【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジン等の内燃機関から排出されるガスに含まれている物質のうち少なくともパティキュレートを除去し、排気ガス中の炭化水素(HC)、一酸化炭素を浄化するために用いられるパティキュレート捕集用のフィルタに関する。
【0002】
【従来の技術】
ディーゼルエンジン等の内燃機関から排出されるパティキュレートには、人体に有害な物質が含まれており、これを除去することが環境上の課題となっている。このため、従来では、ディーゼルエンジンの排気系に設けたフィルタでパティキュレートを捕集し、一定量捕集した後パティキュレートを電気ヒータやバーナ等で燃焼除去する方法が行われている。また、フィルタに担持した白金族金属触媒でパティキュレートの燃焼温度を下げ、捕集したパティキュレートを連続的に燃焼させる方法もある。前者の捕集したパティキュレートを電気ヒータやバーナ等で燃焼除去する方法の場合、パティキュレートの捕集量が多いほど燃焼時のフィルタ最高温度が上昇し、フィルタにかかる熱応力でフィルタが破損することがあり、パティキュレートの捕集量制御が重要であり、完全に捕集量を制御するには至っていない。後者の触媒による燃焼の場合、燃焼温度が比較的低くなりフィルタにかかる熱応力が小さくなるため、耐熱性に優れている。
【0003】
上記の方法において、パティキュレートの捕集にはおもに、セラミックのハニカム構造体を用いることが多く、その材質としては、低熱膨張性をしめすコーディエライトが一般的に用いられる。
【0004】
本発明の対象とするディーゼル排ガス浄化フィルタは、ハニカム構造のセラミックモノリスの片端のセル開口部、例えばガス入口側のセル開口部は一個おきに目封じしてあり、ガス出口側のセル開口部は入口側の開口部が目封じしていないセルについてのみ目封じする。したがって、排気ガスはセル側壁の細孔を通過し、排気ガスとともに流れるパティキュレートはこのセル則壁の表面およびセル則壁の細孔内部で捕集される。
【0005】
【発明が解決しようとする課題】
ハニカム構造の多孔質セラミックフィルタは前記のようにモノリスハニカムの両端を交互に目封じすることにより、ガスはセル壁の数μm〜数十μmの気孔を通過して隣接するセルに流れる構造のため、パティキュレートの捕集効率が他の構造のフィルタよりも高い利点がある。このフィルタに触媒を担持するため、その担体として活性アルミナ等の高比表面積材料をセル側壁表面およびセル側壁の細孔内部にコーティングする場合、高比表面積材料がセル側壁の細孔を閉塞してしまい、コーティングしてないフィルタに比べ圧力損失が高くなるという問題がある。フィルタの圧力損失が高いとエンジン出力の低下につながるため、圧力損失はできるだけ低いほうがよい。しかし、圧力損失を低くするため、フィルタの気孔率、気孔径を大きくしすぎるとパティキュレートの捕集効率を低下させてしまう恐れがある。
【0006】
ハニカム構造のセラミック担体に活性アルミナ等の高比表面積材料をコーティングする場合、活性アルミナの粒径を規定したものがいくつか公知となっている。特公昭55−1818号公報では、活性アルミナ粒径を0.1〜100μmであると規定しているが、ベーマイト等の無定形アルミナと混合することが前提であり、これにより活性アルミナコーティング層の接着強度が向上するとしている。また、特公平4−80736号公報では、活性アルミナの平均粒径を20μm以下であると規定することにより、活性アルミナスラリーの安定した分散性を確保するのに有効であり、活性アルミナコーティング層の接着強度が向上するとしている。しかし、いずれも、ハニカム構造のセラミック担体に活性アルミナをコーティングしたとき、コーティング層の剥離を防止するために接着強度を向上させることを目的としている。そしてこれらはフロースルー型排ガス浄化装置であって、排ガスがハニカムの壁の中を通過せず、その壁で形成された管状通路を通過する形式のもので、フィルタと呼べるものではなく、壁の強度を強くするため一般に壁の気孔率は低く気孔径は小さいものである。
【0007】
本発明は、ハニカム構造の多孔質モノリスハニカムの両端を交互に目封じすることにより、ガスがセル壁の気孔を通過して隣接するセルに流れる構造の多孔質ハニカムフィルタにおいて、活性アルミナ等の高表面材料をセル側壁の表面だけでなく、セル側壁の細孔内部にも均一にコーティングし、しかも圧損失が高いという問題を生じないものを提供することを目的とするものである。
【0008】
【課題を解決するための手段】
請求項1記載の発明によれば、多孔質セラミックハニカム構造体を有するディーゼル排ガス浄化フィルタにおいて、このハニカム構造体のセル側壁の気孔率が40〜65%で、平均細孔径が5〜35μmであり、これに担持される高比表面積材料の90wt%以上が上記ハニカム構造体セル側壁の平均細孔径よりも小さくすることによって、本発明の高比表面材料のコーティングを有するディーゼル排ガス浄化フィルタを圧力損失の低いものとすることができる。
【0009】
【発明の実施の形態】
本発明のディーゼル排ガス浄化フィルタは、セラミックモノリスハニカム構造体のセル側壁表面及びセル側壁内部細孔表面に活性アルミナ等の高比表面積材料を被覆し、その上に触媒金属を被覆し、次いで得られたハニカムのセル開口部の両端を交互に目封じすることにより作られる。
【0010】
本発明に用いるセラミックモノリスハニカム構造体は、従来低熱膨張係数セラミックスとして知られているコーディエライト(化学組成2MgO・2Al2 O3 ・5SiO2 )で作られているのが好ましく、側壁の気孔率は約40%〜65%であるのが好ましく、より好ましくは約45%〜60%であり、平均細孔径は約5μm〜35μmであるのが好ましく、より好ましくは約10μm〜30μmである。
【0011】
一方、前記ハニカム構造体にコーティングする活性アルミナ等の高比表面積材料の粒径は、その90wt%以上、好ましくは95wt%以上が前記ハニカム構造体の平均細孔径よりも小さな粒径であることが望ましい。高比表面積材料の粒径が前記ハニカム構成体の平均細孔径よりも大きいものが10wt%より多い場合、高比表面材料は前記ハニカム構造体のセル側壁内部の細孔に入らず、セル側壁表面を覆う高比表面積材料が相対的に増加し、コーティング層の膜厚が厚くなり圧損上昇が大きくなるので好ましくない。また、高比表面積材料の90wt%以上のものの粒径が前記ハニカム構造体の平均細孔径よりも小さい場合、セル側壁内部の細孔に入る高比表面積材料が増加する。このときエアーブローまたは、クリーナによる吸引を十分行ない余分な高表面材料スラリーを取り除き、細孔内を閉塞させることなく均一に分散させてコーティングすることで、圧損の上昇を抑えることができる。圧損は、フィルタの入口側よりフィルタ内にエアーを流入させ、フィルタの出口側よりフィルタ外へエアーを流出させたとき、入口側と出口側のエアーの差であり、入口側より流入させるエアー量は2000L/分(線速度1.8cm/秒)の条件で測定して、45mmAq(水柱)以下であることが望ましい。
【0012】
本発明のディーゼル排ガス浄化フィルタは、ディーゼルエンジンの排ガス中に含まれるパティキュレートを捕集するための構造として入口側のセルから流入したガスは出口側のセルは目封じされているため、セル側壁を通り抜け隣接するセルの出口から排出される。セル壁を通り抜けるとき排ガス中のパティキュレートのみが捕集される。このとき、フィルタを構成する活性アルミナ被覆前のハニカムの気孔率と平均細孔径が前記の範囲より小さい場合、パティキュレートの捕集効率が向上するが、フィルタの圧力損失が高くなりエンジン出力が低下するので好ましくない。また、この範囲より大きいとパティキュレートの捕集効率が低下するので好ましくない。
【0013】
また、活性アルミナ等の高比表面積材料の粒子径が前記のような範囲である理由は、高比表面積材料が前記ハニカム構造体のセル側壁の細孔内部に侵入する必要があるためである。従来、高比表面積材料をハニカム型モノリス担体にコーティングするのはセル側壁の表面のみであったが、排ガスがセル側壁の細孔内部を通過するような構造のハニカム型フィルタの場合、排ガスに含まれるパティキュレートがフィルタのセル側壁の表面上およびセル側壁の細孔内部に留まるので、このとき、パティキュレートはこの高比表面積材料と細孔内部で接触することが、触媒作用を受けるために必要である。したがって、高比表面積材料は前記の粒径が必要である。
また、前記高比表面積材料のコート量(担持量)は20〜75g/Lが好ましい。コート量が20g/Lよりも少ない場合、排ガスの浄化能力が低く好ましくない。また75g/Lよりも大きい場合、フィルタの圧損が高くなってエンジン出力が低下するため好ましくない。
【0014】
本発明における高比表面積材料としては活性アルミナの他シリカ、ジルコニア、チタニア、又はこれらの内の2種以上を含むものを使用することができる。
【0015】
本発明のディーゼル排ガス浄化フィルタは、少なくともディーゼルエンジンの排ガスに含まれているパティキュレートを捕集し、燃焼除去させるものである。活性アルミナ等の高比表面積物質をフィルタにコーティングするのは、好ましくは白金族触媒金属をコーティングさせるための担体にするためである。一般に白金族触媒金属はパティキュレートの燃焼温度を下げる触媒として用いられ、さらに一酸化炭素や炭化水素の酸化触媒として用いられている。本発明のフィルタは、好ましくは少なくとも一種類の白金族元素からなる金属触媒を担持してあるフィルタである。
【0016】
次に、本発明のディーゼル排ガス浄化フィルタについて図1〜3をもって具体的に説明する。図1のように、このハニカム構造の多孔質セラミックフィルタはモノリスハニカムの両端の目封じ材1で交互に目封じすることにより、ハニカム型フィルタのセル側壁2に活性アルミナ粒子3からなるコーティング層4を形成している。図1のA部を拡大した図2のようにフィルタの平均細孔径よりも小さな粒径の活性アルミナを用いれば、セル側壁の細孔5の内部を閉塞することなくコーティングされるのでフィルタの圧損上昇が少ない。しかし、図1のA部を拡大した図3のようにフィルタの平均細孔径よりも大きな粒径の活性アルミナを用いた場合、セル壁の細孔を閉塞させるので、フィルタの圧損は大幅に上昇する。また、活性アルミナのコーティング部分に白金族触媒金属を担持することで、セル壁内部で捕集されたパティキュレートおよび他の排ガス成分(HC,CO等)の浄化効率を高めている。尚、これらの図面において触媒金属層の記載は省略している。
【0017】
パティキュレートを含むディーゼル排ガスは、セル入口側6からセル内に進入し、セル壁2を通過してセル出口側7から出ていく。このとき、パティキュレートはセル壁表面および内部の細孔で捕集される。白金族触媒金属は、通常活性アルミナをコーティングした後にあらためてコーティングするが、活性アルミナと混合した溶液でコーティングすることも可能である。
【0018】
【実施例】
以上のような材料を用いてコーティングしたフィルタは、低圧損のディーゼルパティキュレートフィルタとして好適に用いることができる。以下に、その実施例と比較例を示す。
【0019】
〔実施例1〕
主原料にシリカ、水酸化アルミニウム、タルクを用い、コーディエライト(2MgO・2Al2 O3 ・5SiO2 )組成になるように調整し、つぎに多孔質にするためのカーボンをこれら主原料に対して20wt%添加して、公知の押し出し製法でセラミックハニカム構造体を作製し、1350℃〜1450℃の最高温度、5 ℃〜200℃の昇温速度、2〜20時間の保持時間で焼成して、気孔率が55%、平均細孔径28μmの細孔特性を持ち、セル側壁厚さ0.45mm、1平方インチあたりのセル数が150個の直径140mm、長さ130mmの多孔質コーディエライトハニカム構造体を得た。
【0020】
一方、高比表面積材料として、中心粒径5μmで、粒径が28μmより大きい粒子が5wt%以下の活性アルミナ(住友化学製)670gとアルミナゾル(日産化学製)330gを水4リッターとともに混合し、攪拌して活性アルミナスラリーを作製した。
【0021】
前記の多孔質コーディエライトハニカム構造体を活性アルミナスラリーに完全に浸した(ウォッシュコート)。その後、エアークリーナーおよび圧縮エアーで余分に付着したスラリーをできるだけ完全に取り除いた。コーティングを繰り返してコート量の異なる5種類のハニカムを作製した。さらにその後、120℃で2時間乾燥し、800℃で焼成した。単位体積当たりのコート量はウォッシュコート前後のハニカム重量差から算出した<コート量〔g/L〕=(コート前重量−コート後重量)/ハニカム体積)>。この後、0.1mol /Lの塩化白金酸水溶液中に30分浸し、120℃で2時間乾燥させた後、800℃で焼成して白金を担持させた。白金の担持量は約2g/Lであった。
【0022】
白金を担持させたハニカム構造体のガス入口側のセル開口部を一個おきに目封じし、ガス出口側では入口側で目封じしてないセルについてのみ目封じした。目封じ材はコーディエライト、アルミナ、ジルコニアなどの1000℃以上の耐熱性のあるセラミック材料であれば特に限定せず、セラミック製の接着剤でもよい。この実施例においてはコーディエライトを用いた。このようにして、活性アルミナコート量の異なる触媒担体付きフィルタを作製した(担体A−1〜担体A−4)。
【0023】
〔実施例2〕
実施例1で用いた多孔質コーディエライトハニカムフィルタと同様のフィルタを同様の方法で作製し、高比表面積材料として、中心粒径2μmで、28μmより大きな粒子が5%以下の活性アルミナ(住友化学製)670gをアルミナゾル(日産化学製)330g及び水4リッターとともに混合し、攪拌した活性アルミナスラリーに前記フィルタをウォッシュコートした。コーティングを繰り返してコート量の異なる5種類のフィルタを作製した。その後、エアークリーナーおよび圧縮エアーで余分に付着したスラリーをできるだけ完全に取り除いた。さらにその後、120℃で2時間乾燥し、800℃で焼成した。コート量を調べた後、塩化白金酸水溶液中に30分浸し、120℃で2時間乾燥させた後、800℃で焼成して白金を担持させた。白金の担持量は約2g/Lであった。
【0024】
その後、コーディエライトを用いて、白金を担持させたハニカム構造体のガス入口側のセル開口部を一個おきに目封じし、ガス出口側では入口側で目封じしてないセルについてのみ目封じし、触媒担体付きフィルタを作製した(担体B−1〜担体B−5)。
【0025】
〔比較例1〕
実施例1で用いた多孔質コーディエライトハニカムフィルタと同様のフィルタを同様の方法で作製し、高比表面積材料として、中心粒径50μmの活性アルミナ(住友化学製)670gをアルミナゾル(日産化学製)330g及び水4リッターとともに混合し、攪拌した活性アルミナスラリーに前記フィルタをウォッシュコートした。その後、エアークリーナーおよび圧縮エアーで余分に付着したスラリーをできるだけ完全に取り除いた。コーティングを繰り返してコート量の異なる3種類のフィルタを作製した。さらにその後、120℃で2時間乾燥し、800℃で焼成した。コート量を算出した後、0.1mol /Lの塩化白金酸水溶液中に30分浸し、120℃で2時間乾燥させた後、800℃で焼成して白金を担持させた。白金の担持量は2g/Lであった。
【0026】
その後、コーディエライトを用いて、白金を担持させたハニカム構造体のガス入口側のセル開口部を一個おきに目封じし、ガス出口側では入口側で目封じしてないセルについてのみ目封じし、触媒担体付きフィルタを作製した(担体C−1〜担体C−3)。
【0027】
〔比較例2〕
実施例1で用いた多孔質コーディエライトハニカムフィルタと同様のフィルタを同様の方法で作製し、高比表面積材料として、中心粒径約25μmで、28μmより大きな粒子を45wt%含む活性アルミナ(住友化学製)670gをアルミナゾル(日産化学製)330g及び水4リッターとともに混合し、攪拌した活性アルミナスラリーに前記フィルタをウォッシュコートした。その後、エアークリーナーおよび圧縮エアーで余分に付着したスラリーをできるだけ完全に取り除いた。コーティングを繰り返してコート量の異なる4種類のフィルタを作製した。さらにその後、120℃で2時間乾燥し、800℃で焼成した。コート量を算出した後、0.1mol /Lの塩化白金酸水溶液中に30分浸し、120℃で2時間乾燥させた後、800℃で焼成して白金を担持させた。白金の担持量は約2g/Lであった。
【0028】
その後、コーディエライトを用いて、白金を担持させたハニカム構造体のガス入口側のセル開口部を一個おきに目封じし、ガス出口側では入口側で目封じしてないセルについてのみ目封じし、触媒担体付きフィルタを作製した(担体D−1〜担体D−4)。
【0029】
〔比較例3〕
実施例1で用いた多孔質コーディエライトハニカムフィルタと同様のフィルタを同様の方法で作製し、活性アルミナによるコーティングをせずに白金を同様にして約2g/L担持させ、ハニカム構造体のガス入口側のセル開口部を一個おきに目封じし、ガス出口側では入口側で目封じしてないセルについてのみ目封じし、触媒担体付きフィルタを作製した(担体E)。
【0030】
表1に実施例および比較例で作製した担体のコート量を記載する。
【0031】
【表1】
【0032】
(触媒担体付きフィルタの圧力損失の測定)
実施例1,2、比較例1,2,3により得られた担体A〜担体Eのすべてのフィルタについて、フィルタの入口側から圧縮エアーを流し、入口側と出口側の差圧を測定した。圧力損失の測定結果を図4に示す。この結果より、本発明品はコーティングを施した比較例1,2よりも圧損が低いことがわかる。
【0033】
(フィルタの細孔分布測定)
実施例1,2、比較例1,2,3により得られた担体A〜担体Eのすべてのフィルタについて、細孔分布を測定した。担体の平均細孔径と活性アルミナのコート量の関係を図5に示す。コート量が増加していくと担体の平均細孔径は小さくなっていく。低圧損のディーゼル浄化用フィルタとして有利な平均細孔径は5μm〜35μmである。
【図面の簡単な説明】
【図1】本発明の1例の又は比較例のディーゼル排ガス浄化フィルタの横断面図。
【図2】図1のA部拡大図。
【図3】図1のA部拡大図。
【図4】実施例、比較例のフィルタの圧力損失の測定結果を示すグラフ。
【図5】実施例、比較例のフィルタにおける担体の平均細孔径と活性アルミナのコート量の関係を示すグラフ。[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is used for removing at least particulates from substances contained in gas exhausted from an internal combustion engine such as a diesel engine and purifying hydrocarbons (HC) and carbon monoxide in exhaust gas. The present invention relates to a filter for collecting particulates.
[0002]
[Prior art]
Particulates emitted from internal combustion engines such as diesel engines contain substances harmful to the human body, and removing them has become an environmental issue. For this reason, conventionally, a method of collecting particulates with a filter provided in an exhaust system of a diesel engine, collecting a certain amount of the particulates, and burning and removing the particulates with an electric heater, a burner, or the like has been performed. There is also a method of lowering the burning temperature of particulates with a platinum group metal catalyst supported on a filter and burning the collected particulates continuously. In the case of the former method, in which the collected particulates are burned and removed by an electric heater, a burner, or the like, as the amount of collected particulates increases, the maximum temperature of the filter during combustion rises, and the filter is damaged by thermal stress applied to the filter. In some cases, control of the amount of trapped particulates is important, and the amount of trapped particulates has not been completely controlled. In the latter case of combustion using a catalyst, the combustion temperature is relatively low, and the thermal stress applied to the filter is small, so that the heat resistance is excellent.
[0003]
In the above-described method, a ceramic honeycomb structure is mainly used for collecting particulates, and cordierite having low thermal expansion is generally used as the material.
[0004]
In the diesel exhaust gas purifying filter targeted by the present invention, a cell opening at one end of a ceramic monolith having a honeycomb structure, for example, a cell opening at a gas inlet side is plugged every other cell, and a cell opening at a gas outlet side is closed. Only cells that are not plugged in the opening on the inlet side are plugged. Therefore, the exhaust gas passes through the pores on the side wall of the cell, and the particulates flowing with the exhaust gas are collected on the surface of the cell law wall and inside the pores of the cell law wall.
[0005]
[Problems to be solved by the invention]
The porous ceramic filter of the honeycomb structure has a structure in which the gas flows through the pores of several μm to several tens μm of the cell wall to the adjacent cells by alternately plugging both ends of the monolith honeycomb as described above. In addition, there is an advantage that the collection efficiency of particulates is higher than that of filters having other structures. In order to support a catalyst on this filter, when a high specific surface area material such as activated alumina is coated on the cell side wall surface and inside the pores of the cell side wall as the carrier, the high specific surface area material closes the pores of the cell side wall. As a result, there is a problem that the pressure loss is higher than that of a filter without coating. Since a high filter pressure loss leads to a decrease in engine output, the pressure loss should be as low as possible. However, if the porosity and the pore diameter of the filter are too large in order to reduce the pressure loss, there is a possibility that the collection efficiency of particulates may be reduced.
[0006]
When a ceramic carrier having a honeycomb structure is coated with a material having a high specific surface area such as activated alumina, several types having a defined particle size of activated alumina are known. Japanese Patent Publication No. 55-1818 discloses that the activated alumina particle size is 0.1 to 100 μm, but it is premised that the activated alumina is mixed with an amorphous alumina such as boehmite. It is said that the adhesive strength is improved. In Japanese Patent Publication No. 4-80736, it is effective to ensure a stable dispersibility of the activated alumina slurry by defining the average particle size of the activated alumina to be 20 μm or less. It is said that the adhesive strength is improved. However, in any case, when the activated alumina is coated on the ceramic carrier having the honeycomb structure, the purpose is to improve the adhesive strength in order to prevent peeling of the coating layer. These are flow-through type exhaust gas purifying devices, in which the exhaust gas does not pass through the honeycomb wall, but passes through a tubular passage formed by the wall, and is not a filter, but rather a filter. In order to increase the strength, the porosity of the wall is generally low and the pore diameter is small.
[0007]
The present invention provides a porous honeycomb filter having a structure in which a gas flows through pores of a cell wall to an adjacent cell by alternately plugging both ends of a porous monolith honeycomb having a honeycomb structure. It is an object of the present invention to provide a surface material which is uniformly coated not only on the surface of the cell side wall but also inside the pores of the cell side wall and does not cause a problem of high pressure loss.
[0008]
[Means for Solving the Problems]
According to the first aspect of the present invention, in the diesel exhaust gas purification filter having the porous ceramic honeycomb structure, the porosity of the cell side wall of the honeycomb structure is 40 to 65%, and the average pore diameter is 5 to 35 μm. By making 90% by weight or more of the high specific surface area material supported on the honeycomb structure body smaller than the average pore diameter of the honeycomb structure cell side wall, the diesel exhaust gas purification filter having the high specific surface material coating of the present invention has a pressure loss. Low.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The diesel exhaust gas purification filter of the present invention is obtained by coating a high specific surface area material such as activated alumina on a cell side wall surface and a cell side wall internal pore surface of a ceramic monolith honeycomb structure, and then coating a catalytic metal thereon. It is made by alternately plugging both ends of the honeycomb cell opening.
[0010]
Ceramic monolith honeycomb structure used in the present invention is preferably made conventionally with a low thermal expansion coefficient ceramic as known cordierite (chemical composition 2MgO · 2Al 2 O 3 · 5SiO 2), the porosity of the side walls Is preferably about 40% to 65%, more preferably about 45% to 60%, and the average pore diameter is preferably about 5 μm to 35 μm, and more preferably about 10 μm to 30 μm.
[0011]
On the other hand, the particle diameter of the high specific surface area material such as activated alumina to be coated on the honeycomb structure may be 90 wt% or more, preferably 95 wt% or more, smaller than the average pore diameter of the honeycomb structure. desirable. If more than 10 wt% of the high specific surface area material has a particle diameter larger than the average pore diameter of the honeycomb structure, the high specific surface material does not enter the pores inside the cell side wall of the honeycomb structure, and This is not preferable because the material having a high specific surface area covering the coating layer relatively increases, the thickness of the coating layer increases, and the pressure loss increases. When the particle diameter of the high specific surface area material is 90 wt% or more than the average pore diameter of the honeycomb structure, the high specific surface area material entering the pores inside the cell side wall increases. At this time, the excess of the high surface material slurry is sufficiently removed by air blow or suction with a cleaner, and the slurry is uniformly dispersed without blocking the inside of the pores and coated, so that an increase in pressure loss can be suppressed. The pressure loss is the difference between the air on the inlet side and the air on the outlet side when air flows into the filter from the inlet side of the filter and flows out of the filter from the outlet side of the filter. Is preferably 45 mmAq (water column) or less when measured under the condition of 2000 L / min (linear velocity 1.8 cm / sec).
[0012]
The diesel exhaust gas purification filter of the present invention has a structure for collecting particulates contained in exhaust gas of a diesel engine. Through the outlet of the adjacent cell. When passing through the cell wall, only the particulates in the exhaust gas are collected. At this time, when the porosity and the average pore diameter of the honeycomb before the activated alumina coating constituting the filter are smaller than the above ranges, the collection efficiency of the particulates is improved, but the pressure loss of the filter is increased and the engine output is reduced. Is not preferred. On the other hand, if it is larger than this range, the collection efficiency of particulates is undesirably reduced.
[0013]
The reason why the particle diameter of the high specific surface area material such as activated alumina is in the above range is that the high specific surface area material needs to enter the inside of the pores on the cell side walls of the honeycomb structure. Conventionally, a honeycomb-type monolithic carrier was coated with a high specific surface area material only on the surface of the cell side wall.However, in the case of a honeycomb type filter having a structure in which the exhaust gas passes through the inside of the pores of the cell side wall, it is included in the exhaust gas. At this time, it is necessary for the particulates to come into contact with the high specific surface area material inside the pores in order to be catalyzed since the particulates remain on the surface of the cell side wall of the filter and inside the pores of the cell side wall. It is. Therefore, the high specific surface area material needs the above particle size.
Further, the coating amount (supporting amount) of the high specific surface area material is preferably 20 to 75 g / L. If the coating amount is less than 20 g / L, the exhaust gas purification capacity is low, which is not preferable. On the other hand, if it is larger than 75 g / L, the pressure loss of the filter increases and the engine output decreases, which is not preferable.
[0014]
As the material having a high specific surface area in the present invention, besides activated alumina, silica, zirconia, titania, or a material containing two or more of these materials can be used.
[0015]
The diesel exhaust gas purification filter of the present invention collects at least particulates contained in exhaust gas of a diesel engine, and burns and removes the particulates. The reason why the filter is coated with a high specific surface area material such as activated alumina is preferably to provide a support for coating a platinum group catalytic metal. In general, platinum group catalyst metals are used as catalysts for lowering the burning temperature of particulates, and are also used as catalysts for oxidizing carbon monoxide and hydrocarbons. The filter of the present invention is preferably a filter carrying a metal catalyst comprising at least one platinum group element.
[0016]
Next, the diesel exhaust gas purification filter of the present invention will be specifically described with reference to FIGS. As shown in FIG. 1, this porous ceramic filter having a honeycomb structure is alternately plugged with plugging materials 1 at both ends of a monolith honeycomb to form a coating layer 4 made of activated alumina particles 3 on cell side walls 2 of the honeycomb filter. Is formed. If activated alumina having a particle size smaller than the average pore diameter of the filter is used as shown in FIG. 2 in which the portion A of FIG. 1 is enlarged, the filter is coated without closing the inside of the pore 5 on the cell side wall, so that the pressure loss of the filter is reduced. Little rise. However, when activated alumina having a particle diameter larger than the average pore diameter of the filter is used as shown in FIG. 3 in which the portion A of FIG. 1 is enlarged, the pores on the cell walls are closed, and the pressure loss of the filter increases significantly. I do. In addition, by supporting the platinum group catalyst metal on the coating portion of the activated alumina, the purification efficiency of particulates and other exhaust gas components (HC, CO, etc.) trapped inside the cell wall is enhanced. In these drawings, the description of the catalyst metal layer is omitted.
[0017]
Diesel exhaust gas containing particulates enters the cell from the cell inlet side 6, passes through the cell wall 2, and exits from the cell outlet side 7. At this time, the particulates are trapped on the cell wall surface and inside pores. The platinum group catalyst metal is usually coated anew after coating with activated alumina, but it is also possible to coat with a solution mixed with activated alumina.
[0018]
【Example】
A filter coated with the above materials can be suitably used as a low-pressure-loss diesel particulate filter. Examples and comparative examples are shown below.
[0019]
[Example 1]
Silica main ingredient, aluminum hydroxide, with talc, was adjusted to cordierite (2MgO · 2Al 2 O 3 · 5SiO 2) composition, then the carbon to a porous to these main raw materials , And then fired at a maximum temperature of 1350C to 1450C, a heating rate of 5C to 200C, and a holding time of 2 to 20 hours. , A porous cordierite honeycomb having a porosity of 55%, an average pore diameter of 28 μm, a cell side wall thickness of 0.45 mm, and 150 cells per square inch having a diameter of 140 mm and a length of 130 mm. A structure was obtained.
[0020]
On the other hand, as a material having a high specific surface area, 670 g of activated alumina (manufactured by Sumitomo Chemical Co., Ltd.) having a center particle size of 5 μm and particles having a particle size larger than 28 μm of 5 wt% or less and 330 g of alumina sol (manufactured by Nissan Chemical) are mixed together with 4 liters of water, The mixture was stirred to produce an activated alumina slurry.
[0021]
The porous cordierite honeycomb structure was completely immersed in an activated alumina slurry (wash coat). After that, excess slurry adhered as much as possible was removed with an air cleaner and compressed air. The coating was repeated to produce five types of honeycombs having different coating amounts. Thereafter, it was dried at 120 ° C. for 2 hours and fired at 800 ° C. The coating amount per unit volume was calculated from the difference in honeycomb weight before and after wash coating. <Coating amount [g / L] = (weight before coating−weight after coating) / honeycomb volume)>. Thereafter, it was immersed in a 0.1 mol / L chloroplatinic acid aqueous solution for 30 minutes, dried at 120 ° C. for 2 hours, and calcined at 800 ° C. to support platinum. The supported amount of platinum was about 2 g / L.
[0022]
Every other cell opening on the gas inlet side of the honeycomb structure supporting platinum was plugged, and only the cells not plugged on the inlet side on the gas outlet side were plugged. The plugging material is not particularly limited as long as it is a heat-resistant ceramic material such as cordierite, alumina, zirconia or the like having a temperature of 1000 ° C. or more, and a ceramic adhesive may be used. In this example, cordierite was used. In this way, filters with catalyst carriers having different activated alumina coating amounts were produced (carriers A-1 to A-4).
[0023]
[Example 2]
A filter similar to the porous cordierite honeycomb filter used in Example 1 was manufactured by the same method, and as a material having a high specific surface area, activated alumina having a center particle diameter of 2 μm and particles larger than 28 μm and 5% or less (Sumitomo) (670 g) was mixed with 330 g of alumina sol (manufactured by Nissan Chemical) and 4 liters of water, and the filter was wash-coated on a stirred activated alumina slurry. The coating was repeated to produce five types of filters having different coating amounts. After that, excess slurry adhered as much as possible was removed with an air cleaner and compressed air. Thereafter, it was dried at 120 ° C. for 2 hours and fired at 800 ° C. After examining the coating amount, it was immersed in an aqueous chloroplatinic acid solution for 30 minutes, dried at 120 ° C. for 2 hours, and baked at 800 ° C. to carry platinum. The supported amount of platinum was about 2 g / L.
[0024]
Thereafter, using cordierite, every other cell opening on the gas inlet side of the honeycomb structure supporting platinum was plugged, and only the cells not plugged on the inlet side on the gas outlet side were plugged. Then, a filter with a catalyst carrier was produced (carrier B-1 to carrier B-5).
[0025]
[Comparative Example 1]
A filter similar to the porous cordierite honeycomb filter used in Example 1 was manufactured by the same method, and 670 g of activated alumina (manufactured by Sumitomo Chemical) having a center particle diameter of 50 μm was converted to alumina sol (manufactured by Nissan Chemical) as a high specific surface area material. ) Was washed with 330 g of water and 4 liters of water, and the filter was wash-coated on a stirred activated alumina slurry. After that, excess slurry adhered as much as possible was removed with an air cleaner and compressed air. Coating was repeated to produce three types of filters having different coating amounts. Thereafter, it was dried at 120 ° C. for 2 hours and fired at 800 ° C. After calculating the coating amount, the film was immersed in a 0.1 mol / L chloroplatinic acid aqueous solution for 30 minutes, dried at 120 ° C. for 2 hours, and baked at 800 ° C. to support platinum. The supported amount of platinum was 2 g / L.
[0026]
Thereafter, using cordierite, every other cell opening on the gas inlet side of the honeycomb structure supporting platinum was plugged, and only the cells not plugged on the inlet side on the gas outlet side were plugged. Then, a filter with a catalyst carrier was produced (carrier C-1 to carrier C-3).
[0027]
[Comparative Example 2]
A filter similar to the porous cordierite honeycomb filter used in Example 1 was manufactured by the same method, and as a material having a high specific surface area, activated alumina having a center particle diameter of about 25 μm and containing 45 wt% of particles larger than 28 μm (Sumitomo) (670 g) was mixed with 330 g of alumina sol (manufactured by Nissan Chemical) and 4 liters of water, and the filter was wash-coated on a stirred activated alumina slurry. After that, excess slurry adhered as much as possible was removed with an air cleaner and compressed air. The coating was repeated to produce four types of filters having different coating amounts. Thereafter, it was dried at 120 ° C. for 2 hours and fired at 800 ° C. After calculating the coating amount, the film was immersed in a 0.1 mol / L chloroplatinic acid aqueous solution for 30 minutes, dried at 120 ° C. for 2 hours, and baked at 800 ° C. to support platinum. The supported amount of platinum was about 2 g / L.
[0028]
Thereafter, using cordierite, every other cell opening on the gas inlet side of the honeycomb structure supporting platinum was plugged, and only the cells not plugged on the inlet side on the gas outlet side were plugged. Then, a filter with a catalyst carrier was produced (carrier D-1 to carrier D-4).
[0029]
[Comparative Example 3]
A filter similar to the porous cordierite honeycomb filter used in Example 1 was produced by the same method, and about 2 g / L of platinum was supported in the same manner without coating with activated alumina, and the gas of the honeycomb structure was formed. Every other cell opening on the inlet side was plugged, and only the cells not plugged on the inlet side on the gas outlet side were plugged to produce a filter with a catalyst carrier (carrier E).
[0030]
Table 1 shows the coating amounts of the carriers prepared in Examples and Comparative Examples.
[0031]
[Table 1]
[0032]
(Measurement of pressure loss of filter with catalyst carrier)
For all the filters of the carriers A to E obtained in Examples 1 and 2 and Comparative Examples 1, 2 and 3, compressed air was flowed from the inlet side of the filters, and the differential pressure between the inlet side and the outlet side was measured. FIG. 4 shows the measurement results of the pressure loss. From this result, it is understood that the product of the present invention has a lower pressure loss than Comparative Examples 1 and 2 provided with a coating.
[0033]
(Measurement of filter pore distribution)
The pore distribution was measured for all filters of the carriers A to E obtained in Examples 1 and 2 and Comparative Examples 1, 2 and 3. FIG. 5 shows the relationship between the average pore diameter of the carrier and the coating amount of activated alumina. As the coating amount increases, the average pore diameter of the carrier decreases. The average pore size that is advantageous as a low pressure loss diesel purification filter is 5 μm to 35 μm.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a diesel exhaust gas purification filter according to an example of the present invention or a comparative example.
FIG. 2 is an enlarged view of a portion A in FIG.
FIG. 3 is an enlarged view of a portion A in FIG. 1;
FIG. 4 is a graph showing measurement results of pressure loss of filters of an example and a comparative example.
FIG. 5 is a graph showing the relationship between the average pore diameter of the carrier and the coating amount of activated alumina in the filters of Examples and Comparative Examples.