JP3584163B2 - Method for manufacturing semiconductor light emitting device - Google Patents

Method for manufacturing semiconductor light emitting device Download PDF

Info

Publication number
JP3584163B2
JP3584163B2 JP21103398A JP21103398A JP3584163B2 JP 3584163 B2 JP3584163 B2 JP 3584163B2 JP 21103398 A JP21103398 A JP 21103398A JP 21103398 A JP21103398 A JP 21103398A JP 3584163 B2 JP3584163 B2 JP 3584163B2
Authority
JP
Japan
Prior art keywords
resin
light emitting
semiconductor light
phosphor
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21103398A
Other languages
Japanese (ja)
Other versions
JP2000049389A (en
Inventor
武志 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP21103398A priority Critical patent/JP3584163B2/en
Publication of JP2000049389A publication Critical patent/JP2000049389A/en
Application granted granted Critical
Publication of JP3584163B2 publication Critical patent/JP3584163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体発光装置、特に半導体発光素子から照射される光を波長変換して外部に放出する半導体発光装置の製造方法に属する。
【0002】
【従来の技術】
図7は発光ダイオードチップから照射される光の波長を蛍光体によって変換する従来の発光ダイオード装置の断面図を示す。従来の発光ダイオード装置では、配線導体(2)のカップ部(2a)の底面(2b)に発光ダイオードチップ(1)が固着され、発光ダイオードチップ(1)のカソード電極及びアノード電極は、それぞれボンディングワイヤ(4)及び(5)により配線導体(2)の上端部(8)及び配線導体(3)の上端部(9)に接続される。配線導体(2)及び(3)は、例えばそれぞれカソード側及びアノード側のリードとして機能する。配線導体(2)の上部に形成されたカップ部(2a)には発光ダイオードチップ(1)が固着され、カップ部(2a)内には蛍光物質を混入する光透過性の樹脂(7)が充填されるため、発光ダイオードチップ(1)は樹脂(7)により被覆される。光透過性の樹脂封止体(6)は、円筒状に形成された樹脂本体(6a)と、樹脂本体(6a)と一体に半球状に形成されたレンズ部を有する発光部(6b)とを備えている。なお、実際の発光ダイオード装置では、樹脂本体(6a)からも若干の光が放出されるが、本明細書では、便宜上発光ダイオードチップ(1)の上方側の樹脂封止体(6)を発光部(6b)と称する。発光ダイオードチップ(1)、カソード側の配線導体(2)のカップ部(2a)及び上端部(8)、アノード側の配線導体(3)の上端部(9)、ボンディングワイヤ(4、5)は樹脂封止体(6)の樹脂本体(6a)内に封入される。
【0003】
発光ダイオード装置のカソード側の配線導体(2)とアノード側の配線導体(3)との間に電圧を印加し、発光ダイオードチップ(1)に通電すると、発光ダイオードチップ(1)から照射される光は、樹脂(7)内を通り配線導体(2)のカップ部(2a)の側壁(2c)で反射する後に、透明な樹脂封止体(6)を通り発光ダイオード装置の外部に放出される。また、発光ダイオードチップ(1)の上面から放射されてカップ部(2a)の側壁(2c)で反射されずに直接に樹脂(7)及び樹脂封止体(6)を通って発光ダイオード装置の外部に放出される光もある。樹脂封止体(6)の先端にはレンズ状の発光部(6b)が形成され、樹脂封止体(6)内を通過する光は、レンズ状の発光部(6b)によって集光されて指向性が高められる。発光ダイオードチップ(1)の発光時に、発光ダイオードチップ(1)から照射される光は樹脂(7)内に混入された蛍光物質によって異なる波長に変換されて放出される。この結果、発光ダイオード装置からは発光ダイオードチップ(1)から照射された光とは異なる波長の光も放出される。
【0004】
【発明が解決しようとする課題】
従来の発光ダイオード装置を製造する際に、まず配線導体(2)のカップ部(2a)に発光ダイオードチップ(1)を取付け、次に発光ダイオードチップ(1)と配線導体(2、3)間にボンディングワイヤ(4、5)を取付け、その後カップ部(2a)に樹脂(7)を注入する。樹脂(7)をカップ部(2a)に注入するとき、樹脂充填装置のシリンジ(syringe/スポイト)の先端をカップ部(2a)の上部に近接させる。この場合、シリンジの先端が発光ダイオードチップ(1)及びボンディングワイヤ(5、6)に接触することが多く、発光ダイオードチップ(1)及びボンディングワイヤ(5、6)に接触すると、発光ダイオードチップ(1)を傷つけたり、ボンディングワイヤ(5、6)を変形し又は断線若しくはフレームとの短絡を生じさせる場合がある。特に金又はアルミニウム等の軟質金属の細線で形成されるボンディングワイヤ(5、6)は、小さな外力が加えられても変形又は断線を生じやすい。
【0005】
ボンディングワイヤ(5、6)が断線又は短絡する発光ダイオード装置は不良品となる結果、製造歩留まりが低下する。また、外力が加えられたボンディングワイヤ(5、6)は、断線又は短絡しなくても、発光ダイオードチップ(1)のカソード電極若しくはアノード電極又は配線導体(2、3)に対するボンディングワイヤ(5、6)の接続部分の接着力が低下することがあり、信頼性の点で問題があった。
【0006】
一方従来の半導体発光装置では、カップ部(2a)内だけに蛍光体(7a)を含む樹脂(7)を注入するので、蛍光体(7a)の使用量は少ないが、カップ部(2a)のない配線導体(2)を使用することができない。また、発光ダイオードチップ(1)の周囲に集中して蛍光体(7a)が分布されるので、発光ダイオードチップ(1)が通電され発熱すると蛍光体(7a)の種類によっては温度消光を起こして波長変換効率が低下する問題があった。
【0007】
このため、図8に示すように、予め全体に蛍光体(7a)を含有させた樹脂封止体(6)中にリードフレームを挿入して半導体発光装置を製造する方法も提案されているが、この構造では、発光ダイオードチップ(1)より下方まで蛍光体(7a)が樹脂封止体(6)中に含有されるため、発光ダイオードチップ(1)より下方の蛍光体(7a)には発光ダイオードチップ(1)の光が当らず、波長変換に関与しないむだな蛍光体(7a)が存在する。このため、高価な蛍光体(7a)の使用量が必要以上に多くなって製品価格が高くなる難点があった。
【0008】
本発明は、半導体発光素子から発生する光の波長変換を行なう蛍光体の総量を減少できる半導体発光装置の製造方法を提供することを目的とする。
また、本発明は、半導体発光素子の発熱による蛍光体の温度消光の恐れがない半導体発光装置の製造方法を提供することを目的とする。
本発明は、半導体発光素子及びボンディングワイヤの損傷、断線、短絡又は変形を発生しない半導体発光装置の製造方法を提供することを目的とする。
本発明は、蛍光体による発光波長変換機能を有しつつも信頼性が高く高効率で安価な半導体発光装置の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1に記載された本発明の半導体発光装置の製造方法は、一対の配線導体(2、3)と、一対の配線導体(2、3)の一方の端部(20、30)に載置された半導体発光素子(1)と、半導体発光素子(1)の一方の主面に形成された電極(1a、1b)と一対の配線導体(2、3)の少なくとも一方との間を電気的に接続するボンディングワイヤ(4、5)とを備えたリードフレーム組立体を準備する工程と、リードフレーム組立体に形成すべき樹脂封止体(6)の樹脂本体(6a)と、樹脂本体(6a)の上部に設けられる発光部(6b)との形状に対応するキャビティ(11)を形成する成形型(10)を準備する工程と、半導体発光素子(1)を支持するリードフレーム組立体を逆さにして、配線導体(2、3)の一方の端部(20、30)を成形型(10)のキャビティ(11)内に配置する前又は後に、流動化する光透過性の樹脂(12)より大きな比重を有する蛍光体(7a)を含む樹脂(12)を成形型(10)のキャビティ(11)内に充填する工程と、樹脂(12)を硬化させる加熱過程の際に、蛍光体(7a)を自重により半導体発光素子(1)から離間する位置に樹脂(12)内で沈降させてキャビティ(11)の下方に移動させる工程と、配線導体(2、3)の一方の端部(20、30)を樹脂(12)内に浸漬する状態で、キャビティ(11)内の樹脂(12)を硬化させて、樹脂封止体(6)を形成した後、リードフレーム組立体を成形型(10)から取り出す工程とを含む。
【0010】
本発明によれば、樹脂(12)を硬化させる加熱過程で樹脂(12)の粘度が一旦低下するため、蛍光体(7a)が大きな比重によって自重で沈降し、蛍光体(7a)は樹脂(12)の先端部(下側)に集中して分布される。従って、半導体発光素子(1)より外側で樹脂封止体(6)の発光部(6b)側に蛍光体(7a)が樹脂封止体(6)内に配合され、樹脂封止体(6)の先端部に集中して蛍光体(7a)が分布するため、有効に使用する蛍光体(7a)の総量を減少でき、半導体発光素子(1)の発熱による蛍光体(7a)の温度消光の恐れもない。また樹脂充填機のシリンジで半導体発光素子(1)及びワイヤを損傷し又は断線・短絡・変形の危険がない。本発明の半導体発光装置では、半導体発光素子(1)の発光を樹脂封止体(6)先端部に集中して分布する蛍光体(7a)で所望の光波長に変換し樹脂封止体(6)を通して外部に放出することができる。
【0011】
