preferred are a p-toluenesulfonyl group, an acetyl group, a trifluoroacetyl group, a benzoyl group, a t-butoxycarbonyl group, a methoxycarbonyl group, and a benzyloxycarbonyl group.
The “protecting group for carboxy group” may be any commonly used protecting group for carboxy group, for example, lower alkyl groups such as methyl group, ethyl group, propyl group, t-butyl group, and benzyl group. And aralkyl groups such as nitrobenzyl group and lower alkoxybenzyl group, and lower alkylsilyl groups such as trimethylsilyl group and tert-butyldimethylsilyl group. Preferably, it is a methyl group, an ethyl group, a t-butyl group or a benzyl group.
[0036]
The salts of the target compound (I) and the novel intermediates (II), (III), (IIc) and (IIIc) of the present invention which can be produced by the production method of the present invention include acid addition salts with inorganic or organic acids. Or a salt with an inorganic or organic base, preferably a pharmaceutically acceptable salt. Specific examples of these salts include mineral acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, and phosphoric acid, or formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, and succinic acid. An acid addition salt with an organic acid such as fumaric acid, maleic acid, lactic acid, malic acid, tartaric acid, citric acid, methanesulfonic acid or ethanesulfonic acid, or an acidic amino acid such as aspartic acid or glutamic acid, sodium, potassium, magnesium, Examples include inorganic bases such as calcium and aluminum, organic bases such as methylamine, ethylamine and ethanolamine, and salts with basic amino acids such as lysine and ornithine. Further, it may be a quaternary ammonium salt. The quaternary ammonium salt is specifically a salt obtained by a reaction with a lower alkyl halide, a lower alkyl triflate, a lower alkyl tosylate, a benzyl halide or the like, and is preferably a salt with a methyl iodide or a benzyl chloride.
The objective compound (I) produced by the production method of the present invention and the novel intermediates (II), (III), (IIc) and (IIIc) of the present invention have a double bond bonded to the benzazepine ring. As a result, stereoisomers (Z) and (E) exist. These stereoisomers can be separated by a conventional method, for example, chromatography, fractional crystallization and the like. It is well known that interconversion is possible with light, heat, acid or base catalysts, radicals and the like. The target compound (I) of the present invention and the novel intermediates (II), (III), (IIc) and (IIIc) include separated ones and mixtures thereof.
[0037]
Further, the objective compound (I) produced by the production method of the present invention and the novel intermediates (II), (III), (IIc) and (IIIc) of the present invention include optical isomers based on asymmetric carbon atoms, Geometric isomers based on double bonds and cyclohexane rings may exist. The present invention includes mixtures of these various isomers such as geometric isomers and optical isomers, and separated isomers. The target compound (I) produced by the production method of the present invention and the compounds of the novel intermediates (II), (III), (IIc) and (IIIc) of the present invention include hydrates and various solvates. , Tautomers, polymorphs and the like may exist, and the above compounds include all of them.
[0038]
When the novel intermediates (II), (III), (IIc) and (IIIc) of the present invention have an amino group, a carbonyl group, a hydroxy group or a mercapto group at a site not involved in the reaction of the present invention, It may be preferable in the subsequent production steps to replace the protective group with a functional group which can be easily converted to an amino group, a carbonyl group, a hydroxy group or a mercapto group. Examples of such a protecting group include those described in "Protective Groups in Organic Synthesis" by Greene and Wuts, 2nd edition, and these may be appropriately selected according to reaction conditions. Can be used. In addition, as a functional group that can be easily converted to a carbonyl group, for example, a hydroxymethylene group (CH—OH) can be exemplified, and such a functional group can also be used as a protecting group for a carbonyl group. The novel intermediates (II), (III), (IIc) and (IIIc) of the present invention also include compounds substituted with these protecting groups.
[0039]
【The invention's effect】
INDUSTRIAL APPLICABILITY The production method of the present invention is useful as an industrial production method capable of producing the target compound (I) or a salt thereof having high utility as a pharmaceutical in good yield.
Further, the novel intermediates (II), (III), (IIc) and (IIIc) of the present invention are useful as excellent synthetic intermediates for synthesizing the target compound (I) with high yield.
[0040]
【Example】
Hereinafter, specific examples of the production of the target compound by the production method of the present invention will be given as examples.
It should be noted that the starting compounds of the target compound include novel compounds, and production examples of these compounds will be described as reference examples.
[0041]
Reference Example 1
(Fluorinated A-1 method)
(A-1) 165 mg of 60% sodium hydride was suspended in 10 ml of dimethylformamide, and 1.0 g of 1-tosyl-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one was added under ice cooling. The mixture was stirred for 1 hour under ice cooling. 0.90 ml of dimethyl sulfuric acid was added dropwise, and the mixture was further stirred for 30 minutes. An aqueous ammonium chloride solution was added to the reaction solution, and the solvent was distilled off. The residue was subjected to liquid separation using chloroform and water, and the organic layer was dried over anhydrous magnesium sulfate. The residue obtained by distilling off the solvent was subjected to column chromatography, and 5-methoxy-1-tosyl-2,3-dihydro-1H-1 was eluted from a hexane-ethyl acetate (4: 1, v / v) eluate. -621 mg of benzazepin-5-one were obtained.
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.09 (2H, m), 2.38 (3H, s), 3.21 (3H, s),
4.02 (2H, m), 4.60 (1H, t), 7.20-7.60 (8H in total)
MS m / z (El): 329 (M + )
[0042]
(A-2) 213 mg of 5-methoxy-1-tosyl-2,3-dihydro-1H-1-benzazepin-5-one and 480 mg of N-fluoropyridinium trifluoromethanesulfonate are suspended in 6 ml of dichloroethane and heated under reflux overnight. did. After adding water and separating the organic layer, the organic layer was washed with a saturated aqueous solution of sodium hydrogen carbonate and dried over anhydrous magnesium sulfate. The residue obtained by distilling off the solvent was subjected to column chromatography, and 4,4-difluoro-1-tosyl-2,3,4,4-hexane-ethyl acetate (4: 1, v / v) was eluted. 621 mg of 5,5-tetrahydro-1H-1-benzazepin-5-one were obtained.
[0043]
(Fluorinated A-2 method)
(B-1) 3.55 ml of diisopropylamine was dissolved in 150 ml of tetrahydrofuran, and 14.9 ml of n-butyllithium was added dropwise while stirring at -78 ° C in an argon stream. After stirring for 30 minutes under ice-cooling, the mixture was cooled to -78 ° C, and a solution of 6.39 g of 1-tosyl-2,3,4,5-tetrohydro-1H-1-benzazepin-5-one in 60 ml of tetrahydrofuran was added dropwise. Stir for 30 minutes. Next, 90 ml of a tetrahydrofuran solution of 8.94 g of N-fluorobenzenesulfonimide was added dropwise, and the mixture was stirred for 1 hour while gradually warming to 0 ° C. After adding a saturated aqueous solution of ammonium chloride to the reaction solution, the mixture was concentrated under reduced pressure. After adding ethyl acetate and separating the aqueous layer, the organic layer was washed successively with a saturated aqueous solution of sodium thiosulfate, a saturated aqueous solution of sodium hydrogen carbonate, and a saturated saline solution. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue was subjected to silica gel column chromatography to obtain 5.31 g of 4-fluoro-1-tosyl-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one from a chloroform eluate. .
[0044]
[0045]
(B-2) To a solution of 2.62 g of diisopropylamine and 2.91 g of potassium t-butoxide in 300 ml of tetrahydrofuran was added 16.2 ml of a 1.6 N solution of n-hexane of n-butyllithium at −78 ° C., and −78 ° C. For 30 minutes. 70 ml of a tetrahydrofuran solution of 7.2 g of 4-fluoro-1-tosyl-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one was added to the reaction solution, and the mixture was stirred at -78 ° C. for 1 hour. A solution of 10.22 g of N-fluorobenzenesulfonimide in 70 ml of tetrahydrofuran was added to the reaction solution, and the mixture was stirred at -78 ° C for 2 hours and further at room temperature for 1 hour. To the reaction solution was added 500 ml of a 0.1 N hydrochloric acid aqueous solution, and the mixture was extracted with ethyl acetate. The organic layer was washed successively with 10% sodium thiosulfate, 1N sodium hydroxide and saturated saline, dried over anhydrous magnesium sulfate, and the solvent was distilled off. The residue was subjected to silica gel column chromatography, and eluted with a mixed solvent of n-hexane and ethyl acetate (4: 1, v / v) to give 4,4-difluoro-1-tosyl-2,3,4,5. 2.31 g of -tetrahydro-1H-1-benzazepin-5-one were obtained.
[0046]
(Fluorinated A-2 alternative method)
(B-3) Trimethylsilyltrifluoromethanesulfonate was added to a methylene chloride solution of 1.80 g of 4-fluoro-1-tosyl-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one and 4.52 ml of triethylamine. 5.22 ml was added dropwise under ice cooling, and the mixture was stirred at room temperature for 1 hour. The reaction solution was diluted with ether, and washed successively with a saturated aqueous solution of sodium hydrogencarbonate, an ice-cooled 1N aqueous solution of hydrochloric acid, a saturated aqueous solution of sodium hydrogencarbonate, and a saturated saline solution. After drying over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure to obtain a silyl enol ether derivative. The above silyl enol ether and 2.67 g of N-fluoropyridinium trifluoromethanesulfonate were dissolved in 20 ml of dichloroethane and heated under reflux for 2 hours. Chloroform was added to the reaction solution, washed with saturated saline, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The resulting residue was subjected to silica gel column chromatography, and 1.78 g of 4,4-difluoro-1-tosyl-2 was eluted from a mixed solvent (3: 7, v / v) of ethyl acetate and hexane. , 3,4,5-tetrahydro-1H-1-benzazepin-5-one.
[0047]
IR (KBr, cm -1 ): 1724
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.41 (2H, m), 2.43 (3H, s), 4.09 (2H, m),
7.25 (2H, d), 7.40 (1H, m), 7.48 (2H, d),
7.55 (3H, m)
MS (EI): 351 (M + )
[0048]
(Fluorinated B method)
(C-1) 2.00 g of 1,2,3,4-tetrahydroquinolin-4-one and 114 mg of tosylic acid were dissolved in 30 ml of isopropenyl acetate, and the mixture was refluxed for 2 days while distilling off acetic acid. A saturated aqueous sodium hydrogen carbonate solution was added, extracted with ethyl acetate, and dried over anhydrous magnesium sulfate. The residue obtained by distilling off the solvent was crystallized from chloroform-diethyl ether-hexane to obtain 518 mg of 4-acetoxy-1-tosyl-1,2-dihydroquinoline.
[0049]
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.16 (3H, s), 2.35 (3H, s), 4.60 (2H, d),
5.43 (1H, t), 7.05 (1H, d), 7.11 (2H, d),
7.19 (1H, t), 7.32 (1H, t), 7.39 (2H, d),
7.74 (1H, d)
MS m / z (El): 343 (M + )
[0050]
(C-2) 518 mg of 4-acetoxy-1-tosyl-1,2-dihydroquinoline was dissolved in 5 ml of diglyme, heated to reflux, and a diglyme solution of 2.62 g of sodium chlorodifluoroacetate was added dropwise. After cooling, ethyl acetate was added, washed with water and dried over anhydrous magnesium sulfate. The residue obtained by evaporating the solvent was subjected to column chromatography, and 7b-acetoxy-1,1-difluoro-3-tosylcyclopropane was eluted from a hexane-ethyl acetate (4: 1, v / v) eluate. [C] -1,2,3,4-tetrahydroquinoline (225 mg) was obtained.
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
1.99 (3H, s), 2.10 (1H, m), 2.41 (3H, s),
4.04 (1H, dd), 4.25 (1H, dd), 7.21 (1H, d),
7.28 (2H, d), 7.33 (1H, t), 7.55 (1H, d),
7.60 (1H, d), 7.62 (2H, d)
MS m / z (El): 393 (M + )
[0051]
(C-3) 7 mg of 7b-acetoxy-1,1-difluoro-3-tosylcyclopropa [c] -1,2,3,4-tetrahydroquinoline was dissolved in 2 ml of methanol and 2 ml of tetrahydrofuran. An aqueous solution (1 ml) was added dropwise, and the mixture was stirred at room temperature for 2 days. After evaporating the solvent, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and dried over anhydrous magnesium sulfate. The residue obtained by evaporating the solvent was subjected to column chromatography, and 1-tosyl-4,4-difluoro-2,3,4,4 was extracted from a hexane-ethyl acetate (4: 1, v / v) eluate. 27 mg of 5-tetrahydro-1H-1-benzazepin-5-one were obtained.
[0052]
Reference Example 2-1
(1) Dissolve 3.00 g of 4,4-difluoro-1-tosyl-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one in 14 ml of acetic acid, add 7 ml of concentrated sulfuric acid, and add 60 ° C. For 10 hours. The reaction solution was cooled with ice, made basic with potassium hydroxide, extracted three times with ethyl acetate, and dried over anhydrous potassium carbonate. The reaction solvent was distilled off to obtain 4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one. This product was used for the next reaction without purification.
[0053]
(2) 1.9 g of 4-nitrobenzoyl chloride was added to 20 ml of a methylene chloride solution of 1.55 ml of the above ketone and triethylamine under ice cooling, followed by stirring at room temperature for 12 hours. The reaction solution was diluted with ethyl acetate, and washed sequentially with a 1N aqueous hydrochloric acid solution, a 1N aqueous sodium hydroxide solution and a saturated saline solution. The organic layer was dried over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was recrystallized from chloroform-ether to obtain 1.65 g of 4,4-difluoro-1- (4-nitrobenzoyl) -2. , 3,4,5-tetrahydro-1H-1-benzazepin-5-one. The mother liquor was distilled off under reduced pressure, and the obtained residue was subjected to silica gel column chromatography. Further, 649 mg of 4,4-difluoro-1- (4-nitrobenzoyl) -2,3,4,4 was extracted from a chloroform eluate. 5-Tetrahydro-1H-1-benzazepin-5-one was obtained.
[0054]
Melting point: 192-195 ° C
[0055]
(3) 940 mg of 4,4-difluoro-1- (4-nitrobenzoyl) -2,3,4,5-tetrahydro-1H-1-benzazepin-5-one was dissolved in 20 ml of ethyl acetate, and the solution was dissolved at room temperature. 3.07 g of stannous was added, and the mixture was heated under reflux for 5 hours. After cooling with ice, the reaction solution was basified by adding a 1N aqueous solution of sodium hydroxide thereto. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. After the organic layer was dried over anhydrous potassium carbonate, the solvent was distilled off under reduced pressure. The obtained residue was recrystallized from chloroform-hexane to obtain 711 mg of 1- (4-aminobenzoyl) -4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one. Got.
IR (KBr, cm -1 ): 1712, 1628
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
1.59 (2H, m), 2.66 (2H, m), 3.88 (1H, m),
4.24 (1H, m), 6.45 (2H, m), 6.76 (1H, m),
7.17 (2H, d), 7.24 (2H, m), 7.95 (1H, m)
MS (EI): 316 (M + )
[0056]
Reference Example 2-2
1.00 g of 4,4-difluoro-1-tosyl-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one was dissolved in 5 ml of concentrated sulfuric acid and stirred at room temperature for 3 hours. The reaction solution was added dropwise to an ice-cooled saturated aqueous sodium carbonate solution, extracted with ethyl acetate, and dried over anhydrous sodium sulfate. The residue obtained by distilling off the solvent was purified by silica gel column chromatography, and 4,4-difluoro-2,3,4,5-ethyl acetate-hexane (3: 7, v / v) eluted. 556 mg of tetrahydro-1H-1-benzazepin-5-one were obtained.
[0057]
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.62 (2H, m), 3.39 (2H, m), 4.69 (1H, m),
6.72 (1H, d), 6.84 (1H, dt), 7.31 (1H, dt),
7.74 (1H, dd)
MS (FAB): 198 (M + +1)
[0058]
Reference Example 3-1
110 mg of 4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one and 0.313 ml of triethylamine were dissolved in methylene chloride, and 0.236 ml of trifluoroacetic anhydride was added under ice-cooling. The mixture was added dropwise and stirred for 6 hours. Water was added, extracted with methylene chloride, and dried over anhydrous sodium sulfate. The residue obtained after distilling off the solvent was purified by silica gel column chromatography, and 4,4-difluoro-1-trifluoroacetyl-1H-1 -ethyl acetate-hexane (3: 7, v / v) eluted. 132 mg of benzazepin-5-one were obtained. This product was observed as a mixture with 4,4-difluoro-5,5-dihydroxy-1-trifluoroacetyl-2,3,4,5-tetrahydro-1H-1-benzazepine.
[0059]
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.16 (0.25H, m), 2.39 (0.75H, m),
2.65 (0.25H, m), 2.82 (0.75H, m),
3.41 (0.75H, m), 4.62 (0.25H, m),
4.82 (0.75H, m), 7.35 (0.75H, m),
7.47 (0.5H, m), 7.56 (0.75H, m),
7.65 (1H, m), 7.88 (0.75H, m),
8.00 (0.25H, m)
MS (FAB): 294 and 312 (M + +1)
[0060]
Reference Example 3-2
Using 31 mg of 4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one, 0.1 ml of pyridine and 0.056 ml of acetyl chloride, 1 was obtained in the same manner as in Reference Example 3-1. -Acetyl-4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one (32 mg) was obtained.
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.04 (3H, s), 2.58 (2H, m), 4.03 (2H, m),
7.26 (1H, dd), 7.44 (1H, dt), 7.64 (1H, dt),
7.91 (1H, dd)
MS (FAB): 239 (M + )
[0061]
Reference Example 4-1
409 mg of 60% sodium hydride was suspended in 20 ml of tetrahydrofuran, 1.84 ml of methyl dimethylphosphonoacetate was added dropwise, and the mixture was stirred for 30 minutes. At −40 ° C., a solution of 2.00 g of 4,4-difluoro-1-tosyl-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one in tetrahydrofuran was added dropwise to the reaction solution, and gradually added to 0 ° C. The mixture was stirred overnight while the temperature was raised to ° C. After concentrating the reaction solution, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated saline and dried over anhydrous sodium sulfate. After evaporating the solvent, the obtained residue was purified by silica gel column chromatography, and (4,4-difluoro-1-tosyl-2,3,3) was eluted from an ethyl acetate-hexane (3: 7, v / v) eluate. 2.30 g of methyl 4,5-tetrahydro-1H-1-benzazepine-5-ylidene) acetate was obtained as a mixture of (Z) :( E) = 2: 1. This product was crystallized from ethanol to obtain a mixture of (Z) :( E) = 1: 1.
[0062]
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.23 (2H, m), 2.36 (1.5H, s),
2.39 (1.5H, s), 3.45 (0.5H, m),
3.59 (1.5H, s), 3.74 (1.5H, s),
3.99 (1H, m), 4.40 (1H, m),
5.39 (0.5H, s), 6.18 (0.5H, s),
7.15-7.67 (8H in total)
MS (FAB): 408 (M + +1)
[0063]
Reference Example 4-2
The residue obtained after the same operation as in Reference Example 4-1 using 106 mg of 4,4-difluoro-1-trifluoroacetyl-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one. Was purified by silica gel column chromatography, and (E)-(4,4-difluoro-1-trifluoroacetyl-2,3,4) was first purified from a fraction eluted with ethyl acetate-hexane (3: 7, v / v). There was obtained 34 mg of methyl 5,5-tetrahydro-1H-1-benzazepine-5-ylidene) acetate.
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.31-2.60 (total 2H), 3.23 (1H, m),
3.58 (3H, s), 4.66 (1H, m), 6.51 (1H, m),
7.26 (1H, m), 7.40-7.49 (3H in total)
MS (FAB): 350 (M + +1)
[0064]
The elution was continued to obtain 30 mg of methyl (Z)-(4,4-difluoro-1-trifluoroacetyl-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene) acetate.
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.34 (1H, m), 2.74 (1H, m), 3.24 (1H, m),
3.81 (3H, s), 4.71 (1H, m), 6.07 (1H, s),
7.27 (1H, m), 7.39-7.50 (3H in total)
MS (FAB): 350 (M + +1)
[0065]
Reference Example 4-3
After the same operation as in Reference Example 4-1 using 21 mg of 1-acetyl-4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one, the obtained residue was silica gel. The mixture was purified by column chromatography, and (1-acetyl-4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepine) was eluted from an ethyl acetate-hexane (1: 1, v / v) eluate. 34 mg of methyl 5-ylidene) acetate were obtained as a mixture of (E) :( Z) = 1: 2.
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
1.81 (2H, s), 1.90 (1H, s), 2.25 (1H, m),
2.47 (0.33H, m), 2.71 (0.77H, m),
3.61 (1H, s), 3.80 (2H, s),
4.61-4.82 (1H in total), 6.10 (0.77H, s),
6.46 (0.33H, s), 7.19-7.30 (total 2H),
7.35-7.48 (total 2H)
MS (FAB): 296 (M + +1)
[0066]
Reference example 5
Using 500 mg of 4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one and performing the same reaction operation as in Reference Example 4-1, the obtained residue was subjected to silica gel column chromatography. And purified from the elution portion of ethyl acetate-hexane (3: 7, v / v) at the beginning with (Z)-(4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepine-5. 100 mg of (ylidene) methyl acetate were obtained.
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.58 (2H, m), 3.41 (2H, m), 3.80 (3H, s),
4.07 (1H, m), 6.17 (1H, s), 6.59 (1H, d),
6.81 (1H, t), 7.14 (1H, t), 7.21 (1H, d)
MS (FAB): 254 (M + +1)
[0067]
The elution was continued to obtain 400 mg of methyl (E)-(4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene) acetate.
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.43 (2H, m), 3.34 (2H, m), 3.60 (3H, s),
3.97 (1H, m), 6.35 (1H, s), 6.67 (1H, dd),
6.81 (1H, dt), 7.09 (1H, dd), 7.16 (1H, dt)
MS (FAB): 254 (M + +1)
[0068]
Reference Example 6-1
(4,4-Difluoro-1-tosyl-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene) methyl acetate (E): 200 mg of a mixture of about 1: 1 of (Z) was concentrated. It was dissolved in 1 ml of sulfuric acid and stirred at room temperature for 1 day. 10 ml of methanol was added to the reaction solution under ice-cooling, and the mixture was stirred for 4 hours, then dropped into an ice-cooled saturated aqueous solution of sodium carbonate, and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and then concentrated, and the obtained residue was purified by silica gel column chromatography, and the ethyl acetate-hexane (3: 7, v / v) eluted first with (Z)-( 48 mg of methyl 4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene) acetate were obtained. Further elution was continued to obtain 49 mg of methyl (E)-(4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene) acetate.
[0069]
Reference Example 6-2
Dissolve 25 mg of methyl (Z)-(4,4-difluoro-1-trifluoroacetyl-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene) acetate in 10 ml of methanol, and add saturated potassium carbonate. An aqueous solution (5 ml) was added, and the mixture was stirred at room temperature overnight. After neutralization with a 1N aqueous hydrochloric acid solution, the solvent was concentrated, a saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and concentrated, and the obtained residue was purified by silica gel column chromatography. From the eluate of ethyl acetate-hexane (3: 7, v / v), (Z)-(4, 13 mg of methyl 4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene) acetate were obtained.
[0070]
Reference Example 7
(4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene) methyl acetate (E): 20 mg of a 1: 2 mixture of (Z) and N, N-dimethyl 0.043 ml of aniline was dissolved in 1 ml of acetonitrile, 47 mg of 4-nitrobenzoyl chloride was added under ice cooling, and the mixture was stirred at room temperature for 2 hours. A saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and concentrated, and the obtained residue was purified by silica gel column chromatography, and ethyl acetate-hexane (3: 7, v / v) eluted first with (E)-[ 6 mg of methyl 4,4-difluoro-1- (4-nitrobenzoyl) -2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene] acetate was obtained.
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.50 (2H, m), 3.29 (1H, m), 3.77 (3H, s),
5.01 (1H, m), 6.65 (1H, d), 6.66 (1H, s),
7.12 (1H, m), 7.24 (1H, m), 7.30 (1H, d),
7.62 (2H, d), 8.04 (2H, d)
MS (FAB): 403 (M + +1)
[0071]
Further elution was continued to obtain 16 mg of methyl (Z)-[4,4-difluoro-1- (4-nitrobenzoyl) -2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene] acetate. Was.
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.47 (1H, m), 2.74 (1H, m), 3.30 (1H, m),
3.85 (3H, s), 5.03 (1H, m), 6.23 (1H, s),
6.67 (1H, m), 7.10 (1H, m), 7.27 (1H, m),
7.30 (2H, d), 7.40 (1H, d), 8.03 (2H, d)
MS (FAB): 403 (M + +1)
[0072]
Reference Example 8
The same reaction operation as in Reference Example 4-1 using 1.00 g of 4,4-difluoro-1- (4-nitrobenzoyl) -2,3,4,5-tetrahydro-1H-1-benzazepin-5-one The resulting residue is purified by silica gel column chromatography, and (E)-[4,4-difluoro-1- (4-nitro) is first purified from a fraction eluted with ethyl acetate-hexane (3: 7, v / v). (Benzoyl) -2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene] methyl acetate 230 mg was obtained.
Further elution was continued to obtain 427 mg of methyl (Z)-[4,4-difluoro-1- (4-nitrobenzoyl) -2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene] acetate. Was. These physical properties were consistent with those obtained in Reference Example 7.
[0073]
Reference Example 9-1
228 mg of 60% sodium hydride was suspended in 10 ml of tetrahydrofuran, and 0.984 ml of methyl dimethylphosphonoacetate was added dropwise under ice cooling, followed by stirring at room temperature for 30 minutes. Then, 20 ml of a tetrahydrofuran solution of 600 mg of 1- (4-aminobenzoyl) -4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one was added dropwise at −78 ° C. The temperature was raised to 0 ° C. over time. A saturated aqueous ammonium chloride solution and water were added, and the mixture was extracted with chloroform. After the organic layer was dried over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure, and the obtained residue was subjected to silica gel column chromatography to obtain a mixed solvent of ethyl acetate and hexane (4.5: 5.5, v / v). v), first 170 mg of (E)-[1- (4-aminobenzoyl) -4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene ] Methyl acetate was obtained.
[0074]
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.40 (2H, m), 3.18 (1H, m), 3.71 (3H, s),
3.78 (2H, m), 5.08 (1H, m), 6.42 (2H, d),
6.59 (1H, s), 6.73 (1H, d), 7.14 (1H, m),
7.20 (1H, m), 7.29 (3H, m)
MS (El): 372 (M + )
Further elution was continued, and 536 mg of methyl (Z)-[1- (4-aminobenzoyl) -4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene] acetate was added. Obtained.
[0075]
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.50 (2H, m), 3.20 (1H, m), 3.78 (2H, m),
3.82 (3H, s), 5.05 (1H, m), 6.18 (1H, s),
6.39 (2H, d), 6.73 (1H, d), 6.97 (2H, d),
7.12 (1H, m), 7.23 (1H, m), 7.37 (1H, m)
MS (El): 372 (M + )
[0076]
Reference Example 9-2
To 70 ml of a tetrahydrofuran suspension containing 734 mg of 60% sodium hydride was added 4.12 g of ethyl diethylphosphonoacetate under ice-cooling, followed by stirring for 30 minutes under ice-cooling. To the reaction mixture was added 1- (4-aminobenzoyl) -4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepin-5-one (1.16 g), and the mixture was stirred at room temperature for 3 hours. The reaction solution was poured into ice water and extracted with ethyl acetate. The organic layer was washed with saturated saline, dried over anhydrous magnesium sulfate, and the solvent was distilled off to remove (E) and (Z)-[1- (4-aminobenzoyl) -4,4-difluoro-2,3. , 4,5-Tetrahydro-1H-1-benzazepine-5-ylidene] ethyl acetate, 1.41 g.
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
1.10-1.50 (total 3H), 2.50 (2H, m),
3.78 (2H, m), 4.05-4.30 (2H, m),
6.17 (0.5H, s), 6.40 (2H, m),
6.58 (0.5H, t), 6.74 (1H, m),
6.90-7.45 (5H in total)
MS (FAB): 387 (M + +1)
[0077]
Embedded image
Example 1
[0078]
(1) 210 mg of methyl (Z)-[4,4-difluoro-1- (4-nitrobenzoyl) -2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene] acetate in 10 ml of ethyl acetate And 589 mg of stannous chloride dihydrate was added, followed by heating under reflux for 6 hours. A saturated aqueous solution of sodium hydrogen carbonate was added, extraction was performed with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate and concentrated, and the obtained residue was purified by silica gel column chromatography to give ethyl acetate-hexane (6: (Z)-[1- (4-Aminobenzoyl) -4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene] acetic acid from the eluted part of (4, v / v) 190 mg of methyl were obtained. Physical properties of this compound were consistent with those of the compound obtained in Reference Example 9-1.
[0079]
(2) 396 mg of o-phenylbenzoic acid was dissolved in 5 ml of methylene chloride, a catalytic amount of N, N-dimethylformamide was added dropwise, and then 0.290 ml of oxalyl chloride was added dropwise. After stirring at room temperature for 3 hours, benzene was added and the solvent was distilled off to obtain o-phenylbenzoic acid chloride.
[0080]
620 mg of methyl (Z)-[1- (4-aminobenzoyl) -4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene] acetate and 5 ml of pyridine are treated with 10 ml of methylene chloride. And 10 ml of a methylene chloride solution of the o-phenylbenzoic acid chloride was added dropwise under ice-cooling. After stirring at room temperature for 1 hour, the solvent was distilled off under reduced pressure, and the obtained residue was dissolved in ethyl acetate and washed sequentially with a saturated aqueous solution of sodium carbonate, a 1N aqueous solution of hydrochloric acid and a saturated saline solution. After drying over anhydrous magnesium sulfate and evaporating the solvent under reduced pressure, the obtained residue was subjected to column chromatography and eluted with a mixed solvent of ethyl acetate and hexane (2: 3, v / v). 878 mg of methyl (Z)-[4,4-difluoro-1- [4- (2-phenylbenzoylamino) benzoyl] -2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene] acetate Got.
[0081]
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.30-2.80 (total 2H), 3.21 (1H, m),
3.83 (3H, s), 5.03 (1H, m), 6.17 (1H, s),
6.66 (1H, m), 6.91 (3H, m), 7.01 (2H, m),
7.09 (1H, t), 7.24 (1H, t),
7.33-7.45 (7H in total), 7.52 (1H, t),
7.56 (1H, t), 7.83 (1H, d)
MS (El): 552 (M + )
[0082]
(3) (Z)-[4,4-Difluoro-1- [4- (2-phenylbenzoylamino) benzoyl] -2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene] acetic acid 857 mg of methyl was dissolved in 10 ml of methanol, and 2 ml of an aqueous solution of 195 mg of lithium hydroxide-hydrate was added dropwise under ice cooling, followed by stirring at room temperature for 7 hours. After evaporating the solvent under reduced pressure, 1N aqueous hydrochloric acid was added, the mixture was extracted with chloroform, and dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the obtained residue was recrystallized from ethyl acetate-hexane to give (Z)-[4,4-difluoro-1- [4- (2-phenylbenzoylamino) benzoyl]- 633 mg of 2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene] acetic acid were obtained.
[0083]
Melting point: 224-226 ° C
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.41 (1H, m), 2, 67 (1H, m), 3.24 (1H, m),
3.68 (1H, m), 5.00 (1H, m), 6.19 (1H, s),
6.67 (1H, m), 6.92 (2H, m), 6.98 (3H, m),
7.10 (1H, m), 7.24 (1H, d),
7.30-7.50 (8H in total), 7.53 (1H, m), 7.80 (1H, m)
MS (El): 538 (M + )
[0084]
(4) (Z)-[4,4-Difluoro-1- [4- (2-phenylbenzoylamino) benzoyl] -2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene] acetic acid 196 mg and 59 mg of 1-hydroxybenzotriazole were dissolved in a mixed solvent of 10 ml of methylene chloride and 10 ml of acetonitrile, and a solution of 84 mg of 1-ethyl-3- (dimethylaminopropyl) carbodiimide hydrochloride in 1 ml of methylene chloride was added dropwise under ice cooling. Next, 56 mg of 4-dimethylaminopiperidine was added, and the mixture was stirred at room temperature overnight. A 1N aqueous sodium hydroxide solution was added to the reaction solution, extracted with chloroform, and dried over anhydrous potassium carbonate. The solvent was distilled off, and the obtained residue was subjected to silica gel column chromatography, and eluted with a mixed solvent of chloroform and methanol (95: 5, v / v) to obtain 210 mg of a free base.
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
1.51 (2H, m), 1.91 (2H, m), 2.33 (6H, s),
2.47 (3H, m), 2.73 (1H, m), 3.16 (1H, m),
3.20 (1H, m), 3.97 (1H, m), 4.64 (1H, m),
5.02 (1H, m), 6.31 (1H, s), 6.65 (1H, m),
6.87 (1H, s), 6.92 (2H, m), 7.07 (3H, m),
7.22 (1H, t), 7.33-7.44 (7H in total),
7.47 (1H, t), 7.52 (1H, t), 7.84 (1H, d)
MS (FAB): 649 (M + +1)
Next, this product was dissolved in methanol, and a 4N hydrochloric acid-ethyl acetate solution was added to form a hydrochloride, and the solvent was distilled off under reduced pressure. The obtained residue was recrystallized from chloroform ether to give (Z) -4 ′-[[4,4-difluoro-5-[(4-dimethylaminopiperidino) carbonylmethyl]]-2,3,4,4. 160 mg of 5-tetrahydro-1H-1-benzazepin-1-yl] carbonyl] -2-phenylbenzanilide hydrochloride were obtained.
[0085]
Melting point: 230 ° C or higher
1 H-NMR (δ ppm in DMSO-d 6 , TMS internal standard):
1.39-1.80 (total 2H), 2.07 (2H, m),
2.41 (2H, m), 2.66 (1H, m), 2.72 (6H, s),
2.95-3.20 (total 2H), 3.43 (1H, m),
4.04 (1H, m), 4.52 (1H, m), 4.86 (1H, m),
6.78 (1H, s), 6.81 (1H, m), 7.01 (2H, m),
7.19 (1H, m), 7.26-7.43 (total 8H),
7.44-7.60 (total 5H), 10.35 (1H, s),
10.41 (1H, m)
MS (El): 649 (M + +1)
Example 2
[0086]
Embedded image
139 mg of 4- (2-biphenylylcarbonylamino) benzoic acid was suspended in 5 ml of tetrahydrofuran, 0.055 ml of oxalyl chloride and a catalytic amount of N, N-dimethylformamide were added, and the mixture was stirred at room temperature for 2 hours. The solvent was distilled off to obtain an acid chloride. (4,4-Difluoro-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene) Methyl acetate (E): 74 mg of a mixture of about 1: 2 of (Z) and 0.122 ml of triethylamine were chlorided. The solution was dissolved in 5 ml of methylene, and 1 ml of a solution of the above acid chloride in methylene chloride was added dropwise under cooling, followed by stirring at room temperature overnight. A saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and then concentrated, and the obtained residue was purified by silica gel column chromatography, and ethyl acetate-hexane (3: 7, v / v) eluted first with (E)-[ 37 mg of methyl 1- [4- (2-biphenylylcarbonylamino) benzoyl] -4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene] acetate was obtained.
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.20-2.70 (total 2H), 3.30 (1H, m),
3.67 (3H, s), 4.98 (1H, m),
6.55-6.74 (total 2H), 6.85-7.70 (total 15H),
7.84 (1H, m)
MS (El): 553 (M + +1)
Elution was further continued, and (Z)-[1- [4- (2-biphenylylcarbonylamino) benzoyl] -4,4-difluoro-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene. ] 72 mg of methyl acetate were obtained.
The physical properties of this product were the same as those obtained in Example 1 (2).
[0087]
Embedded image
Example 3
[In the formula, Ts means a tosyl group. The same applies hereinafter. ]
(1) Methyl (4,4-difluoro-1-tosyl-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene) acetate (E): An approximately 1: 2 mixture of (Z) 1.00 g was dissolved in a mixed solvent of 10 ml of methanol and 10 ml of tetrahydrofuran, 5 ml of a 1 N aqueous sodium hydroxide solution was added, and the mixture was stirred at room temperature overnight. A 1N hydrochloric acid aqueous solution was added to the residue obtained by distilling off the solvent, followed by extraction with methylene chloride. After drying over anhydrous sodium sulfate, the solvent was distilled off, the obtained residue was dissolved in methylene chloride, and hexane was added (4,4-difluoro-1-tosyl-2,3,4,5-tetrahydro-1H-1). 745 mg of -benzazepine-5-ylidene) acetic acid were obtained as a mixture of (E) :( Z) = 1: 3.
[0088]
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.35 (2H, m), 2.36 (2.25H, s),
2,42 (0.75H, s), 3.47 (0.25H, m),
4.02 (1.5H, m), 4.42 (0.25H, m),
5.42 (0.75H, s), 6.38 (0.25H, s),
7.07-7.66 (8H in total)
MS (FAB): 393 (M + +1)
[0089]
(2) 500 mg of an approximately 1: 3 mixture of (4,4-difluoro-1-tosyl-2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene) acetic acid (E) :( Z), 189 mg of 1-hydroxybenzotriazole and 293 mg of 1-ethyl-3- (dimethylaminopropyl) carbodiimide were dissolved in 10 ml of methylene chloride and stirred at room temperature for 30 minutes. 244 mg of 4- (N, N-dimethylamino) piperidine was added, and the mixture was stirred overnight. A 1N aqueous sodium hydroxide solution was added to the reaction mixture, followed by extraction with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and concentrated, and the obtained residue was purified by silica gel column chromatography, and [5-[(4-dimethyl) was eluted with methanol-chloroform (1: 9, v / v). Aminopiperidino) carbonyl] methylene-4,4-difluoro-1-tosyl] -2,3,4,5-tetrahydro-1H-1-benzazepine in an amount of about 1: 3 of (E) :( Z). Obtained as a mixture.
[0090]
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
1.44 (2H, m), 1.76 (0.5H, m),
1.88 (1.5H, m), 2.20 (0.75H, s),
2.29 (2.25H, s), 2.40 (2.25H, s),
2.47 (0.75H, s), 2.70 (0.75H, dt),
3.08 (0.75H, dt), 3.81-4.03 (2H in total),
4.55 (1H, m), 5.89 (0.75H, s),
6.68 (0.25H, s), 7.12 (0.25H, m),
7.21-7.48 (total 5.5H), 7.63 (1.5H, d),
7.86 (0.75H, d)
MS (FAB): 504 (M + +1)
The above free base was dissolved in ethanol, and 4N hydrochloric acid in ethyl acetate was added to obtain a hydrochloride.
[0091]
1 H-NMR (δ ppm in DMSO-d 6 , TMS internal standard):
1.20-1.60 (total 2H), 1.92-2.16 (total 2H),
2.33 (1H, m), 2.40 (2.25H, s),
2,44 (0.75H, s), 2.62 (2H, m),
2.70 (3H, m), 2.87 (0.75H, m),
3.09 (0.75H, m), 3.40 (1H, m),
3.60-4.07 (total 3H), 4.40-4.56 (total 1H),
6.28 (0.75H, s), 6.78 (0.25H, s),
7.09-7.50 (total 6.25H), 7.69 (1.5H, d),
7.92 (0.25H, d), 10.80 (1H, m)
MS (FAB): 504 (M + +1)
[0092]
(3) [5-[(4-dimethylaminopiperidino) carbonyl] methylene-4,4-difluoro-1-tosyl] -2,3,4,5-tetrahydro-1H-1-benzazepine hydrochloride (E ): 100 mg of a mixture of about 1: 3 of (Z) was dissolved in 2 ml of concentrated sulfuric acid and stirred in a greenhouse for 33 hours. The mixture was neutralized by adding ice-cooled saturated sodium carbonate, 1N sodium hydroxide was added, and the mixture was extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and concentrated, and the obtained residue was purified by silica gel column chromatography, and eluted with methanol-chloroform-aqueous ammonia (1: 9: 0.05, v / v / v). From the above, 21 mg of (Z) -5-[(4-dimethylaminopiperidino) carbonyl] methylene-4,4-difluoro] -2,3,4,5-tetrahydro-1H-1-benzazepine was obtained.
1 H-NHR (δ ppm in CDCl 3 , TMS internal standard):
1.40-1.60 (total 2H), 1.87 (2H, m),
2.29 (6H, s), 2.41 (1H, m), 2.50 (2H, m),
2.71 (1H, dt), 3.13 (1H, dt), 3.42 (2H, m),
4,00 (1H, m), 4.06 (1H, m), 4.59 (1H, m),
6.26 (1H, s), 6.59 (1H, dd), 6.80 (1H, dt),
7.13 (1H, dt), 7.18 (1H, dd)
MS (FAB): 350 (M + +1)
(4) 4- (2-biphenylylcarbonylamino) benzoic acid and (Z) -5-[(4-dimethylaminopiperidino) carbonyl] methylene-4,4-difluoro] -2,3,4 5-Tetrahydro-1H-1-benzazepine was treated in the same manner as in Example 2 to give (Z) -4-[[4,4-difluoro-5-[[(4-dimethylaminopiperidino) ) Carbonyl] methylene] -2,3,4,5-tetrahydro-1H-1-benzazepin-1-yl] carbonyl] -2-phenylbenzanilide.
[0093]
Embedded image
Example 4
[0094]
(1) Example using 180 mg of methyl (Z)-[4,4-difluoro-1- (4-nitrobenzoyl) -2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene] acetate. By the same reaction operation as 3 (1), (Z)-[4,4-difluoro-1- (4-nitrobenzoyl) -2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene 117 mg of acetic acid were obtained.
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
2.48 (1H, m), 2.78 (1H, m), 3.31 (1H, m),
4,60 (1H, m), 5.04 (1H, m), 6.26 (1H, s),
6.68 (1H, d), 7.11 (1H, m), 7.28 (3H, m),
7.41 (1H, m), 8.03 (2H, m)
MS (FAB): 389 (M + +1)
[0095]
(2) Example 3 using 210 mg of (Z)-[4,4-difluoro-1- (4-nitrobenzoyl) -2,3,4,5-tetrahydro-1H-1-benzazepine-5-ylidene] acetic acid. By the same reaction operation as in (2), (Z)-[5-[(4-dimethylaminopiperidino) carbonyl] methylene-4,4-difluoro-1- (4-nitrobenzoyl)]-2,3 , 4,5-tetrahydro-1H-1-benzazepine 218 mg were obtained.
[0096]
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
1.49 (2H, m), 1.90 (2H, m), 2.31 (6H, s),
2.42 (2H, m), 2.77 (2H, m), 3.20 (1H, m),
3.29 (1H, m), 3.97 (1H, m), 4.60 (1H, m),
5.03 (1H, m), 6.35 (1H, s), 6.66 (1H, m),
7.07 (1H, m), 7.25 (1H, m), 7.37 (3H, m),
8.01 (2H, m)
MS (FAB): 499 (M + +1)
The above free base was dissolved in ethanol, and 4N hydrochloric acid in ethyl acetate was added to obtain a hydrochloride.
[0097]
1 H-NMR (δ ppm in DMSO-d 6 , TMS internal standard):
1.40-1.70 (total 2H), 2.09 (2H, m),
2.69 (1H, m), 2.73 (6H, s), 3.17 (2H, m),
3.43 (1H, m), 4.06 (1H, m), 4.54 (1H, m),
4.84 (1H, m), 6.80 (1H, s), 6.96 (1H, m),
7.15 (1H, m), 7.30 (1H, m), 7.36 (2H, m),
7.52 (1H, m), 8.06 (2H, m), 10.19 (1H, m)
MS (FAB): 499 (M + +1)
[0098]
(3) (Z)-[5-[(4-Dimethylaminopiperidino) carbonyl] methylene-4,4-difluoro-1- (4-nitrobenzoyl)]-2,3,4,5-tetrahydro- (Z)-[(4-Aminobenzoyl) -5- [1- (4-dimethylaminopiperidino) carbonyl] methylene was obtained by the same reaction operation as in Example 1 (1) using 114 mg of 1H-1-benzazepine. [-4,4-difluoro] -2,3,4,5-tetrahydro-1H-1-benzazepine 79 mg was obtained.
[0099]
1 H-NMR (δ ppm in CDCl 3 , TMS internal standard):
1.48 (2H, m), 1.88 (2H, m), 2.30 (6H, s),
2.39 (1H, m), 2.50 (2H, m), 2.73 (1H, dt),
3.14 (1H, dt), 3.96 (1H, m), 4.62 (1H, m),
6, 31 (1H, s), 6.38 (2H, d), 6.73 (1H, d),
7.02 (2H, d), 7.11 (1H, t), 7.22 (1H, t),
7.38 (1H, d)
MS (FAB): 469 (M + +1)
[0100]
(4) (Z)-[(4-Aminobenzoyl) -5- [1- (4-dimethylaminopiperidino) carbonyl] methylene-4,4-difluoro] -2,3,4,5-tetrahydro- (Z) -4 ′-[[4,4-difluoro-5-[[(4-dimethylaminopiperidino) carbonyl] was obtained by using 18 mg of 1H-1-benzazepine in the same manner as in Example 1 (2). ] Methylene] -2,3,4,5-tetrahydro-1H-1-benzazepin-1-yl] carbonyl] -2-phenylbenzanilide.
The physical properties of this compound were consistent with those of the compound (free base) obtained in Example 1 (4).
[0101]
Example 5
(Z) -5-[(4-Dimethylaminopiperidino) carbonyl] methylene-4,4-difluoro] -2,3,4,5-tetrahydro-1H-1-benzazepine and 13 mg of pyridine hydrochloride were chlorided. The residue was dissolved in 5 ml of methylene, 47 mg of 4-nitrobenzoyl chloride was added under ice cooling, and the mixture was stirred at room temperature for 2 hours. A 1N aqueous sodium hydroxide solution was added, and the mixture was extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and concentrated, and the obtained residue was purified by silica gel column chromatography, and eluted with methanol-chloroform-aqueous ammonia (1: 9: 0.05, v / v / v). (Z)-[5-[(4-Dimethylaminopiperidino) carbonyl] methylene-4,4-difluoro1- (4-nitrobenzoyl)]-2,3,4,5-tetrahydro-1H-1 -18 mg of benzazepine were obtained. The physical properties of this product were the same as those obtained in Example 4 (2).
[0102]
Hereinafter, among the target compound (I) produced by the production method of the present invention or its starting compound, other compounds than those described in Reference Examples 1 to 9 and Examples 1 to 5 will be described.
These compounds can be easily produced by applying the methods described in the above Reference Examples 1 to 9 and Examples 1 to 5, the methods described in the above production methods, and some modifications thereof.
[0103]
Embedded image
-The following compounds can be synthesized in the same manner as in Reference Examples 3 and 4.
[0104]
Embedded image
The following compounds can be synthesized in the same manner as in Reference Example 5 or Reference Example 6.
[0105]
Embedded image
-The following compounds can be synthesized in the same manner as in Reference Example 7 or Reference Example 8.
[0106]
Embedded image
-The following compounds can be synthesized in the same manner as in Example 1 (1).
Using these compounds as raw materials, the compounds obtained in Example 1 (4) can be synthesized in the same manner as in the methods of Examples 1 (2) to (4).
The following compounds can be synthesized using appropriate starting compounds in the same manner as in Example 1 or Example 2.
[0107]
Embedded image
-The following compound (IIc ') can be synthesized in the same manner as in Example 3 (1) and (2).
[0108]
Embedded image
[0109]
Embedded image
[0110]
-The following compound (IVc) can be synthesized in the same manner as in Examples 4 (1) to (3).
[0111]
Embedded image
[0112]
Embedded image
Claims (6)
R8:水素原子;低級アルキル基;低級アルケニル基;シクロアルキル基;水酸基;低級アルコキシ基;カルボキシル基;低級アルコキシカルボニル基;シアノ基;置換されていてもよいアリール基;置換されていてもよい含窒素芳香族5若しくは6員複素環基;架橋を有していてもよく、環窒素原子上で低級アルキル基で置換されていてもよい含窒素飽和5乃至8員複素環基;
u:2乃至7の整数
A3、A4及びA5:同一又は異なって、単結合、低級アルキレン基、又は低級アルケニレン基(但し、A3又はA5は、隣接する基が窒素原子又は酸素原子を介してA3又はA5と結合する基であるときは、単結合以外の基を意味する)、
R9:水素原子又は低級アルキル基、
q及びr:同一又は異なって1乃至3の整数(但し、q及びrの総和は3乃至5の整数)、
X:式−O−又は−S(O)W−で示される基、
w:0、1又は2、
R3及びR4:同一又は異なって、水素原子;ハロゲン原子;低級アルキル基;低級アルコキシ基;又は低級アルキル基で置換されていてもよいアミノ基;
R5及びR6:同一又は異なって、水素原子又は低級アルキル基
(但し、R5とR6とは一体となって低級アルキレン基を意味し、隣接炭素原子と共に飽和炭素環を形成していてもよい)、
n:0又は1、
R7:置換されていてもよいアリール基又は置換されていてもよい芳香族5若しくは6員複素環基)
で示されるベンズアゼピン誘導体又はその塩を製造する方法であって、
一般式(II)
R3:前記と同様の基、
R1:(1)水素原子、または、 (2) 低級アルキル基、アラルキル基及び低級アルキルシリル基から選択されるカルボキシ基の保護基、
R10:(1)水素原子、または、(2) 低級アルキル基、低級アルコキシ基、ハロゲン基、ニトロ基、フェニルアゾ基若しくはp−フェニルアゾ基で置換されていてもよいベンジルオキシカルボニル基;tert−ブトキシカルボニル基;メトキシカルボニル基;2,2,2−トリクロロエトキシカルボニル基;tert−アミルオキシカルボニル基;ホルミル基;アセチル基;トリフルオロアセチル基;ベンゾイル基;ベンジル基;ベンズヒドリル基;トリチル基;メタンスルホニル基;エタンスルホニル基;トリフルオロメタンスルホニル基;ベンゼンスルホニル基;トルエンスルホニル基;トリメチルシリル基;トリイソプロピルシリル基;及びtert−ブチルジメチルシリル基から選択されるアミノ基の保護基)
で示される化合物又はその塩を原料化合物として、
(工程a)前記化合物(II)のR10 がアミノ基の保護基である場合は当該保護基を除去後、一般式(VI)
で示される化合物;又はそのエステル、酸ハライド、酸アジド、活性エステル、対称型酸無水物及び混合型酸無水物から選択されるその反応性誘導体;とのアミド化工程、
及び(工程b)前記化合物(II)のR1 がカルボキシ基の保護基である場合は当該保護基を除去後、一般式(VII)
で示される化合物又はその塩とのアミド化工程を任意の順序で実施することを特徴とする方法。General formula (I)
u: an integer of 2 to 7 A 3 , A 4 and A 5 : the same or different, a single bond, a lower alkylene group or a lower alkenylene group (however, A 3 or A 5 is a group in which the adjacent group is a nitrogen atom or an oxygen When it is a group bonded to A 3 or A 5 through an atom, it means a group other than a single bond),
R 9 : hydrogen atom or lower alkyl group,
q and r: the same or different and an integer of 1 to 3 (provided that the sum of q and r is an integer of 3 to 5);
X: a group represented by the formula -O- or -S (O) W- ,
w: 0, 1 or 2,
R 3 and R 4 : identical or different, a hydrogen atom; a halogen atom; a lower alkyl group; a lower alkoxy group; or an amino group optionally substituted with a lower alkyl group;
R 5 and R 6 are the same or different and are each a hydrogen atom or a lower alkyl group (provided that R 5 and R 6 together represent a lower alkylene group and form a saturated carbon ring with adjacent carbon atoms; Good)
n: 0 or 1,
R 7 : an optionally substituted aryl group or an optionally substituted aromatic 5- or 6-membered heterocyclic group)
A method for producing a benzazepine derivative or a salt thereof represented by:
General formula (II)
R 3 : the same group as described above,
R 1: (1) a hydrogen atom, or, (2) a lower alkyl group, a carboxy-protective group selected from aralkyl and lower alkyl silyl group,
R 10 : (1) a hydrogen atom , or (2) a benzyloxycarbonyl group optionally substituted by a lower alkyl group, a lower alkoxy group, a halogen group, a nitro group, a phenylazo group or a p-phenylazo group; tert-butoxy 2,2,2-trichloroethoxycarbonyl group; tert-amyloxycarbonyl group; formyl group; acetyl group; trifluoroacetyl group; benzoyl group; benzyl group; benzhydryl group; trityl group; Ethanesulfonyl group; trifluoromethanesulfonyl group; benzenesulfonyl group; toluenesulfonyl group; trimethylsilyl group; triisopropylsilyl group; and an amino-protecting group selected from tert-butyldimethylsilyl group).
A compound represented by or a salt thereof as a starting compound,
(Step a) When R 10 of the compound (II) is a protecting group for an amino group, the protecting group is removed, and then the compound of the general formula (VI)
Compounds represented in; amidation step with; or an ester, acid halide, acid azide, active ester, a reactive derivative selected from the symmetric acid anhydrides and mixed acid anhydrides
And (Step b) when R 1 of the compound (II) is a protecting group for a carboxy group, the protecting group is removed, and then the compound represented by the general formula (VII)
Wherein the amidation step with the compound or a salt thereof is performed in any order.
一般式(III)
で示される化合物又はその塩を原料化合物として、
(工程c)前記化合物(III)のRbがニトロ基である場合にはニトロ基をアミノ基に還元し、一般式(VIII)
で示される化合物;又はそのエステル、酸ハライド、酸アジド、活性エステル、対称型酸無水物及び混合型酸無水物から選択されるその反応性誘導体;とのアミド化工程、
及び(工程d)前記化合物(III)のR1 がカルボキシ基の保護基である場合は当該保護基を除去後、一般式(VII)
で示される化合物又はその塩とのアミド化工程を任意の順序で実施することを特徴とする方法。A method for producing a benzazepine derivative or a salt thereof represented by the general formula (I),
General formula (III)
A compound represented by or a salt thereof as a starting compound,
(Step c) When R b of the compound (III) is a nitro group, the nitro group is reduced to an amino group to obtain a compound of the general formula (VIII)
Compounds represented in; amidation step with; or an ester, acid halide, acid azide, active ester, a reactive derivative selected from the symmetric acid anhydrides and mixed acid anhydrides
And (Step d) when R 1 of the compound (III) is a protecting group for a carboxy group, the protecting group is removed, and then the compound represented by the general formula (VII)
Wherein the amidation step with the compound or a salt thereof is performed in any order.
R1:水素原子、低級アルキル基又はアラルキル基、
R3:水素原子;ハロゲン原子;低級アルキル基;低級アルコキシ基;又は低級アルキル基で置換されていてもよいアミノ基;
R10:水素原子、ホルミル基、アセチル基、トリフルオロアセチル基、ベンゾイル基、メタンスルホニル基、エタンスルホニル基、トリフルオロメタンスルホニル基、ベンゼンス ルホニル基又はトルエンスルホニル基)
で示される化合物又はその塩。General formula (II)
R 1 : a hydrogen atom , a lower alkyl group or an aralkyl group ,
R 3 : a hydrogen atom; a halogen atom; a lower alkyl group; a lower alkoxy group; or an amino group optionally substituted with a lower alkyl group;
R 10: a hydrogen atom, a formyl group, acetyl group, trifluoroacetyl group, benzoyl group, methanesulfonyl group, ethanesulfonyl group, trifluoromethanesulfonyl group, benzenesulfonic Ruhoniru group or a toluenesulfonyl group)
Or a salt thereof.
R1:水素原子、低級アルキル基又はアラルキル基
R3及びR4:同一又は異なって、水素原子;ハロゲン原子;低級アルキル基;低級アルコキシ基;又は低級アルキル基で置換されていてもよいアミノ基;
Rb:ニトロ基又はアミノ基)
で示される化合物又はその塩。General formula (III)
R 1 : hydrogen atom , lower alkyl group or aralkyl group R 3 and R 4 : identical or different, hydrogen atom; halogen atom; lower alkyl group; lower alkoxy group; or amino group optionally substituted with lower alkyl group ;
R b : nitro group or amino group)
Or a salt thereof.
R8:水素原子;低級アルキル基;低級アルケニル基;シクロアルキル基;水酸基;低級アルコキシ基;カルボキシル基;低級アルコキシカルボニル基;シアノ基;置換されていてもよいアリール基;置換されていてもよい含窒素芳香族5若しくは6員複素環基;架橋を有していてもよく、環窒素原子上で低級アルキル基で置換されていてもよい含窒素飽和5乃至8員複素環基;
u:2乃至7の整数
A3、A4及びA5:同一又は異なって、単結合、低級アルキレン基、又は低級アルケニレン基(但し、A3又はA5は、隣接する基が窒素原子又は酸素原子を介してA3又はA5と結合する基であるときは、単結合以外の基を意味する)、
R9:水素原子又は低級アルキル基、
q及びr:同一又は異なって1乃至3の整数(但し、q及びrの総和は3乃至5の整数)、
X:式−O−又は−S(O)W−で示される基、
w:0、1又は2、
R3:水素原子;ハロゲン原子;低級アルキル基;低級アルコキシ基;又は低級アルキル基で置換されていてもよいアミノ基;
R10:水素原子、ホルミル基、アセチル基、トリフルオロアセチル基、ベンゾイル基、メタンスルホニル基、エタンスルホニル基、トリフルオロメタンスルホニル基、ベンゼンスルホニル基又はトルエンスルホニル基)
で示される化合物又はその塩。General formula (IIc)
u: an integer of 2 to 7 A 3 , A 4 and A 5 : the same or different, a single bond, a lower alkylene group or a lower alkenylene group (however, A 3 or A 5 is a group in which the adjacent group is a nitrogen atom or an oxygen When it is a group bonded to A 3 or A 5 through an atom, it means a group other than a single bond),
R 9 : hydrogen atom or lower alkyl group,
q and r: the same or different and an integer of 1 to 3 (provided that the sum of q and r is an integer of 3 to 5);
X: a group represented by the formula -O- or -S (O) W- ,
w: 0, 1 or 2,
R 3 : a hydrogen atom; a halogen atom; a lower alkyl group; a lower alkoxy group; or an amino group optionally substituted with a lower alkyl group;
R 10 : hydrogen atom , formyl group, acetyl group, trifluoroacetyl group, benzoyl group, methanesulfonyl group, ethanesulfonyl group, trifluoromethanesulfonyl group, benzenesulfonyl group or toluenesulfonyl group )
Or a salt thereof.
R8:水素原子;低級アルキル基;低級アルケニル基;シクロアルキル基;水酸基;低級アルコキシ基;カルボキシル基;低級アルコキシカルボニル基;シアノ基;置換されていてもよいアリール基;置換されていてもよい含窒素芳香族5若しくは6員複素環基;架橋を有していてもよく、環窒素原子上で低級アルキル基で置換されていてもよい含窒素飽和5乃至8員複素環基;
u:2乃至7の整数
A3、A4及びA5:同一又は異なって、単結合、低級アルキレン基、又は低級アルケニレン基(但し、A3又はA5は、隣接する基が窒素原子又は酸素原子を介してA3又はA5と結合する基であるときは、単結合以外の基を意味する)、
R9:水素原子又は低級アルキル基、
q及びr:同一又は異なって1乃至3の整数(但し、q及びrの総和は3乃至5の整数)、
X:式−O−又は−S(O)W−で示される基、
w:0、1又は2、
R3及びR4:同一又は異なって、水素原子;ハロゲン原子;低級アルキル基;低級アルコキシ基;又は低級アルキル基で置換されていてもよいアミノ基;
Rb:ニトロ基またはアミノ基)
で示される化合物又はその塩。General formula (IIIc)
u: an integer of 2 to 7 A 3 , A 4 and A 5 : the same or different, a single bond, a lower alkylene group or a lower alkenylene group (however, A 3 or A 5 is a group in which the adjacent group is a nitrogen atom or an oxygen When it is a group bonded to A 3 or A 5 through an atom, it means a group other than a single bond),
R 9 : hydrogen atom or lower alkyl group,
q and r: the same or different and an integer of 1 to 3 (provided that the sum of q and r is an integer of 3 to 5);
X: a group represented by the formula -O- or -S (O) W- ,
w: 0, 1 or 2,
R 3 and R 4 : identical or different, a hydrogen atom; a halogen atom; a lower alkyl group; a lower alkoxy group; or an amino group optionally substituted with a lower alkyl group;
R b : nitro group or amino group)
Or a salt thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3634295A JP3599403B2 (en) | 1995-02-24 | 1995-02-24 | A new method for producing benzazepine derivatives |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3634295A JP3599403B2 (en) | 1995-02-24 | 1995-02-24 | A new method for producing benzazepine derivatives |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08231512A JPH08231512A (en) | 1996-09-10 |
JP3599403B2 true JP3599403B2 (en) | 2004-12-08 |
Family
ID=12467168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3634295A Expired - Lifetime JP3599403B2 (en) | 1995-02-24 | 1995-02-24 | A new method for producing benzazepine derivatives |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3599403B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8076330B2 (en) | 2005-04-22 | 2011-12-13 | Amgen Inc. | Dipeptidyl peptidase-IV inhibitors |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR011913A1 (en) * | 1997-03-06 | 2000-09-13 | Yamano Masaki | DERIVATIVES OF 4,4-DIFLUORO-2,3,4,5-TETRAHIDRO-1H-1-BENZOAZEPINA AND PHARMACEUTICAL COMPOSITIONS THEREOF. |
US6124485A (en) * | 1998-03-25 | 2000-09-26 | Abbott Laboratories | Process for producing 13-cis retinoic acid |
JP4765546B2 (en) * | 2004-10-27 | 2011-09-07 | アステラス製薬株式会社 | Method for producing benzazepine derivative or salt thereof |
JP4765545B2 (en) * | 2004-10-27 | 2011-09-07 | アステラス製薬株式会社 | Pharmaceutical composition comprising a benzazepine derivative as an active ingredient |
JP5965484B2 (en) * | 2012-07-27 | 2016-08-03 | 佐藤製薬株式会社 | Difluoromethylene compounds |
-
1995
- 1995-02-24 JP JP3634295A patent/JP3599403B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8076330B2 (en) | 2005-04-22 | 2011-12-13 | Amgen Inc. | Dipeptidyl peptidase-IV inhibitors |
Also Published As
Publication number | Publication date |
---|---|
JPH08231512A (en) | 1996-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000154185A (en) | Intermediate for synthesis of heterocyclic-cyclic amine derivative | |
RU2137760C1 (en) | Benzazepine derivative, pharmaceutical composition, derivative of difluorobenzazepine and derivative of (substituted) amino-benzoyldifluorobenzazepine | |
JP2018535260A (en) | Method for preparing kinase inhibitor and its intermediate | |
JP2818763B2 (en) | O-alkylated compounds of N- (hydroxy) aralkylphenylethanolamines | |
WO1994012476A1 (en) | Benzanilide derivative | |
JP3599403B2 (en) | A new method for producing benzazepine derivatives | |
JP2524489B2 (en) | Maleate of N-alkylated α-amino acid benzyl ester | |
KR100833837B1 (en) | Process for preparing 3-acylaminobenzofuran-2-carboxylic acid derivative | |
CA2201435C (en) | Process for the preparation of enantiomerically pure cycloalkano-indol -and azaindol -and pyrimido [1,2a]indol - carbocylic acids and their activated derivatives | |
WO2000021916A1 (en) | Process for the preparation of amine derivatives | |
JPH0610174B2 (en) | Aminophenol derivative | |
US5830902A (en) | Quinuclidine derivative having tricyclic hetero condensed ring | |
US9359333B2 (en) | Efficient process for the preparation of Lapatinib and salts thereof by means of new intermediates | |
JPS6230989B2 (en) | ||
CZ282068B6 (en) | 3-methoxy-4-£1-methyl-5-)2-methyl-4,4,4-trifluorobutylcarbamoyl(indol- -3-ylmethyl|-n-)2-methylphenylsulfonyl)benzamide, its pharmaceutically acceptable salts, process of their preparation and pharmaceutical compositions containing thereof | |
US10556887B2 (en) | Processes for the preparation of Veliparib and intermediates thereof | |
TWI500596B (en) | Process for the synthesis of 3,4-dimethoxybicyclo(4.2.0)octa-1,3,5-triene-7-carbonitrile, and application in the synthesis of ivabradine and addition salts thereof with a pharmaceutically acceptable acid | |
JP3733606B2 (en) | New process for the production of condensed benzazepine derivatives | |
JP4085178B2 (en) | New process for the production of condensed benzazepine derivatives | |
CA2408290A1 (en) | New polycyclic indanylimidazoles with alpha2 adrenergic activity | |
JP2769058B2 (en) | Preparation of cyclopropane derivatives | |
JP5732159B2 (en) | Method for synthesizing 7,8-dimethoxy-1,3-dihydro-2H-3-benzazepin-2-one compounds and application in the synthesis of ivabradine | |
JP2781277B2 (en) | Benzazepine derivatives, pharmaceutical compositions and intermediates thereof | |
RU2155748C2 (en) | Derivatives of cyclohexadiene, mixture of their isomers or separate isomers and their salts and pharmaceutical composition with selective modulating effect on calcium-dependent potassium channels of high conductivity | |
CA2578332A1 (en) | Derivatives of pyrazoline, procedure for obtaining them and use thereof as therapeutic agents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20040323 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040419 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040910 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040914 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080924 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080924 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090924 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090924 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100924 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100924 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110924 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120924 Year of fee payment: 8 |