JP3570609B2 - antenna - Google Patents

antenna Download PDF

Info

Publication number
JP3570609B2
JP3570609B2 JP17776798A JP17776798A JP3570609B2 JP 3570609 B2 JP3570609 B2 JP 3570609B2 JP 17776798 A JP17776798 A JP 17776798A JP 17776798 A JP17776798 A JP 17776798A JP 3570609 B2 JP3570609 B2 JP 3570609B2
Authority
JP
Japan
Prior art keywords
antenna
radiation electrode
electrode
width
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17776798A
Other languages
Japanese (ja)
Other versions
JP2000013126A (en
Inventor
博志 青山
利正 河村
博之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP17776798A priority Critical patent/JP3570609B2/en
Publication of JP2000013126A publication Critical patent/JP2000013126A/en
Application granted granted Critical
Publication of JP3570609B2 publication Critical patent/JP3570609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Details Of Aerials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアンテナに関し、特に携帯電話や無線LAN(ローカルエリアネットワーク)などのマイクロ波無線通信機器に用いられる小形のアンテナに関する。
【0002】
【従来の技術】
マイクロ波無線通信機器では、アンテナとしてモノポールアンテナや、誘電体材料からなる基体表面に放射電極を螺旋状に巻いたヘリカルアンテナなどが一般に用いられている。これらアンテナは、例えばオーム社発行の電子情報通信学会編「アンテナ工学ハンドブック」(昭和55年10月30日発行)の頁50〜頁59に記載されている。
【0003】
図3は従来のヘリカルアンテナの斜視図である。なお以下のすべての図において同一機能の部分には同一符号を付けるものとする。このヘリカルアンテナは、例えば誘電体材料からなる絶縁体1に螺旋状の導線2を巻上げた構造を有する。
【0004】
また特開平9−51221号公報には、表面に導体線路を厚膜印刷法などで形成した誘電体層を積層し、この導体線路をスルーホールを介して電気的に接続させ、周回するコイル状線路2を形成した小型の積層アンテナが記載されている。
【0005】
【発明が解決しようとする課題】
これらのアンテナでは、放射電極の線路長が1/4波長より少し長いところで共振することが知られている。また誘電体1の比誘電率が高いほど放射電極を流れる電流の波長が短縮され放射電極の線路長を短くできるのでアンテナを小型化出来る。ところが、前記放射電極2の線路幅は電気的特性の点から、1/4波長の1/10以下で形成するのがよく、結果アンテナが小形化するほど放射電極2の線路幅は狭くなる。このため放射電極の2の断面積が減少し電気抵抗が増加することから、放射電極2での電力損失が増加してしまうという問題があった。
【0006】
さらに放射電極2から発生した電力損失によって発生した熱により、放射電極2や絶縁体1が熱膨張し放射電極の線路長が変化する。この結果、マイクロ波無線通信機器の使用中にアンテナの波長が変動してしまうという問題があった。
【0007】
本発明は上述の問題点を解決するためになされたもので、放射電極の電力損失による発熱を抑えるとともに、波長変動の小さなアンテナを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、絶縁体外表面に、一端が自由端の放射電極を有し、前記放射電極の他端に該放射電極の線路幅より大なる幅の電極を備え、前記放射電極の線路幅aと前記電極の幅bとの比(b/a)を1.5〜20となしたアンテナである。このように構成することで前記放射電極の電力損失による発熱を前記電極で放熱させ、放射電極や絶縁体の温度上昇を抑制し、アンテナ波長の変動を低減することが可能となる。また、本発明において前記放射電極と前記電極とを互いに異なる絶縁体に形成した後、はんだ付け等の手段で放射電極と電極を電気的に接続してもよい。
【0009】
【発明の実施の形態】
本発明に係るアンテナを図1を用いて説明する。図1は本発明の一実施例に係るアンテナの斜視図である。このアンテナは、絶縁体1の外表面上に形成した螺旋状の放射電極2と電気的に接続するように、放射電極2の線路幅より大なる幅の電極3を有している。
【0010】
前記絶縁体1はアンテナの特性の点から、例えばチタン酸バリウム、チタン酸カルシウム、ジルコン酸カルシウム、チタン酸鉛、チタン酸ジルコン酸鉛、アルミナ等の誘電体セラミックスや低損失のガラスエポキシやテフロン等の誘電体材料が好ましく、1GHzまでの周波数帯であれば、比透磁率が10未満のNiZnフェライト等の軟磁性材料で形成してもよい。
【0011】
前記放射電極2、電極3は例えば印刷、蒸着あるいはメッキなどの方法のなかから、適宜選択し形成される。また放射電極2、電極3は例えばAu、Pt、Ag、Cuなどの電気抵抗の小さい金属材料やこれらを主成分とする合金で形成するのが好ましい。
【0012】
前記放射電極2は、例えばチップコンデンサ等に用いられる積層技術によって、誘電体1内部に形成しても良いし、誘電体1内部に形成された複数の導体線路を、誘電体1の外表面に形成した少なくとも1つ以上の導体線路で電気的に接続するように形成してもよい。
【0013】
前記電極3の幅は放射電極2の幅よりも大きく形成し、その最大幅bと放射電極2の幅aとの比(b/a)が、1.5未満であると放射電極2の電力損失による発熱を電極3で放熱させるのに十分でなく、20超とすると絶縁体1が大型化するので好ましくない。
【0014】
【実施例】
(実施例1)
ジルコン酸カルシウムからなる誘電体材料の粉体を加圧成形し焼結した後、切削加工し幅5mm高さ3mm長さ10mmの直方体形状の誘電体1とした。この外表面にAgを主体とするペースト材料を用いて、略3ターンの放射電極2と電極3を印刷し形成した。さらに前記放射電極に電圧を印するための給電用端子4を誘電体の外表面にAgペーストを用いて印刷し形成し、その後、放射電極2、電極3、給電用端子4を850℃で焼き付けて2GHz帯アンテナを得た。焼き付け後の放射電極2の線路幅aは0.5mmで厚さは10μm、電極の幅bは1mmで長さ5mm、厚さは10μmであった。その他の実施例として放射電極2の線路幅aを0.5mmで一定とし、電極3の幅bを0.75mmとしたアンテナと比較例として電極3の幅bを0.25mm、0.5mmとしたアンテナを同様の手順で作製した。
【0015】
前記アンテナの給電用端子4を評価用基板にはんだ付けし、2時間室温中に放置した後、室温状態で放射電極の温度tとアンテナの共振周波数fをそれぞれ放射温度計とスペクトルアナライザで測定した。さらに放射電極2に交流電源から1Wの電力を連続して一分間供給するアンテナ駆動試験を行い、試験後の放射電極2の温度t、アンテナの共振周波数fを測定した。試験前後での温度変化及び共振周波数の変化を評価した結果を表1に示す。
【0016】
【表1】

Figure 0003570609
【0017】
比較例の試料と比べ実施例の試料は放射電極2の温度変化及び、アンテナの共振周波数の変動率が小さい。また交流電源から電力を供給し続けても温度変化は著しく小さく、共振周波数の変化は実用上まったく問題のない程度であった。一方比較例の試料は温度上昇を続け数℃〜十数℃温度変化し、共振数周波数は大きく変化した。
【0018】
(実施例2)
ジルコン酸カルシウムからなる誘電体材料の粉体を加圧成形し焼結した後、幅5mm高さ3mm長さ5mmの直方体形状に切削加工した誘電体1の外表面にAgを主体としたペースト材料を用いて略3ターンの放射電極2を印刷し形成した。さらに前記放射電極に電圧を印するための給電用端子4を誘電体の外表面にAgペーストを用いて印刷し形成し、その後、放射電極2、給電用端子4を850℃で焼き付けた。放射電極2、給電用端子4を形成した誘電体1を電極3を形成したテフロン基板にはんだ付けして2GHz帯アンテナを得た。以下実施例1と同様なのでその説明を省く。
【0019】
【表2】
Figure 0003570609
【0020】
本実施例も実施例1と同様に比較例の試料と比べ実施例の試料は導体線路2の温度変化及び、アンテナの共振周波数の変動率が小さく、駆動試験を続けても温度変化は著しく小さく、共振周波数の変化は実用上まったく問題のない程度であった。
【0021】
【発明の効果】
以上の通り本発明によれば、アンテナの小型化に伴う導体線路の電力損失による発熱を抑えるとともに、波長変動の小さなアンテナを得ることが出来る。
【図面の簡単な説明】
【図1】本発明の一実施例に係るアンテナの斜視図である。
【図2】本発明の他の実施例に係るアンテナの斜視図である。
【図3】従来のヘリカルアンテナの斜視図である。
【符号の説明】
1 絶縁体
2 放射電極
3 電極
4 給電用端子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an antenna, and particularly to a small antenna used for a microwave radio communication device such as a mobile phone and a wireless LAN (local area network).
[0002]
[Prior art]
In a microwave wireless communication device, a monopole antenna, a helical antenna in which a radiation electrode is spirally wound on a surface of a base made of a dielectric material, and the like are generally used as antennas. These antennas are described in, for example, pages 50 to 59 of the "Antenna Engineering Handbook" (published on October 30, 1980) edited by the Institute of Electronics, Information and Communication Engineers published by Ohmsha.
[0003]
FIG. 3 is a perspective view of a conventional helical antenna. In all the drawings, the same reference numerals are given to parts having the same function. This helical antenna has a structure in which a spiral conductive wire 2 is wound around an insulator 1 made of, for example, a dielectric material.
[0004]
Japanese Patent Application Laid-Open No. 9-51221 discloses that a dielectric layer in which a conductor line is formed on a surface by a thick film printing method or the like is laminated, and the conductor line is electrically connected through a through hole to form a circulating coil. A small laminated antenna in which the line 2 is formed is described.
[0005]
[Problems to be solved by the invention]
It is known that these antennas resonate where the line length of the radiation electrode is slightly longer than 1 / wavelength. Also, the higher the relative permittivity of the dielectric 1, the shorter the wavelength of the current flowing through the radiation electrode and the shorter the line length of the radiation electrode, so that the antenna can be miniaturized. However, in view of electrical characteristics, the line width of the radiation electrode 2 is preferably formed to be 1/10 or less of 1/4 wavelength. As a result, the line width of the radiation electrode 2 becomes narrower as the antenna becomes smaller. For this reason, since the cross-sectional area of the radiation electrode 2 is reduced and the electric resistance is increased, there is a problem that the power loss at the radiation electrode 2 is increased.
[0006]
Further, the radiation electrode 2 and the insulator 1 thermally expand due to the heat generated by the power loss generated from the radiation electrode 2, and the line length of the radiation electrode changes. As a result, there is a problem that the wavelength of the antenna fluctuates during use of the microwave radio communication device.
[0007]
The present invention has been made in order to solve the above-described problems, and it is an object of the present invention to provide an antenna that suppresses heat generation due to power loss of a radiation electrode and has small wavelength fluctuation.
[0008]
[Means for Solving the Problems]
According to the present invention, on the outer surface of the insulator, one end has a radiation electrode having a free end, and the other end of the radiation electrode has an electrode having a width larger than the line width of the radiation electrode. An antenna in which a ratio (b / a) of a to a width b of the electrode is 1.5 to 20. With this configuration, heat generated by power loss of the radiation electrode is radiated by the electrode, temperature rise of the radiation electrode and the insulator is suppressed, and variation in antenna wavelength can be reduced. In the present invention, after the radiation electrode and the electrode are formed on different insulators, the radiation electrode and the electrode may be electrically connected by means such as soldering.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
An antenna according to the present invention will be described with reference to FIG. FIG. 1 is a perspective view of an antenna according to one embodiment of the present invention. This antenna has an electrode 3 having a width larger than the line width of the radiation electrode 2 so as to be electrically connected to a spiral radiation electrode 2 formed on the outer surface of the insulator 1.
[0010]
The insulator 1 is made of dielectric ceramics such as barium titanate, calcium titanate, calcium zirconate, lead titanate, lead zirconate titanate, and alumina, and low-loss glass epoxy and Teflon from the viewpoint of antenna characteristics. Is preferable, and in a frequency band up to 1 GHz, a soft magnetic material such as NiZn ferrite having a relative permeability of less than 10 may be used.
[0011]
The radiation electrodes 2 and the electrodes 3 are formed by appropriately selecting from methods such as printing, vapor deposition, and plating. Further, the radiation electrode 2 and the electrode 3 are preferably formed of a metal material having a small electric resistance, such as Au, Pt, Ag, Cu, or an alloy containing these as a main component.
[0012]
The radiation electrode 2 may be formed inside the dielectric 1 by a lamination technique used for a chip capacitor or the like, or a plurality of conductor lines formed inside the dielectric 1 may be formed on the outer surface of the dielectric 1. It may be formed so as to be electrically connected by at least one or more formed conductor lines.
[0013]
The width of the electrode 3 is formed to be larger than the width of the radiation electrode 2. If the ratio (b / a) of the maximum width b to the width a of the radiation electrode 2 (b / a) is less than 1.5, the power of the radiation electrode 2 is reduced. Heat generated due to the loss is not enough to be radiated by the electrode 3, and if it exceeds 20, it is not preferable because the insulator 1 becomes large.
[0014]
【Example】
(Example 1)
A powder of a dielectric material composed of calcium zirconate was subjected to pressure molding and sintering, followed by cutting to obtain a rectangular parallelepiped dielectric 1 having a width of 5 mm, a height of 3 mm and a length of 10 mm. By using a paste material mainly composed of Ag, the radiation electrode 2 and the electrode 3 of approximately three turns were printed and formed on the outer surface. Furthermore said feeding terminal 4 for mark pressurizing the voltage to the radiation electrode printed with an Ag paste on the outer surface of the dielectric is formed, then radiation electrode 2, electrode 3, the feeding terminal 4 at 850 ° C. This was baked to obtain a 2 GHz band antenna. The line width a of the radiation electrode 2 after baking was 0.5 mm and the thickness was 10 μm, the width b of the electrode 3 was 1 mm and the length was 5 mm, and the thickness was 10 μm. In another embodiment, the line width a of the radiation electrode 2 is fixed at 0.5 mm and the width b of the electrode 3 is 0.75 mm. As a comparative example, the width b of the electrode 3 is 0.25 mm and 0.5 mm. The manufactured antenna was manufactured in the same procedure.
[0015]
After the power supply terminal 4 of the antenna was soldered to the evaluation board and left at room temperature for 2 hours, the temperature t 0 of the radiation electrode and the resonance frequency f 0 of the antenna were measured at room temperature with a radiation thermometer and a spectrum analyzer, respectively. It was measured. Further, an antenna drive test in which 1 W of power was continuously supplied from the AC power source to the radiation electrode 2 for one minute was performed, and the temperature t 1 of the radiation electrode 2 and the resonance frequency f 1 of the antenna after the test were measured. Table 1 shows the results of evaluating changes in temperature and resonance frequency before and after the test.
[0016]
[Table 1]
Figure 0003570609
[0017]
Compared with the sample of the comparative example, the sample of the embodiment has a smaller temperature change of the radiation electrode 2 and a smaller variation rate of the resonance frequency of the antenna. Further, even when the power was continuously supplied from the AC power supply, the temperature change was extremely small, and the change in the resonance frequency was practically no problem. On the other hand, the sample of the comparative example continued to rise in temperature and changed in temperature by several degrees to several tens degrees Celsius, and the resonance frequency changed greatly.
[0018]
(Example 2)
A paste material mainly composed of Ag is formed on the outer surface of a dielectric material 1 obtained by pressing and sintering a dielectric material powder made of calcium zirconate into a rectangular parallelepiped shape having a width of 5 mm, a height of 3 mm and a length of 5 mm. The radiating electrode 2 of approximately three turns was printed and formed by using. Furthermore said feeding terminal 4 for mark pressurizing the voltage to the radiation electrode printed with an Ag paste on the outer surface of the dielectric is formed, then baked radiation electrode 2, the feeding terminal 4 at 850 ° C.. The dielectric 1 on which the radiation electrode 2 and the power supply terminal 4 were formed was soldered to the Teflon substrate on which the electrode 3 was formed to obtain a 2 GHz band antenna. Hereinafter, since it is the same as the first embodiment, the description thereof is omitted.
[0019]
[Table 2]
Figure 0003570609
[0020]
In the present embodiment, as in the case of the first embodiment, the temperature of the conductor line 2 and the variation rate of the resonance frequency of the antenna are small, and the temperature change is extremely small even when the driving test is continued. The change of the resonance frequency was practically no problem.
[0021]
【The invention's effect】
As described above, according to the present invention, it is possible to suppress the heat generation due to the power loss of the conductor line due to the miniaturization of the antenna and to obtain an antenna with small wavelength fluctuation.
[Brief description of the drawings]
FIG. 1 is a perspective view of an antenna according to an embodiment of the present invention.
FIG. 2 is a perspective view of an antenna according to another embodiment of the present invention.
FIG. 3 is a perspective view of a conventional helical antenna.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulator 2 Radiation electrode 3 Electrode 4 Power supply terminal

Claims (3)

絶縁体外表面に、一端が自由端の放射電極を有するアンテナであって、前記放射電極の他端に該放射電極の線路幅より大なる幅の電極を備え、前記放射電極の線路幅aと前記電極の幅bとの比(b/a)が1.5〜20であることを特徴とするアンテナ。An antenna having a radiation electrode having a free end on one end on an outer surface of an insulator, the other end of the radiation electrode being provided with an electrode having a width larger than the line width of the radiation electrode, and having a line width a of the radiation electrode. An antenna having a ratio (b / a) of 1.5 to 20 to a width b of the electrode . セラミックスからなる直方体の外表面に前記放射電極を形成したことを特徴とする請求項1に記載のアンテナ。The antenna according to claim 1 , wherein the radiation electrode is formed on an outer surface of a rectangular parallelepiped made of ceramics . 前記放射電極と前記電極とを互いに異なる絶縁体に形成したことを特徴とする請求項1ないし2のいずれかに記載のアンテナ。The antenna according to claim 1, wherein the radiation electrode and the electrode are formed on different insulators.
JP17776798A 1998-06-24 1998-06-24 antenna Expired - Lifetime JP3570609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17776798A JP3570609B2 (en) 1998-06-24 1998-06-24 antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17776798A JP3570609B2 (en) 1998-06-24 1998-06-24 antenna

Publications (2)

Publication Number Publication Date
JP2000013126A JP2000013126A (en) 2000-01-14
JP3570609B2 true JP3570609B2 (en) 2004-09-29

Family

ID=16036779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17776798A Expired - Lifetime JP3570609B2 (en) 1998-06-24 1998-06-24 antenna

Country Status (1)

Country Link
JP (1) JP3570609B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812894B2 (en) 2002-03-26 2004-11-02 Ngk Spark Plug Co., Ltd. Dielectric chip antenna
JP2004242159A (en) 2003-02-07 2004-08-26 Ngk Spark Plug Co Ltd High frequency antenna module

Also Published As

Publication number Publication date
JP2000013126A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
JP3147756B2 (en) Chip antenna
JPH10247808A (en) Chip antenna and frequency adjustment method therefor
US6323824B1 (en) Dielectric resonator antenna
JP3296276B2 (en) Chip antenna
JP3289572B2 (en) Chip antenna
JPH0951221A (en) Chip antenna
JP2000022421A (en) Chip antenna and radio device mounted with it
JPH09219610A (en) Surface mount antenna and communication equipment using it
US6653986B2 (en) Meander antenna and method for tuning resonance frequency of the same
JPH0993021A (en) Chip antenna
JPH09232828A (en) Antenna device
JPH09326624A (en) Chip antenna
JP3570609B2 (en) antenna
JPH09284029A (en) Chip antenna
JP4045459B2 (en) ANTENNA ELEMENT AND RADIO COMMUNICATION DEVICE USING THE SAME
JP2996190B2 (en) Antenna device
JPH09307331A (en) Matching circuit and antenna system using it
JPH11219821A (en) Integrated inductor and manufacture of the same
JPH11205025A (en) Chip antenna
JP2004015500A (en) Antenna element and antenna device
JP4017137B2 (en) ANTENNA ELEMENT AND RADIO COMMUNICATION DEVICE USING THE SAME
JP2003142915A (en) Antenna and its resonance frequency adjusting method
JPH10145124A (en) Chip antenna
JP3178469B2 (en) Antenna device and antenna device assembly
JPH0969715A (en) Chip antenna

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

EXPY Cancellation because of completion of term