請求項2に記載された本発明の半導体発光装置の製造方法は、一対の配線導体(2、3)と、一対の配線導体(2、3)の一方の端部(20、30)に載置された半導体発光素子(1)と、半導体発光素子(1)の一方の主面に形成された電極(1a、1b)と一対の配線導体(2、3)の少なくとも一方との間を電気的に接続するボンディングワイヤ(4、5)とを備えたリードフレーム組立体を準備する工程と、リードフレーム組立体に形成すべき樹脂封止体(6)の樹脂本体(6a)と、樹脂本体(6a)の上部に設けられる発光部(6b)との形状に対応するキャビティ(11)を形成する成形型(10)を準備する工程と、半導体発光素子(1)を支持するリードフレーム組立体を逆さにして、配線導体(2、3)の一方の端部(20、30)を成形型(10)のキャビティ(11)内に配置する前又は後に、流動化する光透過性の樹脂(12)より大きな比重を有する蛍光体(7a)を含む樹脂(12)を成形型(10)のキャビティ(11)内に半導体発光素子(1)から離間する位置まで充填する工程と、キャビティ(11)の残部に蛍光体(7a)を混入しない樹脂(13)を充填する工程と、樹脂(12)を硬化させる加熱過程の際に、半導体発光素子(1)から離間する位置に蛍光体(7a)を樹脂(12)内で自重により沈降させて下部キャビティ部(11b)の下方に移動させる工程と、配線導体(2、3)の一方の端部(20、30)を樹脂(12)内に浸漬する状態で、キャビティ(11)内の樹脂(12)を硬化させて、樹脂封止体(6)を形成した後、リードフレーム組立体を成形型(10)から取り出す工程とを含む。
【0012】
始めに蛍光体(7a)が含まれた樹脂(12)を注型し、その後、蛍光体(7a)が混入されない樹脂(13)を注型することにより、樹脂封止体(6)の先端部に蛍光体(7a)が集中して分布される。これと共に、樹脂(12)の加熱過程で蛍光体(7a)が自重で沈降するので、半導体発光素子(1)は蛍光体(7a)を混入しない樹脂(13)により被覆され、キャビティ(11)内で樹脂(12、13)を硬化させて、樹脂封止体(6)を形成した後、リードフレーム組立体を成形型(10)から取り出すことができる。
【0013】
請求項3に記載された本発明の半導体発光装置の製造方法は、一対の配線導体(2、3)と、一対の配線導体(2、3)の一方の端部(20、30)に載置された半導体発光素子(1)と、半導体発光素子(1)の一方の主面に形成された電極(1a、1b)と一対の配線導体(2、3)の少なくとも一方との間を電気的に接続するボンディングワイヤ(4、5)とを備えたリードフレーム組立体を準備する工程と、リードフレーム組立体に形成すべき樹脂封止体(6)の樹脂本体(6a)と、樹脂本体(6a)の上部に設けられる発光部(6b)との形状に対応するキャビティ(11)を形成する成形型(10)を準備する工程と、半導体発光素子(1)を含むリードフレーム組立体の一方の端部を成形型(10)のキャビティ(11)内に配置する前又は後に蛍光体(7a)を含む流動化する光透過性の樹脂(12)を成形型(10)のキャビティ(11)内に充填する工程と、成形型(10)を回転させて半導体発光素子(1)から離間する位置に蛍光体(7a)を樹脂(12)内で移動させる工程と、配線導体(2、3)の一方の端部(20、30)を樹脂(12)内に浸漬する状態で、キャビティ(11)内で樹脂(12)を硬化させて、樹脂封止体(6)を形成した後、リードフレーム組立体を成形型(10)から取り出す工程とを含む。
【0014】
また、遠心注型により成形型(10)を回転させると、比重の大きな蛍光体(7a)は径方向外側に移動し、蛍光体(7a)は樹脂封止体(6)の先端部に集中して分布される。
【0015】
【発明の実施の形態】
以下、発光ダイオード装置に適用する本発明による半導体発光装置の製造方法の実施の形態を図1〜図6について説明する。図1〜図6では、図7及び図8に示す箇所と同一の部分には同一の符号を付し、説明を省略する。
【0016】
図1は、半導体発光素子としての発光ダイオードチップ(1)より外側で樹脂封止体(6)の発光部(6b)側に樹脂封止体(6)内に蛍光体(7a)が配合される半導体発光装置を示す。蛍光体(7a)は、樹脂封止体(6)の長さ方向の中央部より発光部(6b)側に配合される。この場合、図2に示すように、半球状の発光部(6b)内にのみ蛍光体(7a)を配合してもよい。蛍光体(7a)の密度は、樹脂封止体(6)の密度より大きい。蛍光体(7a)は、発光ダイオードチップ(1)から照射される光の一部を吸収して他の異なる発光波長に変換する。
【0017】
発光ダイオードチップ(1)より外側、即ち発光ダイオードチップ(1)の上面よりも樹脂封止体(6)の発光部(6b)側に蛍光体(7a)が樹脂封止体(6)内に配合されるため、樹脂封止体(6)の先端部側に集中して蛍光体(7a)が分布する。このため、蛍光体(7a)を波長変換に有効に機能させて蛍光体(7a)の使用総量を減少することができる。また、発光ダイオードチップ(1)の周囲に存在する蛍光体(7a)の分布が少ないため、発光ダイオードチップ(1)が発熱しても蛍光体(7a)の温度上昇を招かず、蛍光体(7a)の温度消光による波長変換効率の低下を来さない。また樹脂充填装置のシリンジで発光ダイオードチップ(1)及びワイヤを損傷し又は断線・短絡・変形する危険がない。本発明の製造方法により得られる半導体発光装置では、発光ダイオードチップ(1)から放出された光を樹脂封止体(6)の先端部に集中して分布する蛍光体(7a)で所望の発光波長に変換し樹脂封止体(6)の外部に放出することができる。また、発光ダイオードチップ(1)から放出された光のうちの一部は、蛍光体(7a)で波長変換されずに樹脂封止体(6)の外部に放出される。従って、樹脂封止体(6)の外部からは波長変換された光と波長変換されない光とが混色する光が観察される。
【0018】
本発明の製造方法により半導体発光装置を製造する際に、まずリードフレーム組立体を準備する。図示しないが、このリードフレーム組立体は、一対の配線導体(2、3)と、一対の配線導体(2、3)の一方の端部に接着された発光ダイオードチップ(1)と、発光ダイオードチップ(1)に形成された電極(1a、1b)と一対の配線導体(2、3)の他方の端部とを電気的に接続するボンディングワイヤ(4、5)とを備えている。次に、蛍光体(7a)を含む流動化する光透過性の樹脂(12)を成形型(10)のキャビティ(11)内に充填する。キャビティ(11)は、リードフレーム組立体に形成すべき樹脂封止体(6)の樹脂本体(6a)と、樹脂本体(6a)の上部に設けられる発光部(6b)との形状に対応する上部キャビティ部(11a)と下部キャビティ部(11b)とを備えている。その後、図3に示すように、半導体発光素子(1)を支持するリードフレーム組立体の配線導体(2、3)を逆さにして、配線導体(2、3)の他方の端部(21、31)の途中まで配線導体(2、3)の一方の端部(20、30)を成形型(10)のキャビティ(11)内に配置して、樹脂(12)内に浸漬する。更に、樹脂(12)を加熱しながら、樹脂(12)からの配線導体(2、3)の導出方向に対して反対側に且つ発光ダイオードチップ(1)より外側に、即ち発光ダイオードチップ(1)よりも樹脂(12)の配線導体(2、3)が導出された端部から離間する位置に蛍光体(7a)を樹脂(12)内で移動させる。
【0019】
樹脂封止体(6)からの配線導体(2、3)の導出方向に対して反対側に且つ発光ダイオードチップ(1)より外側に蛍光体(7a)を樹脂(12)内で移動させるとき、種々の方法がある。例えば、図3及び図4に示すように、樹脂(12)より大きな比重を有する蛍光体(7a)を樹脂(12)内で自重により沈降させて蛍光体(7a)を樹脂(12)内で移動させる。樹脂(12)を硬化させる加熱過程で樹脂(12)の粘度が一旦低下するため、蛍光体(7a)が大きな比重によって沈降し、蛍光体(7a)は樹脂(12)の先端部(下側)に集中して分布される。
【0020】
また、蛍光体(7a)には、市販の蛍光顔料又は蛍光染料を使用できるが、一般に図3及び図4に示すように自重沈降によって樹脂封止体(6)の先端部に集中的に蛍光顔料又は蛍光染料を分布させることは難しい。このため、図5及び図6に示すように、発光ダイオードチップ(1)より下側となるように樹脂封止体(6)の発光部(6b)を形成するための液状エポキシ樹脂である樹脂(12)を成形型(10)のキャビティ(11)内に充填する。液状エポキシ樹脂である樹脂(12)内には蛍光体(7a)として蛍光顔料又は蛍光染料が適量混合されている。次に、発光ダイオードチップ(1)を含むリードフレーム組立体の端部を成形型(10)のキャビティ(11)内に配置する後、蛍光顔料、蛍光染料を混合しない液状エポキシ樹脂である樹脂(13)を樹脂(12)の上に注入し、適当な温度プログラムに従って加熱硬化させると、樹脂封止体(6)の先端部に蛍光体(7a)が集中して分布する所期の構造が得られる。
【0021】
更に、別法として、成形型(10)を回転させる遠心注型を使用して発光ダイオードチップ(1)より外側に蛍光体(7a)を樹脂(12)内で移動させてもよい。樹脂(12)を硬化させる加熱過程で遠心注型により成形型(10)を回転させると、比重の大きな蛍光体(7a)は径方向外側に移動し、蛍光体(7a)は樹脂(12)の先端部に集中して分布される。その後、キャビティ(11)内で樹脂(12)を硬化させて、樹脂封止体(6)を形成した後、リードフレーム組立体を成形型(10)から取り出す。なお、成形型(10)には周知のトランスファモールド金型、インジェクションモールド金型、ポッティング用金型等種々の金型が含まれる。
【0022】
本発明の実施の形態は変更が可能である。例えば、半導体チップ(1)を含むリードフレーム組立体の一方の端部を成形型(10)のキャビティ(11)内に配置する後に、キャビティ(11)内に樹脂(12)を充填する代わりに、キャビティ(11)内に樹脂(12)を充填する後に、樹脂(12)内に半導体チップ(1)を浸漬しながらリードフレーム組立体の一方の端部を成形型(10)のキャビティ(11)内に配置してもよい。
【0023】
【実施例】
アノード側の配線導体(3)とカソード側の配線導体(2)との間に電圧を印加して発光ダイオードチップ(1)を発光させると、発光ダイオードチップ(1)から放出された光は直接又はカップ部(2a)内で反射された後に樹脂封止体(6)の先端部に設けられた発光部(6b)に達する。樹脂封止体(6)の発光部(6b)に達する光の一部は、蛍光体(7a)によって波長変換され元の光と異なった波長の光となる。
【0024】
発光ダイオードチップ(1)の光線を吸収しながら、その光線の波長とは異なる波長の光線を発する蛍光体(7a)は、基体、賦活体及び融剤より成る。基体は、アルミニウム、亜鉛、カドミウム、マグネシウム、シリコン、イットリウム等の金属及び希土類元素等の酸化物、硫化物、珪酸塩、バナジン酸塩等の無機蛍光体から選択され、銅、鉄、ニッケルのそれらは不適である。賦活体は、銀、銅、マンガン、クロム、ユウロピウム、セリウム、亜鉛、アルミニウム、鉛、リン、砒素、金等で一般に0.001%〜数%程度の微量が用いられる。融剤は、塩化ナトリウム、塩化カリウム、炭酸マグネシウム、塩化バリウムが使用される。前記無機蛍光体の外、フルオレセイン、エオシン、油類(鉱物油)及び市販の蛍光顔料、蛍光染料等の有機蛍光体を使用できる。
【0025】
具体的には、例えば発光ダイオードチップ(1)に発光波長のピークが約440nmから約470nmのGaN系の青色発光ダイオードチップ(1)を用い、また蛍光体(7a)には賦活剤としてCe(セリウム)を適量添加するYAG(イットリウム・アルミニウム・ガーネット、化学式Y3Al512、励起波長のピーク約450nm、発光波長のピーク約540nmの黄緑色光)の結晶粉末を用いれば、青色発光ダイオードチップ(1)の発光波長とYAG蛍光体(7a)の励起波長とが略一致するため効率よく波長変換が行われ、またYAG蛍光体(7a)の発光スペクトル分布が半値幅約130nmとブロードなため、半導体発光装置の外部に放出される光は発光ダイオードチップ(1)の発光と蛍光体(7a)の発光とが混色する青みがかった白色光となる。
【0026】
半導体発光装置の発光を更に所望の色調に調整するとき、例えばGa(ガリウム)若しくはLu(ルテチウム)等又はGd(ガドリニウム)等を適量添加してYAG蛍光体(7a)の結晶構造を一部変更し、短波長側又は長波長側にシフトさせて発光スペクトル分布を変更することができる。半導体発光装置から外部に放出される光の指向角を広げるため、カップ部(2a)のないリードフレームを用いるとき又は樹脂封止体(6)に粉末シリカ等の散乱剤を混合させた透明樹脂を用いるとき、樹脂封止体(6)の発光部(6b)のみに蛍光体(7a)を分布させた構造では、発光ダイオードチップ(1)の横方向から放出される光成分が蛍光体(7a)に当らず波長変換されないおそれがある。このため、図1に示すように蛍光体(7a)をリードフレームの先端部を形成する配線導体(2、3)の略上端部(8、9)まで蛍光体(7a)を樹脂封止体(6)内に分布せるとよい。図1に示す構造でも発光ダイオードチップ(1)の周囲に分布する蛍光体(7a)の濃度は極めて薄く、また上端部(8、9)より下方の樹脂封止体(6)に含まれる不要な蛍光体(7a)は殆どないため、発光ダイオードチップ(1)の発熱による蛍光体(7a)の温度消光がなく、蛍光体(7a)の使用量が少ない本発明の利点は失われない。
【0027】
製造の際に、YAG蛍光体(7a)を適量均一に混合する液状エポキシ樹脂である樹脂(12)を成形型(10)のキャビティ(11)内に注入する後、発光ダイオードチップ(1)及びボンディングワイヤ(4、5)を取り付けたリードフレームを倒立させてキャビティ(11)内に挿入して、図3に示すように所定の位置にリードフレームを保持する。YAG蛍光体(7a)の密度は約4.5g/cm3で、金属、例えば銀の密度10.5g/cm3より小さいが、水の密度約1g/cm3、石英ガラスの密度約2.2g/cm3及びエポキシ樹脂の密度約1.1〜1.4g/cm3より大きい。一般に樹脂封止体(6)に用いる液状エポキシ樹脂である樹脂(12)は、当初室温では比較的高粘度であるが、樹脂(12)を硬化させるために昇温すると樹脂分子の運動が活発化して一旦粘度が大きく低下する。その後硬化剤の働きで樹脂分子間結合が次第に促進され、最終的に全体が結合して硬化に至る性質を示す。従って、図3の状態で所定の温度プログラムに従ってエポキシ樹脂である樹脂(12)を加熱・昇温すると、エポキシ樹脂である樹脂(12)の粘度の低下時に密度の大きい重いYAG蛍光体(7a)の粒子が沈降して、図4に示すように樹脂(12)の先端部に蛍光体(7a)が集中する分布状態になって、エポキシ樹脂である樹脂(12)が硬化する。
【0028】
図1に示すように、配線導体(2、3)の上端部(8、9)の周辺まで蛍光体(7a)が分布する構造、図2に示すように樹脂封止体(6)の最先端部周辺のみに蛍光体(7a)が分布する構造又はこれらの中間的な構造とするかは、蛍光体(7a)の結晶粉末の粒径、樹脂封止体(6)の初期粘度と加熱時の粘度、樹脂硬化時の昇温プログラム、樹脂硬化時間等を適当に選択して、自由に調整することが可能である。
【0029】
【発明の効果】
前記のように、本発明の半導体発光装置の製造方法では、発光ダイオードチップの発光を樹脂封止体の先端部に集中して分布する蛍光体で所望の光波長に変換し樹脂封止体を通して外部に放出することができると共に、下記の効果が得られる。
1 使用する蛍光体の総量を減少することができる。
2 発光ダイオードチップの発熱による蛍光体の温度消光の恐れがない。
3 樹脂充填機のシリンジで発光ダイオードチップ及びボンディングワイヤを損傷し又は断線・短絡・変形の危険がない。
4 蛍光体による発光波長変換機能を有しつつも信頼性が高く高効率で安価な半導体発光装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の製造方法による発光ダイオード装置の断面図
【図2】本発明の製造方法による他の実施の形態を示す発光ダイオード装置の断面図
【図3】本発明の製造方法により発光ダイオード装置を製造する成形型の断面図
【図4】蛍光体が沈降する状態を示す成形型の断面図
【図5】本発明による他の実施の形態を示す成形型の断面図
【図6】図5の成形型のキャビティを樹脂により充填する状態を示す断面図
【図7】従来の発光ダイオード装置の断面図
【図8】従来の他の発光ダイオード装置の断面図
【符号の説明】
(1)・・発光ダイオードチップ(半導体発光素子)、 (1a、1b)・・電極、 (2、3)・・配線導体、 (4、5)・・ボンディングワイヤ、 (6)・・樹脂封止体、 (6a)・・樹脂本体、 (6b)・・発光部、 (7a)・・蛍光体、(10)・・成形型、 (11)・・キャビティ、 (11a)・・上部キャビティ部、 (11b)・・下部キャビティ部、 (12)・・樹脂、
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor light emitting device, particularly a semiconductor light emitting device that converts the wavelength of light emitted from a semiconductor light emitting element and emits the light to the outside.
[0002]
[Prior art]
Figure 7 shows a cross-sectional view of a conventional light emitting diode device that converts a wavelength of light emitted from the light emitting diode chip by the phosphor. In a conventional light emitting diode device, a light emitting diode chip (1) is fixed to a bottom surface (2b) of a cup portion (2a) of a wiring conductor (2), and a cathode electrode and an anode electrode of the light emitting diode chip (1) are respectively bonded. The wires (4) and (5) are connected to the upper end (8) of the wiring conductor (2) and the upper end (9) of the wiring conductor (3). Wiring conductors (2) and (3), for example, functions as the cathode side and the anode side of the lead respectively. A light-emitting diode chip (1) is fixed to a cup (2a) formed above the wiring conductor (2), and a light-transmissive resin (7) containing a fluorescent substance is contained in the cup (2a). To be filled, the light emitting diode chip (1) is covered with the resin (7). The light-transmitting resin sealing body (6) includes a resin main body (6a) formed in a cylindrical shape, and a light emitting section (6b) having a lens part formed in a hemispherical shape integrally with the resin main body (6a). It is equipped with a. In an actual light emitting diode device, a small amount of light is emitted from the resin body (6a). However, in this specification, for convenience, the resin sealing body (6) above the light emitting diode chip (1) emits light. Part (6b). LED chip (1), cup (2a) and upper end (8) of cathode-side wiring conductor (2), upper end (9) of anode-side wiring conductor (3), bonding wires (4, 5) Is sealed in the resin body (6a) of the resin sealing body (6).
[0003]
When a voltage is applied between the wiring conductor (2) on the cathode side and the wiring conductor (3) on the anode side of the light emitting diode device and the light emitting diode chip (1) is energized, the light is emitted from the light emitting diode chip (1). The light passes through the inside of the resin (7), is reflected on the side wall (2c) of the cup portion (2a) of the wiring conductor (2), and is emitted to the outside of the light emitting diode device through the transparent resin sealing body (6). that. In addition, the light emitted from the upper surface of the light emitting diode chip (1) is not reflected by the side wall (2c) of the cup portion (2a) but directly passes through the resin (7) and the resin sealing body (6). Some light is emitted to the outside. A lens-shaped light emitting portion (6b) is formed at the tip of the resin sealing body (6), and light passing through the resin sealing body (6) is collected by the lens-shaped light emitting portion (6b). Directivity is enhanced. When the light emitting diode chip (1) emits light, light emitted from the light emitting diode chip (1) is converted into a different wavelength by the fluorescent substance mixed in the resin (7) and emitted. As a result, the light emitting diode device is also different wavelengths of light emitted from the light emitted from the light emitting diode chip (1).
[0004]
[Problems to be solved by the invention]
When manufacturing a conventional light emitting diode device, first, the light emitting diode chip (1) is attached to the cup portion (2a) of the wiring conductor (2), and then the light emitting diode chip (1) and the wiring conductor (2, 3) are connected. to attach the bonding wires (4,5), then injecting resin (7) to the cup portion (2a). When injecting the resin (7) into the cup (2a), the tip of a syringe (syringe / dropper) of the resin filling device is brought close to the upper part of the cup (2a). In this case, the tip of the syringe often comes into contact with the light emitting diode chip (1) and the bonding wires (5, 6). When the tip of the syringe comes into contact with the light emitting diode chip (1) and the bonding wires (5, 6), the light emitting diode chip ( 1) may be damaged, the bonding wires (5, 6) may be deformed, or the wire may be disconnected or short-circuited to the frame. In particular, the bonding wires (5, 6) formed of a thin wire of a soft metal such as gold or aluminum are likely to be deformed or disconnected even when a small external force is applied.
[0005]
A light emitting diode device in which the bonding wires (5, 6) are disconnected or short-circuited becomes a defective product, resulting in a reduction in manufacturing yield. Further, the bonding wires (5, 6) to which the external force is applied can be bonded to the cathode electrode or the anode electrode of the light emitting diode chip (1) or the wiring conductors (2, 3) without disconnection or short circuit. may adhesion of the connecting portion 6) is lowered, there is a problem in terms of reliability.
[0006]
On the other hand, in the conventional semiconductor light emitting device, since the resin (7) containing the phosphor (7a) is injected only into the cup portion (2a), the amount of the phosphor (7a) used is small. No wiring conductor (2) can be used. In addition, since the phosphor (7a) is concentrated around the light emitting diode chip (1), when the light emitting diode chip (1) is energized and generates heat, temperature quenching occurs depending on the type of the phosphor (7a). There is a problem that the wavelength conversion efficiency is reduced.
[0007]
For this reason, as shown in FIG. 8, there has been proposed a method of manufacturing a semiconductor light emitting device by inserting a lead frame into a resin sealing body (6) in which a phosphor (7a) is entirely contained in advance. In this structure, since the fluorescent substance (7a) is contained in the resin sealing body (6) to a level lower than the light emitting diode chip (1), the fluorescent substance (7a) below the light emitting diode chip (1) has There is a useless phosphor (7a) that is not irradiated with light from the light emitting diode chip (1) and is not involved in wavelength conversion. For this reason, there was a problem that the use amount of the expensive phosphor (7a) was increased more than necessary and the product price was increased.
[0008]
An object of the present invention is to provide a method for manufacturing a semiconductor light emitting device that can reduce the total amount of phosphors that perform wavelength conversion of light generated from a semiconductor light emitting element.
Another object of the present invention is to provide a method for manufacturing a semiconductor light emitting device in which there is no risk of temperature quenching of a phosphor due to heat generated by the semiconductor light emitting element.
An object of the present invention is to provide a method for manufacturing a semiconductor light emitting device that does not cause damage, disconnection, short circuit or deformation of a semiconductor light emitting element and a bonding wire.
An object of the present invention is to provide a method for manufacturing a highly reliable, highly efficient, and inexpensive semiconductor light emitting device while having an emission wavelength conversion function using a phosphor.
[0009]
[Means for Solving the Problems]
According to the method for manufacturing a semiconductor light emitting device of the present invention described in claim 1, the semiconductor light emitting device is mounted on a pair of wiring conductors (2, 3) and one end (20, 30) of the pair of wiring conductors (2, 3). The semiconductor light-emitting element (1) placed, and electricity between at least one of the pair of wiring conductors (2, 3) and the electrodes (1a, 1b) formed on one main surface of the semiconductor light-emitting element (1). Preparing a lead frame assembly including bonding wires (4, 5) to be electrically connected, a resin body (6a) of a resin sealing body (6) to be formed in the lead frame assembly, and a resin body A step of preparing a mold (10) for forming a cavity (11) corresponding to the shape of the light emitting portion (6b) provided above (6a); and a lead frame assembly supporting the semiconductor light emitting element (1). Is inverted, and one end of the wiring conductor (2, 3) ( Before or after placing (0, 30) in the cavity (11) of the mold (10), the resin (12) containing the phosphor (7a) having a specific gravity greater than that of the fluidized light-transmitting resin (12). In the cavity (11) of the mold (10) and the heating process for curing the resin (12), the phosphor (7a) is separated from the semiconductor light emitting element (1) by its own weight during the heating process. A step of settling in the resin (12) and moving it below the cavity (11), and a step of immersing one end (20, 30) of the wiring conductor (2, 3) in the resin (12). Curing the resin (12) in the cavity (11) to form the resin sealing body (6), and then removing the lead frame assembly from the mold (10).
[0010]
According to the present invention, since the viscosity of the resin (12) temporarily decreases during the heating process of curing the resin (12), the phosphor (7a) sediments by its own weight due to a large specific gravity, and the phosphor (7a) 12) is concentrated and distributed at the tip (lower side). Therefore, the phosphor (7a) is compounded in the resin sealing body (6) outside the semiconductor light emitting element (1) and on the light emitting portion (6b) side of the resin sealing body (6). ), The phosphor (7a) is concentrated and distributed at the tip, so that the total amount of the phosphor (7a) used effectively can be reduced, and the temperature of the phosphor (7a) is quenched by the heat generated by the semiconductor light emitting element (1). also I fear not. In addition, there is no danger of damaging the semiconductor light emitting element (1) and the wire or breaking, short-circuiting or deforming the syringe with the syringe of the resin filling machine. In the semiconductor light emitting device of the present invention, the light emission of the semiconductor light emitting element (1) is converted into a desired light wavelength by the phosphor (7a) which is concentrated and distributed at the tip of the resin sealing body (6), and the resin sealing body (6). It can be released to the outside through 6).
[0011]
According to a second aspect of the present invention, there is provided a method for manufacturing a semiconductor light emitting device, wherein the semiconductor light emitting device is mounted on a pair of wiring conductors (2, 3) and one end (20, 30) of the pair of wiring conductors (2, 3). The semiconductor light-emitting element (1) placed, and electricity between at least one of the pair of wiring conductors (2, 3) and the electrodes (1a, 1b) formed on one main surface of the semiconductor light-emitting element (1). Preparing a lead frame assembly including bonding wires (4, 5) to be electrically connected, a resin body (6a) of a resin sealing body (6) to be formed in the lead frame assembly, and a resin body A step of preparing a mold (10) for forming a cavity (11) corresponding to the shape of the light emitting portion (6b) provided above (6a); and a lead frame assembly supporting the semiconductor light emitting element (1). Is inverted, and one end of the wiring conductor (2, 3) ( Before or after placing (0, 30) in the cavity (11) of the mold (10), the resin (12) containing the phosphor (7a) having a specific gravity greater than that of the fluidized light-transmitting resin (12). Filling the cavity (11) of the mold (10) to a position away from the semiconductor light emitting element (1), and filling the remaining part of the cavity (11) with a resin (13) not containing the phosphor (7a). And the heating step of curing the resin (12), the phosphor (7a) is settled by its own weight in the resin (12) at a position separated from the semiconductor light emitting element (1), and the lower cavity (11b) ) And curing the resin (12) in the cavity (11) in a state where one end (20, 30) of the wiring conductor (2, 3) is immersed in the resin (12). Then, a resin sealing body (6) is formed. After, and a step of taking out the lead frame assembly from the mold (10).
[0012]
First, the resin (12) containing the phosphor (7a) is cast, and thereafter, the resin (13) into which the phosphor (7a) is not mixed is cast, whereby the tip of the resin sealing body (6) is formed. The phosphor (7a) is concentrated and distributed in the portion. At the same time, the phosphor (7a) is settled by its own weight during the heating process of the resin (12), so that the semiconductor light emitting element (1) is covered with the resin (13) in which the phosphor (7a) is not mixed, and the cavity (11). After the resin (12, 13) is cured to form the resin sealing body (6), the lead frame assembly can be taken out of the mold (10).
[0013]
According to a third aspect of the present invention, there is provided a method of manufacturing a semiconductor light emitting device according to the present invention mounted on a pair of wiring conductors (2, 3) and one end (20, 30) of the pair of wiring conductors (2, 3). The semiconductor light-emitting element (1) placed, and electricity between at least one of the pair of wiring conductors (2, 3) and the electrodes (1a, 1b) formed on one main surface of the semiconductor light-emitting element (1). Preparing a lead frame assembly including bonding wires (4, 5) to be electrically connected, a resin body (6a) of a resin sealing body (6) to be formed in the lead frame assembly, and a resin body A step of preparing a mold (10) for forming a cavity (11) corresponding to the shape of the light emitting section (6b) provided on the upper part of (6a); and a step of preparing a lead frame assembly including the semiconductor light emitting element (1). Insert one end into the cavity (11) of the mold (10). A step of filling the cavity (11) of the mold (10) with the fluidizable light-transmitting resin (12) containing the phosphor (7a) before or after the arrangement, and rotating the mold (10) A step of moving the phosphor (7a) in the resin (12) to a position separated from the semiconductor light emitting element (1), and a step of moving one end (20, 30) of the wiring conductor (2, 3) to the resin (12). Curing the resin (12) in the cavity (11) in a state of being immersed in the resin to form the resin sealing body (6), and then removing the lead frame assembly from the mold (10). .
[0014]
When the mold (10) is rotated by centrifugal casting, the phosphor (7a) having a large specific gravity moves radially outward, and the phosphor (7a) concentrates on the tip of the resin sealing body (6). It is distributed to.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the method for manufacturing a semiconductor light emitting device according to the invention to be applied to the light-emitting diode device for Figures 1-6. 1 to 6, the same parts as those shown in FIGS. 7 and 8 are denoted by the same reference numerals, and description thereof will be omitted.
[0016]
FIG. 1 shows that a phosphor (7a) is compounded in a resin sealing body (6) outside a light emitting diode chip (1) as a semiconductor light emitting element and on a light emitting portion (6b) side of the resin sealing body (6). 1 shows a semiconductor light emitting device. The phosphor (7a) is compounded on the light emitting portion (6b) side from the center in the length direction of the resin sealing body (6). In this case, as shown in FIG. 2, the phosphor (7a) may be mixed only in the hemispherical light emitting portion (6b). The density of the phosphor (7a) is greater than the density of the resin sealing body (6). The phosphor (7a) absorbs a part of the light emitted from the light emitting diode chip (1) and converts it to another different emission wavelength.
[0017]
The phosphor (7a) is provided inside the resin sealing body (6) outside the light emitting diode chip (1), that is, on the light emitting portion (6b) side of the resin sealing body (6) from the upper surface of the light emitting diode chip (1). to be formulated, the phosphor is concentrated on the tip portion side of the resin sealing body (6) (7a) are distributed. For this reason, the phosphor (7a) can function effectively for wavelength conversion, and the total amount of the phosphor (7a) used can be reduced. Further, since the distribution of the phosphor (7a) existing around the light emitting diode chip (1) is small, even if the light emitting diode chip (1) generates heat, the temperature of the phosphor (7a) does not rise, and the phosphor (7a) does not rise. The wavelength conversion efficiency does not decrease due to the temperature quenching of 7a). Further, there is no danger that the light emitting diode chip (1) and the wire are damaged or disconnected, short-circuited or deformed by the syringe of the resin filling device. In the semiconductor light emitting device obtained by the manufacturing method of the present invention, the light emitted from the light emitting diode chip (1) is distributed by the phosphor (7a) concentrated at the tip of the resin sealing body (6) to obtain the desired light emission. It can be converted into a wavelength and emitted to the outside of the resin sealing body (6). Further, a part of the light emitted from the light emitting diode chip (1) is emitted to the outside of the resin sealing body (6) without being subjected to wavelength conversion by the phosphor (7a). Therefore, light in which the wavelength-converted light and the wavelength-unconverted light are mixed is observed from the outside of the resin sealing body (6).
[0018]
When manufacturing the semiconductor light emitting device by the manufacturing method of the present invention, first, preparing a lead frame assembly. Although not shown, the lead frame assembly includes a pair of wiring conductors (2, 3), a light emitting diode chip (1) adhered to one end of the pair of wiring conductors (2, 3), and a light emitting diode. Bonding wires (4, 5) for electrically connecting the electrodes (1a, 1b) formed on the chip (1) and the other ends of the pair of wiring conductors (2, 3) are provided. Next, a fluidized light-transmitting resin (12) containing the phosphor (7a) is filled in the cavity (11) of the mold (10). The cavity (11) corresponds to the shape of the resin main body (6a) of the resin sealing body (6) to be formed in the lead frame assembly and the light emitting portion (6b) provided on the resin main body (6a). and it includes an upper cavity portion and (11a) lower cavity portion and (11b). Thereafter, as shown in FIG. 3, the wiring conductors (2, 3) of the lead frame assembly supporting the semiconductor light emitting device (1) are turned upside down, and the other ends (21, 2) of the wiring conductors (2, 3) are turned upside down. One end (20, 30) of the wiring conductor (2, 3) is arranged in the cavity (11) of the mold (10) to the middle of 31), and is immersed in the resin (12). Furthermore, while the resin (12) is being heated, the wiring conductors (2, 3) are drawn out of the resin (12) on the opposite side to the direction in which the wiring conductors (2, 3) are led out and outside the light emitting diode chip (1), that is, the light emitting diode chip (1) The phosphor (7a) is moved within the resin (12) to a position separated from the end from which the wiring conductors (2, 3) of the resin (12) are drawn out.
[0019]
When the phosphor (7a) is moved in the resin (12) on the opposite side to the direction in which the wiring conductors (2, 3) are led out from the resin sealing body (6) and outside the light emitting diode chip (1). There are various methods. For example, as shown in FIGS. 3 and 4, a phosphor (7a) having a specific gravity greater than that of the resin (12) is settled by its own weight in the resin (12), and the phosphor (7a) is precipitated in the resin (12). so moved. During the heating process for curing the resin (12), the viscosity of the resin (12) temporarily decreases, so that the phosphor (7a) settles due to a large specific gravity, and the phosphor (7a) is moved to the tip (lower side) of the resin (12). ).
[0020]
A commercially available fluorescent pigment or fluorescent dye can be used for the fluorescent substance (7a). However, as shown in FIGS. 3 and 4, the fluorescent substance is generally concentrated on the tip end of the resin sealing body (6) by self-weight sedimentation. It is difficult to distribute pigments or fluorescent dyes. Therefore, as shown in FIGS. 5 and 6, a resin which is a liquid epoxy resin for forming the light emitting portion (6b) of the resin sealing body (6) so as to be below the light emitting diode chip (1). (12) is filled into the cavity (11) of the mold (10). A suitable amount of a fluorescent pigment or fluorescent dye is mixed as a fluorescent substance (7a) in the resin (12) which is a liquid epoxy resin. Next, after arranging the end of the lead frame assembly including the light emitting diode chip (1) in the cavity (11) of the molding die (10), a resin (liquid epoxy resin) not mixed with a fluorescent pigment and a fluorescent dye ( When 13) is injected onto the resin (12) and cured by heating according to an appropriate temperature program, the desired structure in which the phosphor (7a) is concentrated and distributed at the tip of the resin sealing body (6) is obtained. can get.
[0021]
Further, as another method, the phosphor (7a) may be moved inside the resin (12) outside the light emitting diode chip (1) by using a centrifugal casting mold that rotates the mold (10). When the molding die (10) is rotated by centrifugal casting in the heating process of curing the resin (12), the phosphor (7a) having a large specific gravity moves radially outward, and the phosphor (7a) is replaced with the resin (12). Are concentrated and distributed at the tip of Thereafter, the resin (12) is cured in the cavity (11) to form the resin sealing body (6), and then the lead frame assembly is taken out of the mold (10). The mold (10) includes various molds such as a well-known transfer mold, an injection mold, and a potting mold.
[0022]
Embodiments of the present invention can be modified. For example, instead of filling one end of the lead frame assembly including the semiconductor chip (1) in the cavity (11) of the mold (10) and then filling the cavity (11) with the resin (12). After filling the cavity (11) with the resin (12), one end of the lead frame assembly is immersed in the resin (12) while the semiconductor chip (1) is immersed in the cavity (11). ).
[0023]
【Example】
When a voltage is applied between the wiring conductor (3) on the anode side and the wiring conductor (2) on the cathode side to cause the light emitting diode chip (1) to emit light, the light emitted from the light emitting diode chip (1) is directly Alternatively, after being reflected in the cup portion (2a), the light reaches the light emitting portion (6b) provided at the tip of the resin sealing body (6). Part of the light reaching the light emitting portion (6b) of the resin sealing body (6) is converted into a light having a different wavelength from the original light by the wavelength conversion by the phosphor (7a).
[0024]
The phosphor (7a) that emits a light beam having a wavelength different from the wavelength of the light beam while absorbing the light beam of the light emitting diode chip (1) includes a base, an activator, and a flux. Substrate is aluminum, zinc, cadmium, magnesium, silicon, oxides such as metals and rare earth elements and yttrium, sulfides, silicates, are selected from inorganic phosphors, such as vanadate, copper, iron, their nickel it is not suitable. The activator is silver, copper, manganese, chromium, europium, cerium, zinc, aluminum, lead, phosphorus, arsenic, gold, or the like, and a small amount of about 0.001% to several% is generally used. Fluxing agent, sodium chloride, potassium chloride, magnesium carbonate, barium chloride is used. In addition to the inorganic phosphor, organic phosphors such as fluorescein, eosin, oils (mineral oil), and commercially available fluorescent pigments and fluorescent dyes can be used.
[0025]
Specifically, for example, a GaN-based blue light-emitting diode chip (1) having an emission wavelength peak of about 440 nm to about 470 nm is used for the light-emitting diode chip (1), and Ce (C) is used as an activator for the phosphor (7a). YAG contain an appropriate amount of cerium) (yttrium aluminum garnet, formula Y Three Al Five O 12 When a crystal powder having an excitation wavelength peak of about 450 nm and an emission wavelength peak of about 540 nm is used, the emission wavelength of the blue light-emitting diode chip (1) and the excitation wavelength of the YAG phosphor (7a) substantially match. As a result, the wavelength conversion is performed efficiently, and since the emission spectrum distribution of the YAG phosphor (7a) is broad with a half width of about 130 nm, the light emitted outside the semiconductor light emitting device emits light from the light emitting diode chip (1). phosphor emission and of (7a) becomes white light bluish color mixing with.
[0026]
When the light emission of the semiconductor light emitting device is further adjusted to a desired color tone, for example, Ga (gallium) or Lu (lutetium) or Gd (gadolinium) is added in an appropriate amount to partially change the crystal structure of the YAG phosphor (7a). and it is shifted to the short wavelength side or the long wavelength side can be changed emission spectrum distribution. In order to widen the directional angle of light emitted from the semiconductor light emitting device to the outside, when a lead frame without the cup portion (2a) is used, or when a resin sealing body (6) is mixed with a scattering agent such as powdered silica, a transparent resin is used. Is used, in a structure in which the phosphor (7a) is distributed only in the light emitting portion (6b) of the resin sealing body (6), the light component emitted from the lateral direction of the light emitting diode chip (1) emits the phosphor ( 7a) and wavelength conversion may not be performed. For this reason, as shown in FIG. 1, the phosphor (7a) is resin-encapsulated to the upper ends (8, 9) of the wiring conductors (2, 3) forming the leading end of the lead frame. (6) It is good to distribute within. Even in the structure shown in FIG. 1, the concentration of the phosphor (7a) distributed around the light-emitting diode chip (1) is extremely low, and unnecessary concentration is not contained in the resin sealing body (6) below the upper end portions (8, 9). Since there is almost no fluorescent substance (7a), there is no temperature quenching of the fluorescent substance (7a) due to heat generation of the light emitting diode chip (1), and the advantage of the present invention that uses a small amount of the fluorescent substance (7a) is not lost.
[0027]
During the production, a resin (12), which is a liquid epoxy resin for uniformly mixing an appropriate amount of the YAG phosphor (7a), is injected into the cavity (11) of the mold (10), and then the light emitting diode chip (1) and The lead frame to which the bonding wires (4, 5) are attached is inverted and inserted into the cavity (11), and the lead frame is held at a predetermined position as shown in FIG. The density of the YAG phosphor (7a) is about 4.5 g / cm. Three The density of a metal, for example, silver, is 10.5 g / cm. Three Smaller, but with a water density of about 1 g / cm Three , Quartz glass density about 2.2g / cm Three And density of epoxy resin about 1.1 to 1.4 g / cm Three Greater than. In general, the resin (12), which is a liquid epoxy resin used for the resin sealing body (6), has a relatively high viscosity at room temperature at first, but when the temperature is raised to cure the resin (12), the movement of the resin molecules becomes active. And once the viscosity is greatly reduced. Thereafter, the bonding between the resin molecules is gradually promoted by the action of the curing agent, and finally, the whole is bonded to exhibit a property of curing. Therefore, when the resin (12), which is an epoxy resin, is heated and heated according to a predetermined temperature program in the state of FIG. 3, the heavy YAG phosphor (7a) having a large density when the viscosity of the resin (12), which is an epoxy resin, decreases. Are settled, and as shown in FIG. 4, the distribution of the phosphor (7a) is concentrated at the tip of the resin (12), and the resin (12), which is an epoxy resin, is hardened.
[0028]
As shown in FIG. 1, the structure in which the phosphor (7a) is distributed to the periphery of the upper end (8, 9) of the wiring conductor (2, 3), as shown in FIG. Whether the structure in which the phosphor (7a) is distributed only around the tip or an intermediate structure between them is determined by the particle size of the crystal powder of the phosphor (7a), the initial viscosity of the resin sealing body (6) and the heating. The viscosity at the time, the temperature raising program at the time of resin curing, the resin curing time and the like can be appropriately selected and freely adjusted.
[0029]
【The invention's effect】
As described above, in the method for manufacturing a semiconductor light emitting device of the present invention, the light emission of the light emitting diode chip is converted into a desired light wavelength by a phosphor that is concentrated and distributed at the tip portion of the resin sealing body and passes through the resin sealing body. It can be released to the outside, and the following effects can be obtained.
1. The total amount of phosphors used can be reduced.
(2) There is no fear of temperature quenching of the phosphor due to heat generation of the light emitting diode chip.
3. There is no danger of damaging the light emitting diode chip and the bonding wire with the syringe of the resin filling machine or breaking, short-circuiting or deformation.
While having an emission wavelength converting function by 4 phosphors can be obtained an inexpensive semiconductor light-emitting device with high efficiency reliability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a light emitting diode device according to a manufacturing method of the present invention.
FIG. 2 is a cross-sectional view of a light emitting diode device showing another embodiment according to the manufacturing method of the present invention.
FIG. 3 is a sectional view of a mold for manufacturing a light emitting diode device by the manufacturing method of the present invention.
FIG. 4 is a cross-sectional view of a molding die showing a state in which a phosphor is settled.
FIG. 5 is a sectional view of a molding die showing another embodiment according to the present invention.
FIG. 6 is a sectional view showing a state in which a cavity of the mold shown in FIG. 5 is filled with a resin.
FIG. 7 is a sectional view of a conventional light emitting diode device.
FIG. 8 is a sectional view of another conventional light emitting diode device.
[Explanation of symbols]
(1) ··· Light emitting diode chip (semiconductor light emitting element), (1a, 1b) ··· Electrode, (2, 3) ··· Wiring conductor, (4, 5) ··· Bonding wire, (6) ··· Resin sealing Stopper, (6a) ··· Resin body, (6b) ··· Light emitting part, (7a) ··· Phosphor, (10) ··· Mold, (11) ·· Cavity, (11a) ··· Top cavity , (11b) ··· Lower cavity, (12) ·· Resin,

Claims (3)

一対の配線導体と、該一対の配線導体の一方の端部に載置された半導体発光素子と、該半導体発光素子の一方の主面に形成された電極と前記一対の配線導体の少なくとも一方との間を電気的に接続するボンディングワイヤとを備えたリードフレーム組立体を準備する工程と、
前記リードフレーム組立体に形成すべき樹脂封止体の樹脂本体と、該樹脂本体の上部に設けられる発光部との形状に対応するキャビティを形成する成形型を準備する工程と、
前記半導体発光素子を支持する前記リードフレーム組立体を逆さにして、前記配線導体の一方の端部を前記成形型のキャビティ内に配置する前又は後に、流動化する光透過性の樹脂より大きな比重を有する蛍光体を含む前記樹脂を前記成形型のキャビティ内に充填する工程と、
前記樹脂を硬化させる加熱過程の際に、前記蛍光体を自重により前記半導体発光素子から離間する位置に前記樹脂内で沈降させて前記キャビティの下方に移動させる工程と、
前記配線導体の一方の端部を前記樹脂内に浸漬する状態で、前記キャビティ内の前記樹脂を硬化させて、樹脂封止体を形成した後、前記リードフレーム組立体を前記成形型から取り出す工程とを含むことを特徴とする半導体発光装置の製造方法。
A pair of wiring conductors, a semiconductor light-emitting element mounted on one end of the pair of wiring conductors, an electrode formed on one main surface of the semiconductor light-emitting element, and at least one of the pair of wiring conductors; Preparing a lead frame assembly comprising: a bonding wire for electrically connecting between; and
A step of preparing a molding die for forming a cavity corresponding to the shape of the resin body of the resin sealing body to be formed in the lead frame assembly and the light emitting portion provided on the upper part of the resin body;
Before or after disposing the one end of the wiring conductor in the cavity of the molding die, the specific gravity is larger than that of the light-transmitting resin that is fluidized, by inverting the lead frame assembly that supports the semiconductor light emitting element. Filling the resin containing the phosphor having the inside of the cavity of the mold,
During the heating step of curing the resin, the phosphor is settled in the resin at a position separated from the semiconductor light emitting element by its own weight and moved below the cavity,
A step of curing the resin in the cavity while forming one end of the wiring conductor in the resin to form a resin sealing body, and then removing the lead frame assembly from the molding die; And a method for manufacturing a semiconductor light emitting device.
一対の配線導体と、該一対の配線導体の一方の端部に載置された半導体発光素子と、該半導体発光素子の一方の主面に形成された電極と前記一対の配線導体の少なくとも一方との間を電気的に接続するボンディングワイヤとを備えたリードフレーム組立体を準備する工程と、
前記リードフレーム組立体に形成すべき樹脂封止体の樹脂本体と、該樹脂本体の上部に設けられる発光部との形状に対応するキャビティを形成する成形型を準備する工程と、
前記半導体発光素子を支持する前記リードフレーム組立体を逆さにして、前記配線導体の一方の端部を前記成形型のキャビティ内に配置する前又は後に、流動化する光透過性の樹脂より大きな比重を有する蛍光体を含む前記樹脂を前記成形型のキャビティ内に前記半導体発光素子から離間する位置まで充填する工程と、
前記キャビティの残部に蛍光体を混入しない樹脂を充填する工程と、
前記樹脂を硬化させる加熱過程の際に、前記半導体発光素子から離間する位置に前記蛍光体を前記樹脂内で自重により沈降させて前記下部キャビティ部の下方に移動させる工程と、
前記配線導体の一方の端部を前記樹脂内に浸漬する状態で、前記キャビティ内の前記樹脂を硬化させて、樹脂封止体を形成した後、前記リードフレーム組立体を前記成形型から取り出す工程とを含むことを特徴とする半導体発光装置の製造方法。
A pair of wiring conductors, a semiconductor light-emitting element mounted on one end of the pair of wiring conductors, an electrode formed on one main surface of the semiconductor light-emitting element, and at least one of the pair of wiring conductors; Preparing a lead frame assembly comprising: a bonding wire for electrically connecting between; and
A step of preparing a molding die for forming a cavity corresponding to the shape of the resin body of the resin sealing body to be formed in the lead frame assembly and the light emitting portion provided on the upper part of the resin body;
Before or after disposing the one end of the wiring conductor in the cavity of the molding die, the specific gravity is larger than that of the light-transmitting resin that is fluidized, by inverting the lead frame assembly that supports the semiconductor light emitting element. Filling the resin containing a phosphor having a cavity up to a position separated from the semiconductor light emitting element in the cavity of the mold,
A step of filling the remaining part of the cavity with a resin that does not mix the phosphor,
During the heating step of curing the resin, the phosphor is settled by its own weight in the resin at a position separated from the semiconductor light emitting element and moved below the lower cavity portion,
A step of curing the resin in the cavity while forming one end of the wiring conductor in the resin to form a resin sealing body, and then removing the lead frame assembly from the molding die; And a method for manufacturing a semiconductor light emitting device.
一対の配線導体と、該一対の配線導体の一方の端部に載置された半導体発光素子と、該半導体発光素子の一方の主面に形成された電極と前記一対の配線導体の少なくとも一方との間を電気的に接続するボンディングワイヤとを備えたリードフレーム組立体を準備する工程と、
前記リードフレーム組立体に形成すべき樹脂封止体の樹脂本体と、該樹脂本体の上部に設けられる発光部との形状に対応するキャビティを形成する成形型を準備する工程と、
前記半導体発光素子を含む前記リードフレーム組立体の一方の端部を成形型のキャビティ内に配置する前又は後に蛍光体を含む流動化する光透過性の樹脂を前記成形型のキャビティ内に充填する工程と、
前記成形型を回転させて前記半導体発光素子から離間する位置に前記蛍光体を前記樹脂内で移動させる工程と、
前記配線導体の一方の端部を前記樹脂内に浸漬する状態で、前記キャビティ内で前記樹脂を硬化させて、樹脂封止体を形成した後、前記リードフレーム組立体を前記成形型から取り出す工程とを含むことを特徴とする半導体発光装置の製造方法。
A pair of wiring conductors, a semiconductor light-emitting element mounted on one end of the pair of wiring conductors, an electrode formed on one main surface of the semiconductor light-emitting element, and at least one of the pair of wiring conductors; Preparing a lead frame assembly comprising: a bonding wire for electrically connecting between; and
A step of preparing a molding die for forming a cavity corresponding to the shape of the resin body of the resin sealing body to be formed in the lead frame assembly and the light emitting portion provided on the upper part of the resin body;
Before or after arranging one end of the lead frame assembly including the semiconductor light emitting element in the cavity of the molding die, the cavity of the molding die is filled with a fluidized light-transmitting resin containing a phosphor. Process and
Rotating the molding die and moving the phosphor in the resin to a position separated from the semiconductor light emitting element;
A step of removing the lead frame assembly from the molding die after curing the resin in the cavity to form a resin sealing body with one end of the wiring conductor immersed in the resin; And a method for manufacturing a semiconductor light emitting device.
JP21103398A 1998-07-27 1998-07-27 Method for manufacturing semiconductor light emitting device Expired - Fee Related JP3584163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21103398A JP3584163B2 (en) 1998-07-27 1998-07-27 Method for manufacturing semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21103398A JP3584163B2 (en) 1998-07-27 1998-07-27 Method for manufacturing semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004182718A Division JP2004274087A (en) 2004-06-21 2004-06-21 Semiconductor light-emitting device

Publications (2)

Publication Number Publication Date
JP2000049389A JP2000049389A (en) 2000-02-18
JP3584163B2 true JP3584163B2 (en) 2004-11-04

Family

ID=16599264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21103398A Expired - Fee Related JP3584163B2 (en) 1998-07-27 1998-07-27 Method for manufacturing semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3584163B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244161A (en) * 2011-07-04 2011-11-16 张汝京 Long-afterglow device and manufacturing method thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3775081B2 (en) * 1998-11-27 2006-05-17 松下電器産業株式会社 Semiconductor light emitting device
US6621211B1 (en) * 2000-05-15 2003-09-16 General Electric Company White light emitting phosphor blends for LED devices
JP3614776B2 (en) * 2000-12-19 2005-01-26 シャープ株式会社 Chip component type LED and its manufacturing method
AT410266B (en) 2000-12-28 2003-03-25 Tridonic Optoelectronics Gmbh LIGHT SOURCE WITH A LIGHT-EMITTING ELEMENT
JP4193446B2 (en) * 2001-08-22 2008-12-10 日亜化学工業株式会社 Light emitting device
KR20030060281A (en) * 2002-01-08 2003-07-16 주식회사 이츠웰 Light emitting device and display using the device
JP3843245B2 (en) * 2002-06-26 2006-11-08 宣彦 澤木 Semiconductor light emitting element and semiconductor light emitting device
JP4337574B2 (en) * 2003-09-25 2009-09-30 日亜化学工業株式会社 LIGHT EMITTING DEVICE AND METHOD FOR FORMING THE SAME
JP4858867B2 (en) * 2004-08-09 2012-01-18 スタンレー電気株式会社 LED and manufacturing method thereof
JPWO2007018039A1 (en) 2005-08-05 2009-02-19 パナソニック株式会社 Semiconductor light emitting device
JP2007194525A (en) * 2006-01-23 2007-08-02 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
KR101248515B1 (en) * 2006-03-31 2013-04-04 서울반도체 주식회사 Light emitting diode
JP2007027801A (en) * 2006-11-01 2007-02-01 Sanyo Electric Co Ltd Led display device and manufacturing method thereof
JP5006102B2 (en) * 2007-05-18 2012-08-22 株式会社東芝 Light emitting device and manufacturing method thereof
KR101374899B1 (en) * 2012-01-13 2014-03-17 서울반도체 주식회사 Light emitting diode
JP6248881B2 (en) * 2014-09-22 2017-12-20 トヨタ紡織株式会社 Composite membrane and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244161A (en) * 2011-07-04 2011-11-16 张汝京 Long-afterglow device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2000049389A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
JP3584163B2 (en) Method for manufacturing semiconductor light emitting device
TWI351774B (en) Semiconductor light emitting device
JP5100944B2 (en) Light emitting semiconductor device with luminescence conversion element
JP5106813B2 (en) Color conversion type light emitting diode
JP4306224B2 (en) Method for manufacturing light emitting device
TWI726214B (en) Light emitting device and method of manufacturing the same
JP5110744B2 (en) Light emitting device and manufacturing method thereof
JP4756841B2 (en) Manufacturing method of semiconductor light emitting device
JP3434658B2 (en) Semiconductor light emitting device
JP4611937B2 (en) Surface mount type light emitting device and manufacturing method thereof
JP4190258B2 (en) Method for producing phosphor
JP3541709B2 (en) Method of forming light emitting diode
US20090011527A1 (en) Producing a surface-mountable radiation emitting component
US20040256706A1 (en) Molded package and semiconductor device using molded package
JP2005064233A (en) Wavelength conversion type led
JP2009170825A (en) Light emitting device and manufacturing method thereof
US9006007B2 (en) Method for producing an optoelectronic assembly and optoelectronic assembly
JP2004071908A (en) Light emitting device
JP4661032B2 (en) Light emitting device and manufacturing method thereof
KR20100115365A (en) Light emitting device
JP2005340813A (en) Mold material containing fluorescent material and light-emitting device made of the same
JP2003008073A (en) Light emitting element
JP2004274087A (en) Semiconductor light-emitting device
KR20070006733A (en) Radiation-emitting and/or radiation-receiving semiconductor component and method for the production thereof
JP4661031B2 (en) Light emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040802

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees