JP3577402B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP3577402B2
JP3577402B2 JP20152697A JP20152697A JP3577402B2 JP 3577402 B2 JP3577402 B2 JP 3577402B2 JP 20152697 A JP20152697 A JP 20152697A JP 20152697 A JP20152697 A JP 20152697A JP 3577402 B2 JP3577402 B2 JP 3577402B2
Authority
JP
Japan
Prior art keywords
layer
battery
water
exchange membrane
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20152697A
Other languages
Japanese (ja)
Other versions
JPH1145733A (en
Inventor
泰彦 永森
信和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20152697A priority Critical patent/JP3577402B2/en
Publication of JPH1145733A publication Critical patent/JPH1145733A/en
Application granted granted Critical
Publication of JP3577402B2 publication Critical patent/JP3577402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プロトン導電性を有するイオン交換膜を電解質として用いた固体高分子型燃料電池に関する。
【0002】
【従来の技術】
図3は従来の固体高分子型燃料電池の構成を示す概略図である。この固体高分子型燃料電池は、図3に示すようにプロトン導電性を有するイオン交換膜1を電解質として用い、このイオン交換膜1を挟んでアノード電極2とカソード電極3とを備えて構成されている。
【0003】
イオン交換膜1には、通常、Nafion(デュポン社製),Flemion(旭硝子株式会社製),Aciplex(旭化成工業株式会社製),Dow(ダウ ケミカル社製)などが使用されており、それぞれの電極2,3は、触媒層4と、この触媒層4を支持する支持層5とからなり、各触媒層4がイオン交換膜1に接するように構成されている。そして、アノード電極2に水素を含む燃料ガスを供給する一方、カソード電極3に空気を含む酸化剤ガスを供給することにより発電を行う。
【0004】
燃料ガス中に含まれる水素(Η)は、アノード電極2にて、
【化1】
→2H+2e……(反応1)
なる反応により酸化される。H(プロトン)はイオン交換膜1中を移動する一方、e(電子)は外部負荷8を通り電気的な仕事をして、それぞれカソード電極3に達する。このカソード電極3では酸化剤ガス中の酸素(Ο)がHおよびeと、
【化2】

Figure 0003577402
なる反応によって還元される。燃料ガスと酸化剤ガスが供給される限り、上記の酸化・還元反応が継続して進行し、電池は発電し続ける。一個の電池の出力は小さいため、実際の固体高分子型燃料電池は図3に示す電池をセパレータを介して複数個積層して用いられることがほとんどである。このため一個の電池のことを単位電池と称する。
【0005】
イオン交換膜1は、水を含むことによって有用なプロトン導電性を示す。したがって、固体高分子型燃料電池が実用性能を発揮するためには、膜は常に水を含んだ状態、すなわち含水していることが必要である。しかし、固体高分子型燃料電池には、イオン交換膜1の含水量が変動する要因が以下のようにいくつか存在する。
【0006】
(1)アノード電極2からカソード電極3へイオン交換膜1中を移動するH(プロトン)は、いくらかの水分子(HO)を伴って移動する。
(2)カソード電極3では、酸素の還元により水が生成する。
(3)上記(1),(2)の水の一部(HO)は、カソード電極3からアノード電極2へ拡散する。
(4)燃料ガスによってイオン交換膜1のアノード電極2側から水が電池外へ取り去られる。
(5)酸化剤ガスによってイオン交換膜1のカソード電極3側から水が電池外へ取り去られる。
【0007】
この中で(1)と(2)は電池の反応速度に依存し、膜のカソード電極3側の含水量が増す要因である。(3)は(1)と(2)との一部であるから、膜のアノード電極2側の含水量は減る傾向にある。
【0008】
(4),(5)は共に膜の含水量が減る要因である。含水量が増す要因もあるものの、実際の電池では流量にもよるが、(4)および(5)の影響が大きく、膜は短時間で乾燥し、結果として電池の特性は低下する。このような現象を解決するために、何等かの方法で予め燃料ガス、あるいは燃料ガスと酸化剤ガスの両方に水分を含ませて、すなわち加湿を行い、電極を通してイオン交換膜1に水分を供給する手段が既に採用されている。
【0009】
燃料ガスを加湿することにより(1)と(4)によるアノード側のイオン交換膜1の乾燥を防止することができる。酸化剤ガスの加湿は必ずしも必要でないが、(1)と(2)と加えたものよりも大きい(5)の場合は酸化剤ガスの加湿を行うことにより、カソード電極3側のイオン交換膜1の乾燥を防止することができる。
【0010】
このように反応ガスを加湿することにより、イオン交換膜1の乾燥を防止することが可能であるが、加湿された反応ガスが電極を通りイオン交換膜1に達するため、電極の構造も固体高分子型電池の特性を左右する要因となる。
【0011】
触媒層4は、アノード電極2,カソード電極3でそれぞれ上記反応1、反応2を促進するための触媒を含んだ層である。触媒は単に白金黒を用いる場合もあるが、通常はアセチレンブラック,ファーネスブラックなどの高い比表面積を有するカーボン表面に、触媒作用を有する白金あるいは白金と他の金属との合金(白金合金)の微粒子を分散担持したもの(カーボン担持白金触媒)を使用する。
【0012】
このカーボン担持白金触媒は、白金の比表面積を増加させることにより、白金の使用量を低減するための工夫であるが、低密度のカーボンを含むため嵩高であり、また触媒層4はカーボンの細孔構造を反映した多孔質構造となる。
【0013】
この多孔質構造は以下のようにいくつかの電池特性の低下要因を含む。(a)細孔内に存在するためイオン交換膜1に接することができない、すなわちプロトンの供給がなされない白金、あるいは白金合金の割合が増し、電池の触媒活性が低下する。(b)ガスに含まれ膜に供給される水や電池反応の生成水が細孔内に滞留し、ガスの移動を阻害して電池のガス拡散性が低下する。
【0014】
(a)は固体であるイオン交換膜1が触媒層4の細孔内に入り込めないことから生じる問題であるが、これに対して、イオン交換膜1と同組成の高分子の分散溶液を触媒と混合して触媒層4を形成することにより、白金あるいは白金合金の利用率を上げる手段が既に採用されている。(b)の問題は、撥水性を有する微粒子を触媒層4に混合することで回避されることが多い。
【0015】
ここで、撥水性を有する微粒子とは、テフロン(デュポン社製:四フッ化エチレン樹脂)を初めとするフッ素樹脂粒子,カーボンとフッ素樹脂の混合物を焼結した後、粉砕したカーボン/フッ素樹脂粒子,カーボンあるいはピッチの表面をフッ素化したフッ化カーボン、フッ化ピッチなどである。これらの撥水性微粒子を触媒層4に混合することにより、膜への水の供給や、電池反応による生成水の取り出しがスムースに行われるようになる。
【0016】
触媒層4は200μm以下と薄く、かつ脆い。また膜も比較的柔らかいため、共に単層では取扱いが困難な場合が多い。このため、これらの層を補強する支持層5が用いられる。この支持層5に必要な機能は、電池の取扱いを容易にし、かつ積層に耐え得る強度,電気伝導性,ガス拡散性などであり、多孔質構造を有するカーボン材料に撥水処理を行ったものが使用されることが多い。
【0017】
具体的には、ΤGΡ(東レ株式会社製)などのカーボンペーパーにフッ素樹脂で撥水処理を行ったものや、カーボンとフッ素樹脂との混合物を板状に焼き固めたものが使用されている。いずれもフッ素樹脂を何等かの方法により含んでいるのは、触媒層4での問題(b)と同様に細孔内での水の滞留を防止するためである。
【0018】
なお、場合によっては、図3に示す触媒層4のみを電極と称し、支持層5を単独で取り扱うものもあるが、その場合の単位電池での電極と支持層の構成が図3の触媒層4と支持層5の構成と同一であれば、その単位電池は呼称が異なるだけで本発明の従来技術の電池に含まれる。
【0019】
【発明が解決しようとする課題】
しかしながら、以上のような構成の従来の固体高分子型燃料電池では、イオン交換膜1は常に高い含水状態であるように反応ガスを加湿して水を供給しなければならない一方、反応ガスの通り道でもある電極内には水が滞留しにくい、すなわち水は電池内に入り易く、かつ出やすい構造となっているため、供給した水が、電池反応で生成した水も含めて、基本的に全てが、未反応の燃料ガスと酸化剤ガスによって電池外に取り出されることになり、大量の電池排水が生じるという問題がある。勿論、この排水を再び循環して電池に供給することも可能であるが、この場合でも、電池プラント内に大量の水を保持していなければならい問題に変わりはない。
【0020】
本発明は上述した事情を考慮してなされたもので、イオン交換膜の含水量を従来と同等とし、電池特性を低下させることなく、電池排水の量を低減する固体高分子型燃料電池を提供することを目的とする。
【0021】
【課題を解決するための手段】
上述した課題を解決するために、本発明の請求項1は、触媒層および支持層によりそれぞれ構成されるアノード電極およびカソード電極と、このアノード電極とカソード電極との間に挟まれ、かつプロトン導電性を有するイオン交換膜とを備えた固体高分子型燃料電池において、前記イオン交換膜を除いて最も親水性の材料を含んだ層をカソード電極の触媒層と支持層との間に設け、前記親水性の材料を、SiO ,SnO ,Al のうち、少なくともいずれか一種の金属酸化物を選択するとともに、前記親水性の材料を含んだ層が前記触媒層および前記支持層よりも薄く形成する構成にしたことを特徴とする。
【0025】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0026】
図1は本発明に係る固体高分子型燃料電池の一実施形態を示す概略図である。なお、従来の構成と同一または対応する部分には、図3と同一の符号を用いて説明する。
【0027】
図1に示すように、本実施形態の固体高分子型燃料電池は、プロトン導電性を有するイオン交換膜1を電解質として用い、このイオン交換膜1を挟んでアノード電極2とカソード電極3とを備えている。それぞれの電極2,3は、触媒層4と、この触媒層4を支持する支持層5とからなり、各触媒層4がイオン交換膜1に接するように構成されている。
【0028】
ここで、カソード電極3には、イオン交換膜1を除いて最も親水性の材料が含まれ、具体的には触媒層4と支持層5との間に、これら触媒層4および支持層5よりも薄く形成された親水性の材料を含んだ親水層6が設けられている。そして、親水性の材料としては、SiO,SnO,Alなどの金属酸化物が用いられる。
【0029】
このようにして構成された単位電池は電池治具7に組み込まれ、燃料ガス入口7aからアノード電極2に加湿した水素を含む燃料ガスを供給する一方、酸化剤ガス入口7cからカソード電極3に加湿した空気を含む酸化剤ガスを供給することにより発電を行う。そして、燃料ガスおよび酸化剤ガスは、それぞれ燃料ガス出口7bおよび酸化剤ガス出口7dから排出される。
【0030】
次に、本実施形態の固体高分子型燃料電池を具体的に説明する。
【0031】
まず、厚さ300μmのカーボンペーパーに四フッ化エチレン樹脂の分散溶液を含浸させた後、炉で350℃で20分間熱処理して支持層5を作製した。次に、カーボンと金属酸化物であるAl粉末を6:4の割合でアルコールを溶媒として混合してインクを合成し、このインクを支持層5に塗布し、乾燥して親水層6を形成した。
【0032】
そして、カーボン担持白金触媒とNafion5%溶液を1:3の割合で混合しインクを合成して親水層6に塗布し、乾燥して触媒層4を形成し、カソード電極3を作製した。アノード電極2は、親水層6を形成する工程を省略し、支持層5に直接触媒層4を形成して作製した。触媒層4の厚さはアノード電極2、カソード電極3ともに約100μmであった。イオン交換膜1としてNafion膜を使用して、作製したアノード電極2、カソード電極3をNafion膜にプレスして単位電池を作製した。この時、親水層6のインク塗布量を調整して、親水層6の厚さが50μm、150μmの、2種の単位電池を作製した。また、カソード電極3に親水層6が設けられていない従来の電池も併せて作製した。
【0033】
この3種の単位電池を、それぞれ電池治具7に組み込み、燃料ガス入口7aから加湿した水素を、酸化剤ガス入口7cから加湿した空気をそれぞれ供給して発電を行った。水素,空気の加湿量は、それぞれの電池特性が最も良くなるように調節した。発電は100時間行い、その間、燃料ガス出口7bまたは酸化剤ガス出口7dから排出された水量を測定したところ、従来の電池が約650mlであったのに対し、親水層6が50μm,150μmの電池の水量は、それぞれ約300ml,200mlであった。また、電池抵抗を測定すると、いずれの電池も約3mΩと変わらなかった。
【0034】
さらに、100時間運転後の電池特性を図2に示す。図2によれば、親水層50μmの電池と従来の電池の特性はほとんど変わらないが、親水層150μmの電池は高電流域での電圧が従来電池より低くなった。また、親水性の材料としてSiO,SnOを使用した電池もAlと同様の結果を示した。
【0035】
親水層150μmの電池の低特性は、水を保持した親水層6が空気の拡散を阻害しているためと考えられる。親水層6は電池排水低減に貢献するものの、カソード電極3が含む触媒層4や支持層5の厚さを越えると、撥水処理を行わない、あるいは親水処理を行った触媒層4や支持層5と変わりがなく、水の滞留による反応ガス拡散阻害の要因となる。このことを逆に考えると、触媒層4や支持層5が水を保持しても反応ガスの拡散を阻害しなければ、これらの層のいずれかに親水処理をすることによって親水層6の機能を兼ね備えることが可能である。
【0036】
しかし、既にある機能を有する触媒層4や支持層5に、親水性という新たな機能を付け加えた場合、親水性の度合の調整が困難であったり、触媒層4や支持層5の本来の機能を損なう可能性もある。これに対して、親水層6を独立して形成することは、材料の組成や量を変更することも容易で、既存の電極に設計変更を行うことなく適用できるという利点もある。
【0037】
また、本実施形態の親水層6の親水性は、イオン交換膜1を除いた電池内での相対的な親水性であり、換言すれば、イオン交換膜1を除いて最も疎水性でない層のことである。したがって、触媒層4と支持層5がフッ素樹脂などで撥水処理を行っている場合、何等処理を行っていないカーボンのみで親水層6を構成することも可能であり、前述の親水層6と同様の作用を有する。
【0038】
このように本実施形態によれば、イオン交換膜1を除いて最も親水性の材料が、カソード電極3に含まれることにより、H(プロトン)と共に移動した水と電池反応による生成水とが、この親水性の材料に捉えられ、イオン交換膜1の乾燥が抑制されるため、加湿する水の量を低減することができる。
【0039】
また、親水性の材料を含んだ親水層6を触媒層4と支持層5との間に設けたことにより、H(プロトン)と共に移動した水と電池反応による生成水とが、イオン交換膜1に近い位置で保持されることとなり、イオン交換膜1の含水量低減が強く抑制され、イオン交換膜1が乾燥せず、かつ支持層5への水の流出が抑制されることにより、支持層5への水の滞留が防止され、支持層5での反応ガスの拡散が阻害されることがなくなる。
【0040】
さらに、親水性の材料がSiO,SnO,Alなどの金属酸化物であることから、H(プロトン)と共に移動した水と電池反応による生成水とがSiO,SnO,Alなどの金属酸化物に捉えられ、イオン交換膜1の乾燥が抑制されるため、加湿する水の量を低減することができる。
【0041】
さらにまた、触媒層4と支持層5との間の親水性の材料を含んだ親水層6が、触媒層4および支持層5よりも薄く形成されたことにより、親水層6が水を保持した場合でも、反応ガスの拡散を阻害することがなくなる。
【0042】
【発明の効果】
以上説明したように、本発明の請求項1によれば、イオン交換膜を除いて最も親水性の材料を含んだ層をカソード電極の触媒層と支持層との間に設け、前記親水性の材料を、SiO ,SnO ,Al のうち、少なくともいずれか一種の金属酸化物を選択するとともに、前記親水性の材料を含んだ層が前記触媒層および前記支持層よりも薄く形成する構成にしたので、支持層への水の滞留が防止され、支持層での反応ガスの拡散が阻害されることがなくなるとともに、電池特性を低下させることなく、電池排水の量を低減する固体高分子型燃料電池を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る固体高分子型燃料電池の一実施形態を示す概略図。
【図2】本実施形態の電池と従来の電池の電池特性を示す図。
【図3】従来の固体高分子型燃料電池の構成を示す概略図。
【符号の説明】
1 イオン交換膜
2 アノード電極
3 カソード電極
4 触媒層
5 支持層
6 親水層
7 電池治具
7a 燃料ガス入口
7b 燃料ガス出口
7c 酸化剤ガス入口
7d 酸化剤ガス出口
8 外部負荷[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell using an ion exchange membrane having proton conductivity as an electrolyte.
[0002]
[Prior art]
FIG. 3 is a schematic diagram showing a configuration of a conventional polymer electrolyte fuel cell. As shown in FIG. 3, this polymer electrolyte fuel cell uses an ion exchange membrane 1 having proton conductivity as an electrolyte, and includes an anode electrode 2 and a cathode electrode 3 with the ion exchange membrane 1 interposed therebetween. ing.
[0003]
For the ion exchange membrane 1, Nafion (manufactured by DuPont), Flemion (manufactured by Asahi Glass Co., Ltd.), Aciplex (manufactured by Asahi Kasei Kogyo Co., Ltd.), Dow (manufactured by Dow Chemical Company), and the like are usually used. Reference numerals 2 and 3 each include a catalyst layer 4 and a support layer 5 that supports the catalyst layer 4, and each catalyst layer 4 is configured to be in contact with the ion exchange membrane 1. Power is generated by supplying a fuel gas containing hydrogen to the anode electrode 2 and supplying an oxidizing gas containing air to the cathode electrode 3.
[0004]
Hydrogen (Η 2 ) contained in the fuel gas is
Embedded image
H 2 → 2H + + 2e (Reaction 1)
It is oxidized by the following reaction. H + (proton) moves in the ion exchange membrane 1, while e (electron) performs electric work through the external load 8 and reaches the cathode 3. In the cathode electrode 3, oxygen (Ο 2 ) in the oxidant gas becomes H + and e ,
Embedded image
Figure 0003577402
Is reduced by the following reaction. As long as the fuel gas and the oxidizing gas are supplied, the above oxidation / reduction reactions continue to proceed, and the battery continues to generate power. Since the output of one cell is small, an actual polymer electrolyte fuel cell is often used by laminating a plurality of cells shown in FIG. 3 via a separator. For this reason, one battery is called a unit battery.
[0005]
The ion exchange membrane 1 shows useful proton conductivity by including water. Therefore, in order for the polymer electrolyte fuel cell to exhibit practical performance, the membrane must always contain water, that is, contain water. However, in the polymer electrolyte fuel cell, there are several factors that cause the water content of the ion exchange membrane 1 to fluctuate as follows.
[0006]
(1) H + (proton) moving in the ion exchange membrane 1 from the anode electrode 2 to the cathode electrode 3 moves with some water molecules (H 2 O).
(2) At the cathode electrode 3, water is generated by reduction of oxygen.
(3) Part of the water (H 2 O) in the above (1) and (2) diffuses from the cathode electrode 3 to the anode electrode 2.
(4) Water is removed from the battery from the anode electrode 2 side of the ion exchange membrane 1 by the fuel gas.
(5) Water is removed from the battery from the cathode electrode 3 side of the ion exchange membrane 1 by the oxidizing gas.
[0007]
Among them, (1) and (2) depend on the reaction speed of the battery and are factors that increase the water content of the membrane on the cathode electrode 3 side. Since (3) is a part of (1) and (2), the water content on the anode electrode 2 side of the membrane tends to decrease.
[0008]
Both (4) and (5) are factors that reduce the water content of the membrane. Although there is a factor of increasing the water content, in an actual battery, although depending on the flow rate, the effects of (4) and (5) are large, and the membrane dries in a short time, and as a result, the characteristics of the battery deteriorate. In order to solve such a phenomenon, the fuel gas or both the fuel gas and the oxidizing gas are preliminarily moistened by some method, that is, humidification is performed, and the water is supplied to the ion exchange membrane 1 through the electrode. Means have already been adopted.
[0009]
By humidifying the fuel gas, drying of the ion exchange membrane 1 on the anode side due to (1) and (4) can be prevented. Although the humidification of the oxidizing gas is not always necessary, in the case of (5) which is larger than the sum of (1) and (2), the oxidizing gas is humidified to thereby provide the ion exchange membrane 1 on the cathode electrode 3 side. Can be prevented from drying.
[0010]
By humidifying the reaction gas in this way, it is possible to prevent the ion exchange membrane 1 from drying. However, since the humidified reaction gas reaches the ion exchange membrane 1 through the electrode, the electrode structure also has a solid height. This is a factor that affects the characteristics of the molecular battery.
[0011]
The catalyst layer 4 is a layer containing a catalyst for promoting the reactions 1 and 2 at the anode electrode 2 and the cathode electrode 3, respectively. In some cases, platinum black is simply used as the catalyst, but usually fine particles of platinum or an alloy of platinum and another metal (platinum alloy) having a catalytic action are formed on a carbon surface having a high specific surface area such as acetylene black or furnace black. (Platinum catalyst supported on carbon).
[0012]
This carbon-supported platinum catalyst is designed to reduce the amount of platinum used by increasing the specific surface area of platinum, but is bulky because it contains low-density carbon, and the catalyst layer 4 has a fine carbon layer. The porous structure reflects the pore structure.
[0013]
This porous structure includes several factors that degrade battery characteristics as follows. (A) Since it is present in the pores, it cannot be in contact with the ion exchange membrane 1, that is, the proportion of platinum or a platinum alloy to which no proton is supplied increases, and the catalytic activity of the battery decreases. (B) Water contained in the gas and supplied to the membrane or water produced by the battery reaction stays in the pores, hindering the movement of the gas and reducing the gas diffusivity of the battery.
[0014]
(A) is a problem caused by the fact that the solid ion-exchange membrane 1 cannot enter the pores of the catalyst layer 4. On the other hand, a polymer dispersion solution having the same composition as the ion-exchange membrane 1 is used. Means for increasing the utilization rate of platinum or a platinum alloy by forming a catalyst layer 4 by mixing with a catalyst has already been adopted. The problem (b) is often avoided by mixing fine particles having water repellency with the catalyst layer 4.
[0015]
Here, the fine particles having water repellency include fluorocarbon resin particles such as Teflon (manufactured by DuPont: ethylene tetrafluoride resin), and carbon / fluorocarbon resin particles obtained by sintering a mixture of carbon and fluorocarbon resin and then pulverizing the mixture. , Carbon fluoride or carbon fluoride in which the surface of pitch is fluorinated, pitch fluoride, or the like. By mixing these water-repellent fine particles with the catalyst layer 4, the supply of water to the membrane and the removal of water generated by the battery reaction can be performed smoothly.
[0016]
The catalyst layer 4 is as thin as 200 μm or less and brittle. In addition, since the film is relatively soft, it is often difficult to handle with a single layer. For this reason, a support layer 5 for reinforcing these layers is used. The functions required for the supporting layer 5 are strength, electric conductivity, gas diffusivity, etc., which make it easy to handle the battery and can withstand lamination, and are obtained by performing a water repellent treatment on a carbon material having a porous structure. Is often used.
[0017]
Specifically, carbon paper such as {G} (manufactured by Toray Industries, Inc.) that has been subjected to a water-repellent treatment with a fluororesin, or a mixture obtained by baking a mixture of carbon and a fluororesin into a plate shape is used. The reason for containing the fluororesin by any method is to prevent water from staying in the pores as in the case of the problem (b) in the catalyst layer 4.
[0018]
In some cases, only the catalyst layer 4 shown in FIG. 3 is referred to as an electrode, and the support layer 5 is handled alone. In this case, the configuration of the electrode and the support layer in the unit battery is the same as that of the catalyst layer shown in FIG. 4 and the support layer 5, the unit batteries are included in the prior art battery of the present invention only with a different name.
[0019]
[Problems to be solved by the invention]
However, in the conventional polymer electrolyte fuel cell having the above configuration, the ion exchange membrane 1 must be supplied with water by humidifying the reaction gas so that the ion exchange membrane 1 always has a high water content. However, it is difficult for water to stay in some electrodes, that is, water is easy to enter and exit the battery, so basically all supplied water, including water generated by the battery reaction, However, there is a problem in that unreacted fuel gas and oxidizing gas are taken out of the battery and a large amount of battery drainage occurs. Of course, it is possible to recirculate this wastewater and supply it to the battery, but even in this case, there is still the problem that a large amount of water must be retained in the battery plant.
[0020]
The present invention has been made in view of the above-described circumstances, and provides a polymer electrolyte fuel cell in which the water content of an ion exchange membrane is equivalent to the conventional one and the amount of battery drainage is reduced without lowering the battery characteristics. The purpose is to do.
[0021]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, claim 1 of the present invention relates to an anode electrode and a cathode electrode each constituted by a catalyst layer and a support layer, and a proton conductive layer sandwiched between the anode electrode and the cathode electrode. In a polymer electrolyte fuel cell comprising an ion exchange membrane having a property, a layer containing the most hydrophilic material except for the ion exchange membrane is provided between the catalyst layer of the cathode electrode and the support layer, As the hydrophilic material , at least one kind of metal oxide is selected from SiO 2 , SnO 2 , and Al 2 O 3 , and the layer containing the hydrophilic material is more than the catalyst layer and the support layer. Is also formed to be thin .
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0026]
FIG. 1 is a schematic view showing one embodiment of a polymer electrolyte fuel cell according to the present invention. Parts that are the same as or correspond to the conventional configuration will be described using the same reference numerals as in FIG.
[0027]
As shown in FIG. 1, the polymer electrolyte fuel cell according to the present embodiment uses an ion exchange membrane 1 having proton conductivity as an electrolyte, and an anode electrode 2 and a cathode electrode 3 are sandwiched by the ion exchange membrane 1. Have. Each of the electrodes 2 and 3 includes a catalyst layer 4 and a support layer 5 that supports the catalyst layer 4, and each catalyst layer 4 is configured to be in contact with the ion exchange membrane 1.
[0028]
Here, the cathode electrode 3 contains the most hydrophilic material except for the ion-exchange membrane 1, and more specifically, between the catalyst layer 4 and the support layer 5, A hydrophilic layer 6 containing a hydrophilic material that is also formed thin is provided. As the hydrophilic material, a metal oxide such as SiO 2 , SnO 2 , Al 2 O 3 is used.
[0029]
The unit battery thus configured is incorporated in the battery jig 7 and supplies the fuel gas containing humidified hydrogen to the anode electrode 2 from the fuel gas inlet 7a, while humidifying the cathode electrode 3 from the oxidant gas inlet 7c. Electric power is generated by supplying the oxidizing gas containing the air. Then, the fuel gas and the oxidizing gas are discharged from the fuel gas outlet 7b and the oxidizing gas outlet 7d, respectively.
[0030]
Next, the polymer electrolyte fuel cell of the present embodiment will be specifically described.
[0031]
First, a carbon paper having a thickness of 300 μm was impregnated with a dispersion solution of a tetrafluoroethylene resin, and then heat-treated at 350 ° C. for 20 minutes in a furnace to form a support layer 5. Next, carbon and Al 2 O 3 powder, which is a metal oxide, are mixed at a ratio of 6: 4 with alcohol as a solvent to synthesize an ink. The ink is applied to the support layer 5, dried, and dried to form a hydrophilic layer 6. Was formed.
[0032]
Then, a carbon-supported platinum catalyst and a 5% Nafion solution were mixed at a ratio of 1: 3 to synthesize an ink, applied to the hydrophilic layer 6, and dried to form the catalyst layer 4, thereby producing the cathode electrode 3. The anode electrode 2 was produced by omitting the step of forming the hydrophilic layer 6 and forming the catalyst layer 4 directly on the support layer 5. The thickness of the catalyst layer 4 was about 100 μm for both the anode electrode 2 and the cathode electrode 3. Using a Nafion membrane as the ion exchange membrane 1, the produced anode electrode 2 and cathode electrode 3 were pressed into a Nafion membrane to produce a unit cell. At this time, the amount of ink applied to the hydrophilic layer 6 was adjusted to produce two types of unit batteries in which the thickness of the hydrophilic layer 6 was 50 μm and 150 μm. In addition, a conventional battery in which the hydrophilic layer 6 was not provided on the cathode electrode 3 was also manufactured.
[0033]
These three types of unit batteries were respectively incorporated into a battery jig 7, and humidified hydrogen was supplied from a fuel gas inlet 7a, and humidified air was supplied from an oxidant gas inlet 7c to generate power. The humidification amounts of hydrogen and air were adjusted so that the respective battery characteristics became the best. The power generation was performed for 100 hours. During that time, when the amount of water discharged from the fuel gas outlet 7b or the oxidizing gas outlet 7d was measured, the conventional battery was about 650 ml, whereas the hydrophilic layer 6 had a battery of 50 μm or 150 μm. Were about 300 ml and 200 ml, respectively. When the battery resistance was measured, none of the batteries was unchanged at about 3 mΩ.
[0034]
FIG. 2 shows the battery characteristics after 100 hours of operation. According to FIG. 2, the characteristics of the battery having the hydrophilic layer of 50 μm and the conventional battery were almost the same, but the voltage of the battery having the hydrophilic layer of 150 μm in the high current region was lower than that of the conventional battery. In addition, a battery using SiO 2 or SnO 2 as a hydrophilic material also showed the same result as Al 2 O 3 .
[0035]
It is considered that the low characteristics of the battery having a hydrophilic layer of 150 μm are due to the hydrophilic layer 6 holding water impeding the diffusion of air. Although the hydrophilic layer 6 contributes to the reduction of battery drainage, if the thickness exceeds the thickness of the catalyst layer 4 or the support layer 5 included in the cathode electrode 3, the water repellent treatment is not performed, or the hydrophilically treated catalyst layer 4 or the support layer 5, which is a factor of inhibiting the diffusion of the reaction gas due to stagnation of water. Considering this in reverse, if the catalyst layer 4 and the support layer 5 do not inhibit the diffusion of the reaction gas even if they hold water, the function of the hydrophilic layer 6 can be achieved by subjecting any of these layers to hydrophilic treatment. Can be combined.
[0036]
However, when a new function of hydrophilicity is added to the catalyst layer 4 or the support layer 5 having an existing function, it is difficult to adjust the degree of hydrophilicity, or the original function of the catalyst layer 4 or the support layer 5 can be improved. May be impaired. On the other hand, forming the hydrophilic layer 6 independently has the advantage that the composition and amount of the material can be easily changed, and the hydrophilic layer 6 can be applied to an existing electrode without changing the design.
[0037]
Further, the hydrophilicity of the hydrophilic layer 6 of the present embodiment is a relative hydrophilicity in the battery excluding the ion exchange membrane 1, in other words, the hydrophilicity of the least hydrophobic layer excluding the ion exchange membrane 1. That is. Therefore, when the catalyst layer 4 and the support layer 5 have been subjected to a water-repellent treatment with a fluororesin or the like, the hydrophilic layer 6 can be composed of only the untreated carbon. It has a similar effect.
[0038]
As described above, according to the present embodiment, since the most hydrophilic material except for the ion exchange membrane 1 is included in the cathode electrode 3, water that moves with H + (proton) and water generated by the battery reaction are separated. However, the amount of water to be humidified can be reduced because the hydrophilic material is captured and drying of the ion exchange membrane 1 is suppressed.
[0039]
Further, since the hydrophilic layer 6 containing a hydrophilic material is provided between the catalyst layer 4 and the support layer 5, the water that has moved together with H + (protons) and the water generated by the battery reaction are converted into an ion exchange membrane. 1, the water content of the ion exchange membrane 1 is strongly reduced, the ion exchange membrane 1 is not dried, and the outflow of water to the support layer 5 is suppressed. The retention of water in the layer 5 is prevented, and the diffusion of the reaction gas in the support layer 5 is not hindered.
[0040]
Furthermore, since the hydrophilic material is a metal oxide such as SiO 2 , SnO 2 , and Al 2 O 3 , the water that has moved with H + (proton) and the water generated by the battery reaction are different from SiO 2 , SnO 2 , Since it is captured by a metal oxide such as Al 2 O 3 and the drying of the ion exchange membrane 1 is suppressed, the amount of humidified water can be reduced.
[0041]
Furthermore, since the hydrophilic layer 6 containing a hydrophilic material between the catalyst layer 4 and the support layer 5 was formed thinner than the catalyst layer 4 and the support layer 5, the hydrophilic layer 6 retained water. Even in this case, the diffusion of the reaction gas is not hindered.
[0042]
【The invention's effect】
As described above, according to claim 1 of the present invention, a layer containing the most hydrophilic material except for the ion exchange membrane is provided between the catalyst layer of the cathode electrode and the support layer, The material is selected from at least one metal oxide of SiO 2 , SnO 2 , and Al 2 O 3 , and the layer containing the hydrophilic material is formed thinner than the catalyst layer and the support layer. With this configuration, the retention of water in the support layer is prevented, the diffusion of the reaction gas in the support layer is not hindered, and the solid matter that reduces the amount of battery drainage without lowering the battery characteristics. A polymer fuel cell can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of a polymer electrolyte fuel cell according to the present invention.
FIG. 2 is a diagram showing battery characteristics of the battery of the present embodiment and a conventional battery.
FIG. 3 is a schematic diagram showing a configuration of a conventional polymer electrolyte fuel cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ion exchange membrane 2 Anode electrode 3 Cathode electrode 4 Catalyst layer 5 Support layer 6 Hydrophilic layer 7 Battery jig 7a Fuel gas inlet 7b Fuel gas outlet 7c Oxidant gas inlet 7d Oxidant gas outlet 8 External load

Claims (1)

触媒層および支持層によりそれぞれ構成されるアノード電極およびカソード電極と、このアノード電極とカソード電極との間に挟まれ、かつプロトン導電性を有するイオン交換膜とを備えた固体高分子型燃料電池において、前記イオン交換膜を除いて最も親水性の材料を含んだ層をカソード電極の触媒層と支持層との間に設け、前記親水性の材料を、SiO ,SnO ,Al のうち、少なくともいずれか一種の金属酸化物を選択するとともに、前記親水性の材料を含んだ層が前記触媒層および前記支持層よりも薄く形成する構成にしたことを特徴とする固体高分子型燃料電池。In a polymer electrolyte fuel cell comprising an anode electrode and a cathode electrode respectively constituted by a catalyst layer and a support layer, and an ion exchange membrane having proton conductivity sandwiched between the anode electrode and the cathode electrode A layer containing the most hydrophilic material except for the ion exchange membrane is provided between the catalyst layer of the cathode electrode and the support layer, and the hydrophilic material is made of SiO 2 , SnO 2 , or Al 2 O 3 . Wherein at least one kind of metal oxide is selected, and the layer containing the hydrophilic material is formed to be thinner than the catalyst layer and the support layer. battery.
JP20152697A 1997-07-28 1997-07-28 Polymer electrolyte fuel cell Expired - Fee Related JP3577402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20152697A JP3577402B2 (en) 1997-07-28 1997-07-28 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20152697A JP3577402B2 (en) 1997-07-28 1997-07-28 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH1145733A JPH1145733A (en) 1999-02-16
JP3577402B2 true JP3577402B2 (en) 2004-10-13

Family

ID=16442515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20152697A Expired - Fee Related JP3577402B2 (en) 1997-07-28 1997-07-28 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3577402B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3357872B2 (en) * 2000-01-25 2002-12-16 三洋電機株式会社 Fuel cell
IT1319649B1 (en) * 2000-11-14 2003-10-23 Nuvera Fuel Cells Europ Srl MEMBRANE-ELECTRODE ASSEMBLY FOR MEMBRANE-POLYMER FUEL CELL.
ATE447775T1 (en) * 2001-03-07 2009-11-15 Panasonic Corp POLYMER ELECTROLYTE TYPE FUEL CELL AND METHOD FOR PRODUCING
JP2002270189A (en) * 2001-03-07 2002-09-20 Matsushita Electric Ind Co Ltd Manufacturing method for high polymer electrolyte type fuel cell and high polymer electrolyte type fuel cell using the same
CN1307736C (en) 2001-12-28 2007-03-28 佳能株式会社 Fuel cell and electric apparatus
JP4649094B2 (en) * 2003-03-07 2011-03-09 旭化成イーマテリアルズ株式会社 Manufacturing method of membrane electrode assembly for fuel cell
US20050064275A1 (en) * 2003-09-18 2005-03-24 3M Innovative Properties Company Fuel cell gas diffusion layer
JP4506165B2 (en) * 2003-12-11 2010-07-21 株式会社エクォス・リサーチ Membrane electrode assembly and method of using the same
JP4478009B2 (en) * 2004-03-17 2010-06-09 日東電工株式会社 Fuel cell
JP4788113B2 (en) * 2004-06-21 2011-10-05 トヨタ自動車株式会社 Fuel cell
FR2891403A1 (en) * 2005-09-29 2007-03-30 St Microelectronics Sa FUEL CELL COVERED WITH A LAYER OF HYDROPHILIC POLYMERS
US8628819B2 (en) * 2006-02-24 2014-01-14 GM Global Technology Operations LLC Method of depositing a nanoparticle coating on a bipolar plate and removing the nanoparticle coating from the lands of the bipolar plate
US20120100461A1 (en) * 2009-06-26 2012-04-26 Nissan Motor Co., Ltd. Hydrophilic porous layer for fuel cells, gas diffusion electrode and manufacturing method thereof, and membrane electrode assembly
JP6571961B2 (en) 2015-03-25 2019-09-04 株式会社東芝 ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE COMPLEX FOR FUEL CELL, AND FUEL CELL
JP6512637B2 (en) * 2015-05-29 2019-05-15 トヨタ自動車株式会社 Diffusion layer forming paste, method of manufacturing gas diffusion layer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2948376B2 (en) * 1991-10-15 1999-09-13 三菱重工業株式会社 Method for producing reaction film and method for producing electrochemical cell
JP3498321B2 (en) * 1992-09-25 2004-02-16 田中貴金属工業株式会社 Polymer solid oxide fuel cell
JP3375200B2 (en) * 1993-06-18 2003-02-10 田中貴金属工業株式会社 Polymer solid electrolyte composition
JP3376653B2 (en) * 1993-10-12 2003-02-10 トヨタ自動車株式会社 Energy conversion device and electrode
JP3591123B2 (en) * 1996-03-08 2004-11-17 トヨタ自動車株式会社 Fuel cell and fuel cell electrode

Also Published As

Publication number Publication date
JPH1145733A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
EP1742282B2 (en) Membrane-electrode assembly for fuel cell and fuel cell using same
JP3245929B2 (en) Fuel cell and its application device
EP1721355B1 (en) Membrane electrode unit
JP3577402B2 (en) Polymer electrolyte fuel cell
JP2002110198A (en) Polymer-electrolyte fuel cell stack and electric vehicle with this fuel cell stack
KR100717790B1 (en) Membrane/electrode assembly for fuel cell and fuel cell system comprising the same
KR100594540B1 (en) Fuel Cell
JP4956870B2 (en) Fuel cell and fuel cell manufacturing method
US11094954B2 (en) Electrode, membrane electrode assembly, electrochemical cell, stack, fuel cell, vehicle and flying object
EP1253655B1 (en) Fuel cell
JP5198044B2 (en) Direct oxidation fuel cell
JP2009199988A (en) Anode electrode for direct methanol fuel cell and direct methanol type fuel cell using the same
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
JP3813406B2 (en) Fuel cell
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP2001093544A (en) Electrode of fuel cell, method for manufacturing and fuel cell
JP2009043688A (en) Fuel cell
JP2000251901A (en) Cell for fuel cell and fuel cell using it
JPWO2006064542A1 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME, MEMBRANE / ELECTRODE ASSEMBLY AND FUEL CELL
JP2002289200A (en) Fuel battery
JP2007073337A (en) Film/electrode assembly for direct methanol type fuel cell, and direct methanol type fuel cell using the same
JP2002289201A (en) Fuel cell
JP2004349180A (en) Membrane electrode assembly
JP3619826B2 (en) Fuel cell electrode and fuel cell
JP2002134120A (en) Electrode for fuel cell and fuel cell using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees