JP3567808B2 - Maximum power control method for solar cells - Google Patents

Maximum power control method for solar cells Download PDF

Info

Publication number
JP3567808B2
JP3567808B2 JP23473399A JP23473399A JP3567808B2 JP 3567808 B2 JP3567808 B2 JP 3567808B2 JP 23473399 A JP23473399 A JP 23473399A JP 23473399 A JP23473399 A JP 23473399A JP 3567808 B2 JP3567808 B2 JP 3567808B2
Authority
JP
Japan
Prior art keywords
solar cell
maximum power
power
command value
current command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23473399A
Other languages
Japanese (ja)
Other versions
JP2001060120A (en
Inventor
博昭 小新
弘忠 東浜
晃 吉武
忠吉 向井
宏之 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP23473399A priority Critical patent/JP3567808B2/en
Publication of JP2001060120A publication Critical patent/JP2001060120A/en
Application granted granted Critical
Publication of JP3567808B2 publication Critical patent/JP3567808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Control Of Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池を電源とし、その太陽電池からインバータ等で構成される電力変換装置を介して最大電力を効率よく取り出すための太陽電池の最大電力制御方法に関するものである。
【0002】
【従来の技術】
近年、太陽電池を電源とし、インバータ等の電力変換装置を介して所定の電力を供給する電源装置が注目されている。この太陽電池は、太陽電池に入射する日射量をパラメータとした場合、日射量の増大に従って電力が増大する傾向を有しており、また、その太陽電池の動作点により出力電力が大幅に変動する特性を有している。
【0003】
このような特性を有する太陽電池から最大電力を効率よく取り出すために、特開昭57−206929号公報等には、山登り法といわれる最大電力点追尾制御が提案されている。このものにあっては、一定の日射量の下において太陽電池が、図4に示すように、電圧−電力特性を有している場合、先ず太陽電池の出力電圧の基準動作電圧を開放電圧VOPから所定のサンプリング周期で一定の変化幅ΔVSで減少させていく。この間、電力は図中矢印aの方向に増加して行く。すると、電力が最大電力点Pを越え矢印bの方向に減少して行く。この電力の減少を検出すると、今度は基準動作電圧を変化幅ΔVSで増加させる。これにより、電力は図中矢印c方向に増加し、やがて最大電力点Pを越え矢印d方向に減少し始める。そこでこの電力の減少を検出して、再び基準動作電圧を変化幅ΔVSで減少させる方向へ変化させる。以上の動作を繰り返して行くことにより基準動作電圧を最大電力点P近傍で往復させ、太陽電池の最大電力点を常に追従させている。
【0004】
【発明が解決しようとする課題】
ところが、上記した従来法では、太陽電池の最大電力Pよりも左側の領域、すなわち図4におけるIの領域において山登り制御をしなければならないが、太陽電池の最大電力Pよりも右側の領域IIに対して左側の領域Iは電流指令値の変化に伴う太陽電池の出力電力の変化が大きく、制御の安定性確保が困難であるという問題点を有していた。
【0005】
本発明は、上記の問題点に鑑みて成されたものであり、その目的とするところは、不安定な制御を行うことなく最大電力制御を精度良く行うことができる太陽電池の最大電力制御方法を提供することにある。
【0006】
【課題を解決するための手段】
請求項1記載の発明は、太陽電池から電力変換装置を介して取り出される電力を最大電力に追従制御するために電力変換装置の出力電流を指令する電流指令値を制御する方法において、前記電力変換装置に与える電流指令値を増加させて行き、その際の前記太陽電池からの出力電力が増加方向であれば前記電流指令値を変化させる方向をそのまま維持し、前記出力電力が増加方向でなければ、その時点での動作点電圧に一定電圧を加えたところで制御するように電流指令値を変更し、そこから再度前記電流指令値を増加させていくようにしたことを特徴とするものである。
【0007】
請求項2記載の発明は、請求項1記載の太陽電池の最大電力制御方法において、前記太陽電池の前記出力電力が増加方向から減少方向になる度に前記電流指令値の変化幅を小さな値に変更するようにしたことを特徴とするものである。
【0008】
請求項3記載の発明は、請求項1記載の太陽電池の最大電力制御方法において、前記太陽電池の前記出力電力の変化量に応じて前記電流指令値の変化幅を変更するようにしたことを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明の一実施の形態に係る太陽電池の最大電力制御方法について図1乃至図3に基づき詳細に説明する。図1は太陽電池から最大電力を取り出す装置の一例である。10は太陽電池、11はインバータ、13は商用電力系統、21は電流検出器、22は電圧検出器、23は最大電力制御回路、24は誤差増幅器、25は電流制御回路である。
【0010】
太陽電池10の直流出力はインバータ11において交流に変換され、保護継電器等を介して商用電力系統13と連系されている。太陽電池10の出力電流及び出力電圧は、電流検出器21及び電圧検出器22で検出され、その検出値は最大電力制御回路23に入力される。最大電力制御回路23では、入力された値に基づき電流指令値を出力する。電流指令値は電流検出器21により検出された値と比較され、その偏差は誤差増幅器24により増幅されて電流制御回路25に入力される。電流制御回路25では、誤差増幅器24からの偏差に応じてこの偏差が零になるようにインバータ11の出力電流を制御する。
【0011】
ここで最大電力制御回路23の動作について図2に基づき説明する。太陽電池10は一定の日射量及び温度にあっては、図2に示すような特性を有しており、最大電力点Pにおいて動作させることが理想である。
【0012】
最大電力制御回路23にあっては、最初、太陽電池の動作点電圧が開放電圧VOPとなるように電流指令値を出力する(図2おいてP0に相当)。そして、所定のサンプリング周期で電流指令値を比較的大きな変化幅で増加させていく。その際、最大電力制御回路23にあっては、出力電力の電圧微分値を算出し、この微分値が負の場合は電流指令値を増加させていく。この間、電力はP0、P1、P2、P3、P4と増加していくことになる。
【0013】
このまま電流指令値を増加させていくと、やがて出力電力は最大電力点Pを越え矢印bのように減少を始めることになる。最大電力制御回路23にあっては、この状態を出力電力の電圧微分値が零若しくは正になったことにより検出する(図2おいてP5に相当)。そして、最大電力制御回路23では、その時点での動作点電圧に所定電圧である5Vを加えたところから再度山登りを開始するように電流指令値を変更するようになっている。
【0014】
上述した構成にあっては、以上の動作を繰り返すことにより、電流指令値は太陽電池10の出力電力−出力電圧曲線における最大電力Pよりも右側の領域IIで制御され、出力電力は最大電力Pの近傍を往復することになる。すなわち、太陽電池10において精度よく制御を行うことが困難となる出力電力−出力電圧曲線における最大電力Pよりも左側の領域Iにおいて電流指令値を制御する必要がないため、安定的に最大電力制御を行うことが可能になるのである。
【0015】
また、最大電力Pが日射量の変化などにより変動した場合でも、予め最大電力P近傍の定義を設定しておかずに柔軟で素早い追従制御が可能になる。
【0016】
なお、太陽電池10の出力電力が増加方向から減少方向になる度に、すなわち増加傾向にあった太陽電池10の出力電力が最大出力Pを越え減少方向に転じる度に、電流指令値の変化幅を小さな値に変更するようにしてもよい。これにより、始動初期状態において変化幅を大きく設定しておけば最大電力Pへの追従速度を早めることが可能になるとともに、出力電力が増加方向から減少方向になる度に変化幅を小さくすることにより、最大電力Pでの振れ幅を小さくすることができ、最大電力制御の精度を高めることが可能になる。
【0017】
また、図3(b)に示すように、太陽電池10の出力電力の変化量に応じて電流指令値の変化幅を変更するようにしてもよい。すなわち、出力電力の電圧微分値に応じて次の電流指令値を決定し、微分値の絶対値に比例して電流指令値の変化幅を変更するのである。これにより、始動初期状態のように動作点電圧が最大出力Pよりも大きく離れている状態にあっては、電流指令値の変化幅が大きくなるため最大電力Pへの追従速度を早めることが可能になるとともに、最大出力Pの近傍にあっては電流指令値の変化幅が小さくなるため最大電力Pでの振れ幅を小さくすることができ、最大電力制御の精度を高めることが可能になる。
【0018】
【発明の効果】
以上のように、請求項1記載の発明にあっては、太陽電池から電力変換装置を介して取り出される電力を最大電力に追従制御するために電力変換装置の出力電流を指令する電流指令値を制御する方法において、前記電力変換装置に与える電流指令値を増加させて行き、その際の前記太陽電池からの出力電力が増加方向であれば前記電流指令値を変化させる方向をそのまま維持し、前記出力電力が増加方向でなければ、その時点での動作点電圧に一定電圧を加えたところで制御するように電流指令値を変更し、そこから再度前記電流指令値を増加させていくようにしたので、太陽電池の出力電力−出力電圧曲線において最大電力よりも右側の領域において太陽電池を制御することが可能になるため、不安定な制御を行うことなく最大電力制御を精度良く行うことができる太陽電池の最大電力制御方法を提供することが可能になるという効果を奏する。
【0019】
請求項2記載の発明にあっては、請求項1記載の太陽電池の最大電力制御方法において、前記太陽電池の前記出力電力が増加方向から減少方向になる度に前記電流指令値の変化幅を小さな値に変更するようにしたので、最大電力制御初期にあっては変化幅を大きくすることで最大電力の追従を速く行うことが可能になるとともに、最大電力近傍での変動状態にあっては変化幅を小さくすることで最大電力近傍における変動を安定的に行うことが可能になるという効果を奏する。
【0020】
請求項3記載の発明にあっては、請求項1記載の太陽電池の最大電力制御方法において、前記太陽電池の前記出力電力の変化量に応じて前記電流指令値の変化幅を変更するようにしたので、電流指令値が最大電力よりも大きく離れているところにあっては電流指令値の変化幅を大きくすることで最大電力の追従を速く行うことが可能になるとともに、電流指令値が最大電力近傍にあるときはその変化幅を小さくすることで最大電力近傍における変動を安定的に行うことが可能になるという効果を奏する。
【図面の簡単な説明】
【図1】太陽電池から最大電力を取り出す装置の一例を示すブロック図である。
【図2】本実施の形態に係る最大電力制御方法を示す太陽電池の特性図である。
【図3】太陽電池の特性図であり、(a)は従来の最大電力制御方法に係るものであり、(b)は本実施の形態に係る他の最大電力制御方法に係るものである。
【図4】従来の最大電力制御方法を示す太陽電池の特性図である。
【符号の説明】
10 太陽電池
11 インバータ
13 商用電力系統
21 電流検出器
22 電圧検出器
23 最大電力制御回路
24 誤差増幅器
25 電流制御回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a maximum power control method for a solar cell, which uses a solar cell as a power source and efficiently extracts maximum power from the solar cell via a power converter including an inverter or the like.
[0002]
[Prior art]
In recent years, a power supply device that uses a solar cell as a power supply and supplies predetermined power via a power conversion device such as an inverter has attracted attention. When the amount of solar radiation incident on the solar cell is used as a parameter, the solar cell has a tendency that power increases as the amount of solar radiation increases, and the output power greatly varies depending on the operating point of the solar cell. Has characteristics.
[0003]
In order to efficiently extract maximum power from a solar cell having such characteristics, Japanese Patent Application Laid-Open No. 57-206929 and the like propose a maximum power point tracking control called a hill-climbing method. In this case, when the solar cell has a voltage-power characteristic as shown in FIG. 4 under a certain amount of solar radiation, first, the reference operating voltage of the output voltage of the solar cell is set to the open-circuit voltage VOP. From a predetermined sampling period to a constant change width ΔVS. During this time, the power increases in the direction of arrow a in the figure. Then, the power exceeds the maximum power point P and decreases in the direction of the arrow b. When this decrease in power is detected, the reference operating voltage is increased by a change width ΔVS. As a result, the power increases in the direction of arrow c in the figure, and then begins to decrease in the direction of arrow d beyond the maximum power point P. Therefore, the reduction of the power is detected, and the reference operating voltage is changed again in the direction of decreasing the change width ΔVS. By repeating the above operation, the reference operating voltage is reciprocated near the maximum power point P, and the maximum power point of the solar cell is always followed.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional method, hill-climbing control must be performed in a region on the left side of the maximum power P of the solar cell, that is, in a region I in FIG. 4, but in a region II on the right side of the maximum power P of the solar cell. On the other hand, the region I on the left side has a problem that the output power of the solar cell greatly changes due to the change of the current command value, and it is difficult to secure control stability.
[0005]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a maximum power control method for a solar cell capable of accurately performing maximum power control without performing unstable control. Is to provide.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 is a method for controlling a current command value for instructing an output current of a power converter to control the power taken from a solar cell via a power converter to follow maximum power. The current command value given to the device is increased, and if the output power from the solar cell at that time is in the increasing direction, the direction in which the current command value is changed is maintained as it is, and the output power is not the increasing direction. The current command value is changed so that control is performed when a constant voltage is added to the operating point voltage at that time, and the current command value is increased again from there.
[0007]
According to a second aspect of the present invention, in the maximum power control method for a solar cell according to the first aspect, the change width of the current command value is reduced to a small value each time the output power of the solar cell changes from an increasing direction to a decreasing direction. It is characterized in that it is changed.
[0008]
According to a third aspect of the present invention, in the maximum power control method for a solar cell according to the first aspect, the change width of the current command value is changed according to a change amount of the output power of the solar cell. It is a feature.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a maximum power control method for a solar cell according to an embodiment of the present invention will be described in detail with reference to FIGS. FIG. 1 is an example of an apparatus for extracting maximum power from a solar cell. Reference numeral 10 denotes a solar cell, 11 denotes an inverter, 13 denotes a commercial power system, 21 denotes a current detector, 22 denotes a voltage detector, 23 denotes a maximum power control circuit, 24 denotes an error amplifier, and 25 denotes a current control circuit.
[0010]
The DC output of the solar cell 10 is converted to AC by the inverter 11 and is connected to the commercial power system 13 via a protection relay or the like. The output current and output voltage of the solar cell 10 are detected by a current detector 21 and a voltage detector 22, and the detected values are input to a maximum power control circuit 23. The maximum power control circuit 23 outputs a current command value based on the input value. The current command value is compared with the value detected by the current detector 21, and the deviation is amplified by the error amplifier 24 and input to the current control circuit 25. The current control circuit 25 controls the output current of the inverter 11 according to the deviation from the error amplifier 24 so that the deviation becomes zero.
[0011]
Here, the operation of the maximum power control circuit 23 will be described with reference to FIG. The solar cell 10 has characteristics as shown in FIG. 2 at a certain amount of solar radiation and temperature, and it is ideal that the solar cell 10 is operated at the maximum power point P.
[0012]
The maximum power control circuit 23 first outputs a current command value so that the operating point voltage of the solar cell becomes the open circuit voltage VOP (corresponding to P0 in FIG. 2). Then, the current command value is increased with a relatively large change width in a predetermined sampling cycle. At that time, the maximum power control circuit 23 calculates a voltage differential value of the output power, and if the differential value is negative, increases the current command value. During this time, the power increases as P0, P1, P2, P3, and P4.
[0013]
If the current command value is increased as it is, the output power will eventually exceed the maximum power point P and begin to decrease as shown by the arrow b. The maximum power control circuit 23 detects this state when the voltage differential value of the output power becomes zero or positive (corresponding to P5 in FIG. 2). Then, the maximum power control circuit 23 changes the current command value so that the hill-climbing starts again from the point where the predetermined voltage of 5 V is added to the operating point voltage at that time.
[0014]
In the above-described configuration, by repeating the above operation, the current command value is controlled in the area II on the right side of the maximum power P in the output power-output voltage curve of the solar cell 10, and the output power is equal to the maximum power P Reciprocate in the vicinity of. That is, since it is not necessary to control the current command value in the region I on the left side of the maximum power P in the output power-output voltage curve in which it is difficult to perform control with high accuracy in the solar cell 10, the maximum power control is stably performed. It is possible to do.
[0015]
Even when the maximum power P fluctuates due to a change in the amount of solar radiation, a flexible and quick follow-up control can be performed without setting a definition near the maximum power P in advance.
[0016]
Note that each time the output power of the solar cell 10 changes from the increasing direction to the decreasing direction, that is, each time the output power of the solar cell 10 that has been increasing tends to exceed the maximum output P and decrease, the change width of the current command value changes. May be changed to a small value. Accordingly, if the variation width is set to be large in the initial state of starting, the speed of following the maximum power P can be increased, and the variation width is reduced each time the output power changes from the increasing direction to the decreasing direction. Accordingly, the swing width at the maximum power P can be reduced, and the accuracy of the maximum power control can be improved.
[0017]
Further, as shown in FIG. 3B, the change width of the current command value may be changed according to the change amount of the output power of the solar cell 10. That is, the next current command value is determined according to the voltage differential value of the output power, and the change width of the current command value is changed in proportion to the absolute value of the differential value. Thus, in a state in which the operating point voltage is far from the maximum output P, such as in the initial state of starting, the speed of following the maximum power P can be increased because the range of change in the current command value is large. At the same time, in the vicinity of the maximum output P, the range of change of the current command value becomes small, so that the swing at the maximum power P can be reduced, and the accuracy of the maximum power control can be improved.
[0018]
【The invention's effect】
As described above, according to the first aspect of the present invention, the current command value for commanding the output current of the power converter to control the power taken from the solar cell through the power converter to follow the maximum power is controlled. In the controlling method, the current command value given to the power conversion device is increased, and if the output power from the solar cell at that time is in the increasing direction, the direction in which the current command value is changed is maintained as it is, If the output power is not in the increasing direction, the current command value is changed so that control is performed when a constant voltage is applied to the operating point voltage at that time, and the current command value is increased again from there. Therefore, since it is possible to control the solar cell in a region on the right side of the maximum power in the output power-output voltage curve of the solar cell, the maximum power control can be performed without performing unstable control. An effect that it is possible to provide a maximum power control method of the solar cell can be carried out every well.
[0019]
According to a second aspect of the present invention, in the maximum power control method for a solar cell according to the first aspect, each time the output power of the solar cell changes from an increasing direction to a decreasing direction, the range of change of the current command value is changed. Since it is changed to a small value, it is possible to follow the maximum power quickly by increasing the change width in the initial stage of the maximum power control, and in the case of a fluctuation state near the maximum power, By reducing the change width, it is possible to stably perform a change near the maximum power.
[0020]
According to a third aspect of the present invention, in the maximum power control method for a solar cell according to the first aspect, the change width of the current command value is changed according to a change amount of the output power of the solar cell. Therefore, when the current command value is far away from the maximum power, the change in the current command value can be increased to make it possible to follow the maximum power quickly. When the power is close to the electric power, the change width is reduced, so that the fluctuation near the maximum electric power can be stably performed.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating an example of a device that extracts maximum power from a solar cell.
FIG. 2 is a characteristic diagram of a solar cell showing a maximum power control method according to the present embodiment.
3A and 3B are characteristic diagrams of a solar cell, wherein FIG. 3A relates to a conventional maximum power control method, and FIG. 3B relates to another maximum power control method according to the present embodiment.
FIG. 4 is a characteristic diagram of a solar cell showing a conventional maximum power control method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Solar cell 11 Inverter 13 Commercial power system 21 Current detector 22 Voltage detector 23 Maximum power control circuit 24 Error amplifier 25 Current control circuit

Claims (3)

太陽電池から電力変換装置を介して取り出される電力を最大電力に追従制御するために電力変換装置の出力電流を指令する電流指令値を制御する方法において、前記電力変換装置に与える電流指令値を増加させて行き、その際の前記太陽電池からの出力電力が増加方向であれば前記電流指令値を変化させる方向をそのまま維持し、前記出力電力が増加方向でなければ、その時点での動作点電圧に一定電圧を加えたところで制御するように電流指令値を変更し、そこから再度前記電流指令値を増加させていくようにしたことを特徴とする太陽電池の最大電力制御方法。In a method of controlling a current command value for instructing an output current of a power converter to control the power taken from a solar cell via a power converter to follow a maximum power, increasing a current command value given to the power converter. If the output power from the solar cell at that time is in the increasing direction, the direction in which the current command value is changed is maintained as it is, and if the output power is not in the increasing direction, the operating point voltage at that time is maintained. A maximum power control method for a solar cell, characterized in that a current command value is changed so that control is performed when a constant voltage is applied to the power supply, and the current command value is increased again from there. 前記太陽電池の前記出力電力が増加方向から減少方向になる度に前記電流指令値の変化幅を小さな値に変更するようにしたことを特徴とする請求項1記載の太陽電池の最大電力制御方法。2. The maximum power control method for a solar cell according to claim 1, wherein a change width of the current command value is changed to a small value each time the output power of the solar cell changes from an increasing direction to a decreasing direction. . 前記太陽電池の前記出力電力の変化量に応じて前記電流指令値の変化幅を変更するようにしたことを特徴とする請求項1記載の太陽電池の最大電力制御方法。The maximum power control method for a solar cell according to claim 1, wherein a change width of the current command value is changed according to a change amount of the output power of the solar cell.
JP23473399A 1999-08-20 1999-08-20 Maximum power control method for solar cells Expired - Fee Related JP3567808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23473399A JP3567808B2 (en) 1999-08-20 1999-08-20 Maximum power control method for solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23473399A JP3567808B2 (en) 1999-08-20 1999-08-20 Maximum power control method for solar cells

Publications (2)

Publication Number Publication Date
JP2001060120A JP2001060120A (en) 2001-03-06
JP3567808B2 true JP3567808B2 (en) 2004-09-22

Family

ID=16975519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23473399A Expired - Fee Related JP3567808B2 (en) 1999-08-20 1999-08-20 Maximum power control method for solar cells

Country Status (1)

Country Link
JP (1) JP3567808B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656534A (en) * 2010-10-06 2012-09-05 丰田自动车株式会社 Output control device for solar battery

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
US7960950B2 (en) 2008-03-24 2011-06-14 Solaredge Technologies Ltd. Zero current switching
EP3719949B1 (en) 2008-05-05 2024-08-21 Solaredge Technologies Ltd. Direct current power combiner
KR101036098B1 (en) 2009-12-04 2011-05-19 삼성에스디아이 주식회사 Maximum power point tracking converter and method thereof
US8922061B2 (en) 2010-03-22 2014-12-30 Tigo Energy, Inc. Systems and methods for detecting and correcting a suboptimal operation of one or more inverters in a multi-inverter system
US9312399B2 (en) 2010-04-02 2016-04-12 Tigo Energy, Inc. Systems and methods for mapping the connectivity topology of local management units in photovoltaic arrays
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
WO2012090242A1 (en) * 2010-12-27 2012-07-05 日立アプライアンス株式会社 Power converter and solar power generation system
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
EP4318001A3 (en) 2013-03-15 2024-05-01 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656534A (en) * 2010-10-06 2012-09-05 丰田自动车株式会社 Output control device for solar battery
CN102656534B (en) * 2010-10-06 2014-07-30 丰田自动车株式会社 Output control device for solar battery

Also Published As

Publication number Publication date
JP2001060120A (en) 2001-03-06

Similar Documents

Publication Publication Date Title
JP3567808B2 (en) Maximum power control method for solar cells
JPH08227324A (en) Photovoltaic power generator
JP2005235082A (en) Method for tracking and controlling maximum power, and power converting device
JPH05176549A (en) Method and device for adaptive control for power converter
JP3567944B2 (en) Power converter for photovoltaic power generation
JP6696819B6 (en) Operating point control circuit device for series connected solar cells or other power sources
WO2015181983A1 (en) Power conversion device, power generation system, control device, and control method
KR20110013221A (en) System interconnection inverter device and control method thereof
JP6106568B2 (en) Power converter
JP2008015899A (en) System interconnection power conditioner
JP3567810B2 (en) Maximum power control method for solar cells
JP3567809B2 (en) Maximum power control method for solar cells
JPH07168639A (en) Maximum electric power tracking method for solar power generation system
JP3567807B2 (en) Maximum power control method for solar cells
JP2001060123A (en) Maximum power control method for solar battery
JP3567812B2 (en) Maximum power control method for solar cells
JP2001060119A (en) Maximum power control method for solar battery
JP3484506B2 (en) Power control device and power generation system using the same
JP2001060118A (en) Maximum power control method for solar battery
Chandrasekhar et al. Identification of the Optimal Converter Topology for Solar Water Pumping Application
JP3788295B2 (en) Solar cell maximum power control method
JP3823785B2 (en) Solar cell maximum power control method
JP2000020149A (en) Sunshine inverter device
JP3182230B2 (en) Solar power generator
JPS6242213A (en) Output power controller for solar battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees