JP3555737B2 - Cleaning gas - Google Patents

Cleaning gas Download PDF

Info

Publication number
JP3555737B2
JP3555737B2 JP20671098A JP20671098A JP3555737B2 JP 3555737 B2 JP3555737 B2 JP 3555737B2 JP 20671098 A JP20671098 A JP 20671098A JP 20671098 A JP20671098 A JP 20671098A JP 3555737 B2 JP3555737 B2 JP 3555737B2
Authority
JP
Japan
Prior art keywords
cleaning
gas
reactor
plasma
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20671098A
Other languages
Japanese (ja)
Other versions
JP2000038676A (en
Inventor
勇 毛利
満也 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP20671098A priority Critical patent/JP3555737B2/en
Publication of JP2000038676A publication Critical patent/JP2000038676A/en
Application granted granted Critical
Publication of JP3555737B2 publication Critical patent/JP3555737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Detergent Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CVD法、スパッタリング法、ゾルゲル法、蒸着法を用いて薄膜、厚膜、粉体、ウイスカを製造する装置において装置内壁、冶具等に堆積した不要な堆積物を除去するためのクリーニングガスに関する。
【0002】
【従来の技術および発明が解決しようとする課題】
半導体工業を中心とした薄膜デバイス製造プロセス、光デバイス製造プロセスや超鋼材料製造プロセスでは、CVD法、スパッタリング法、ゾルゲル法、蒸着法を用いて種々の薄膜、厚膜、粉体、ウイスカが製造されている。これらを製造する際には膜、ウイスカや粉体を堆積させるべき目的物上以外の反応器内壁、目的物を担持する冶具等にも堆積物が生成する。不要な堆積物が生成するとパーティクル発生の原因となるため良質な膜、粒子、ウイスカを製造することが困難になるため随時除去しなければならない。
【0003】
現在、CVD装置等の薄膜形成装置のクリーニングには、CF、C、CHF、SF、NFなどのガスが使用されているが、これらは地球温暖化係数が高いことが問題となっている。また、これらは比較的安定なガスであるため、エッチャントとして有用なCF・ラジカルやF・ラジカル等を発生させるためには、高いエネルギーが必要であり、電力消費量が大きいこと、大量の未反応排ガス処理が困難であるなどの問題がある。
【0004】
特開平6−13350号公報には、フルオロカーボン側鎖を有するスルホン酸、またはそのハロゲン化物、またはその酸無水物から選ばれる少なくとも1種類の化合物を用いてシリコン化合物層をエッチングすることを特徴とするドライエッチング方法において、具体的には(CFSOO、CF(CFSOFを用いた方法が記載されている。この特開平6−13350号公報は、半導体製造工程における微細ホール加工のためのエッチング工程に関するものであるが、クリーニング工程ではエッチング工程よりもガス化除去するべき対称物質の堆積量・体積膜厚が大きいためより高速な反応速度が求められる。しかしながら、この上記公報記載の化合物では反応速度が遅く、本発明者等が目的とするクリーニング工程には適応できない。また、クリーニング工程では、エッチング工程よりも使用するガス量が多いため、当該上記公報に記載の化合物では、炭素が配管内や反応器の低温部などで堆積が起こり、クリーニングによる反応系の2次的汚染を引き起こす等の問題がある。
【0005】
【課題を解決するための具体的手段】
本発明者らは、鋭意検討の結果、CFSOF、CSOFは、反応速度が高く、クリーニング能力に優れ、かつクリーニングによる2次的カーボン汚染を起こすことが無くクリーンなクリーニングを行えることを見いだし、さらに酸素との混合ガスを用いることで、より優れたクリーニングを行えることを見いだし本発明に至ったものである。
【0006】
すなわち本発明は、薄膜形成装置の中に生成した不要な堆積物を除去するために、CF3SO2F、C25SO2Fの少なくとも1種以上のガスを含有したクリーニングガスで、さらに、CF3SO2F、C25SO2Fの少なくとも1種以上のガスとO2とを含有したクリーニングガスを提供するものである。
【0007】
以下、本発明を詳細に説明する。
CFSOFあるいはCSOFを含有するガスを高周波あるいはマイクロ波を発生させることが可能な電極を取り付けた装置内に導入し、クリーニングを行うことにより、B、P、W、Si、Ti、V、Nb、Ta、Se、Te、Mo、Re、Os、Ir、Sb、Ge、Au、Ag、As、Cr及びその化合物、具体的には酸化物、窒化物、炭化物及びこれらの合金をCF、C、NF、C等の現在汎用的に使用されているガスよりも高速度でエッチングでき、優れたクリーニングを実現できるものである。
【0008】
また、例えばCFSOFの場合、特にプラズマ状態でなくとも、配管や装置の内部に堆積するCVD反応の副生成物である粉体やカレット状の堆積物をプラズマレスでクリーニングすることも可能であるという優れた特徴を有する。
【0009】
さらに、本発明のガスは、プラズマ反応において所望されない地球温暖化ガスであるCFの生成を分子内に含有する酸素の効果により遊離フッ素とフッ化炭素(CF)との結合を回避する効果があるため、2次的な環境汚染の問題もない。さらに、例えばCFSOFは、下式に示したごとくアルカリ水溶液で分解し、固体状のCFSOKとして固定できるため、未反応排ガスが反応系内から環境中に放出される危険性が無く、環境中に放出されても水と徐々に反応し分解するため地球温暖化に寄与しないという優れた特徴を有する。
CFSOF + KOH → CFSOK + HF
【0010】
本発明のガスを用いたクリーニング方法は、プラズマクリーニング、マイクロ波プラズマクリーニング、リモートプラズマクリーニング、プラズマレスクリーニングなどの各種ドライクリーニング条件下で実施可能である。
【0011】
CFSOFおよびCSOFは、同伴ガスを用いずとも優れたエッチング、クリーニング能力を示す。しかし、同伴ガスとしてAr、He、N、O、H、Fなどの単体ガスやCO、NO、NO、CH、NHなどの化合物を適切な割合で混合して使用することも可能である。
【0012】
CFSOF、CSOFをクリーニングに用いる場合の流量は、1〜10000SCCMの範囲が好ましい。クリーニングは、エッチングと異なり除去すべき不要物の堆積量が多いため、1SCCM未満の供給量では不要物を短時間に除去するには供給するフッ素量が少なく、クリーニングに長時間要するため好ましくない。一方、供給量が10000SCCMより多いと未反応排ガス量が著しく多くなるため効率的に除害できなくなる。また、プラズマを発生させる反応器内部の圧力は、0.01〜50Torrの範囲が好ましい。0.01Torr未満では反応速度が低下し、高速なクリーニングが困難になり、50Torrを越えると良好なプラズマ状態を維持できなくなる。しかし、配管の中などのフッ素ガスプラズマが到達しない箇所のクリーニングを行う場合や反応器をプラズマレスクリーニングする場合、ガス圧力は、0.1〜760Torrの範囲からプロセスに適合可能なエッチング速度が得られる圧力を選択できる。CFSOF、CSOFと金属やその化合物との反応速度は、0.1Torr〜5Torr以下の圧力領域では圧力に比例するが、0.1Torr未満では急速に反応速度が低下する傾向があるため好ましくない。また、5Torr以上の圧力領域では、0.1〜5Torrの領域よりも圧力上昇に対する反応速度の増加割合は小さいが、圧力の上昇に伴って直線的に反応速度も増加する。但し、760Torr以上の圧力でクリーニングすることは反応系外へのガスの漏洩の可能性があり安全上好ましくない。
【0013】
次に、CF3SO2F、C25SO2Fの少なくとも1種類以上のガスにO2を添加することによりクリーニングがさらに効果的になる。酸素ガスを添加した場合、遊離Fの発生量を増加させると共に遊離Fの長寿命化が図れ、さらに遊離フッ化炭素と結合するためCF4の発生を殆ど完全に回避できる。
【0014】
CF3SO2F、C25SO2FとO2を添加したガスをクリーニングに用いる場合の流量、その他の条件は、O2を混合しない場合と同様である。すなわち、流量は、1〜10000SCCMの範囲が好ましい。また、プラズマを発生させる反応器内部の圧力は、0.01〜10Torrの範囲が好ましい。しかし、配管の中などのフッ素ガスプラズマが到達しない箇所のクリーニングを行う場合や反応器をプラズマレスクリーニングする場合はガス圧力は、0.1〜760Torrの範囲からプロセスに適合可能なエッチング速度が得られる圧力を選択できる。同伴ガスとしてO2を用いるときは、CF3SO2Fなどの流量100対して、1〜100の流量の割合で用いることが好ましい。割合が1未満であるとO2の添加効果が顕著には認められず、100より大きいと堆積物の酸化が優先的に起こるため反応速度が低下するようになる。
【0015】
プラズマレスクリーニングを実施する場合の温度条件は、反応器壁に堆積した膜状堆積物を除去しようとした場合、酸素の添加の有無に関係なく室温(20℃)でも反応し徐々に堆積物はガス化除去可能であるが、100℃以上の温度に加熱することにより高速に反応除去できるためより好ましい。しかし、金属やセラミックス、樹脂の腐蝕を考慮するとその種類に応じて以下の温度以下でクリーニングすることが好ましい。
【0016】
オーステナイト系ステンレス:300℃以下
フェライト系ステンレス:110℃以下
ハステロイ、ヘインズなどの高Ni含有合金:225℃
モネル:465℃
Ni:520℃
Ni−Cr鋼:245℃
アルミ(及びアルミ合金):500℃
窒化アルミ(及び窒化アルミ含有複合材料):700℃
アルミナ(及びアルミナ含有複合材料):700℃
炭素珪素:490℃
黒鉛、硝子状炭素:395℃
パーフルオロエラストマ:365℃
フッ素ゴム:180℃
炭化水素系樹脂:150℃
塩化ビニール樹脂:180℃
【0017】
【実施例】
以下、本発明を実施例により詳細に述べるが、かかる実施例により制限されるものではない。
【0018】
実施例1〜17
Al5052板状に熱CVDで、W、WSi、Mo、Re、Ti、TiC、TiN、多結晶Si(以下、poly−Siと記す)、Ge、Si、Ta、をそれぞれ40μmに成膜したサンプル及びプラズマCVDで、アモルファスSi(以下、a−Si:Hと記す)、アモルファスSiN(以下、a−SiNx:Hと記す)をそれぞれ40μmに成膜したサンプルを製作した。これらのサンプルとシリコウエハ(以下、単結晶Siと記す)及びシリコンウエハを酸素雰囲気下920℃で表面酸化させたシリコン酸化膜付きウエハ(以下、Th−SiOと記す)(膜厚;10μm)及びスパッタリングでAl5052上に成膜したCr(膜厚2μm)、Au板(厚さ0.1mm)をコールドウール型プラズマCVD装置のサセプタ上に設置し、試料を加熱して各々個別に下記条件でエッチング速度の測定を行った。その結果、何れの膜(及びウエハ)も非常に高速にエッチング可能であることが解った。それらの結果を表1に示した。
(条件)
CFSOF流量:1000SCCM
ガス圧力:150Torr
【0019】
【表1】

Figure 0003555737
【0020】
比較例1、2
実施例1で用いたWと同じ方法で製作した試料を(CFSOO、CF(CFSOFにて同様の条件でエッチング速度を求めた。その結果、(CFSOOでは、0.035μm/min、CF(CFSOFでは、0.015μm/minの速度しか得られなかった。
【0021】
実施例18〜21
実施例1で製作したW膜を用いて、CFSOFに酸素、一酸化炭素、一酸化窒素を添加して下記条件でエッチング速度の測定を行った。Oを添加ガスに用いるとエッチング速度が増加する現象が認められた。それらの結果を表2に示した。(条件)
CFSOF流量:1000SCCM
添加ガス流量:50SCCM
ガス圧力:150Torr
【0022】
【表2】
Figure 0003555737
【0023】
実施例22〜29
、P、V、Nb、Asの粉体、ポリシラン粉を各々1gだけ外熱式Ni製反応管内に静置し、CFSOFを反応器内に入れ760Torrで、30分間反応させた後の試料重量の測定を行った。この結果、室温(18℃)でも粉体重量は減少しており、配管の中に溜まった粉体もプラズマレスでクリーニング可能であることが解った。それらの結果を表3に示した。
【0024】
【表3】
Figure 0003555737
【0025】
実施例30
高周波電源(13.56MHz)を備えた平行平板型プラズマCVD装置を用いて、熱CVD法により硝子基板状にW(原料WF、H、成膜温度500℃)を成膜した後の反応器壁に1〜20μm堆積した膜状不要物及び粉体の除去を下記条件でプラズマクリーニングを試みた。なお、反応器の器壁やサセプタ上には膜状堆積物が付着しており、反応器の底部低温部や配管内には粉体が堆積していた。その後、クリーニングを所定の時間行い、反応器内部、配管の状態を観察した。それらの結果を表4に示した。
Figure 0003555737
【0026】
【表4】
Figure 0003555737
【0027】
実施例31
高周波電源(13.56MHz)を備えた平行平板型プラズマCVD装置を用いて、熱CVD法により硝子基板状にW(原料WF、H、成膜温度500℃)を成膜した後の反応器壁に1〜20μm堆積した膜状不要物及び粉体の除去を下記条件でプラズマクリーニングを試みた。なお、反応器の器壁やサセプタ上には膜状堆積物が付着しており、反応器の底部低温部や配管内には粉体が堆積していた。その後クリーニングを所定の時間行い、反応器内部、配管の状態を観察した。それらの結果を表5に示した。
Figure 0003555737
【0028】
【表5】
Figure 0003555737
【0029】
実施例32
高周波電源(13.56MHz)を備えた平行平板型プラズマCVD装置を用いて、熱CVD法により硝子基板状にW(原料WF、H、成膜温度500℃)を成膜した後の反応器壁に1〜20μm堆積した膜状不要物及び粉体の除去を下記条件でプラズマクリーニングを試みた。なお、反応器の器壁やサセプタ上には膜状堆積物が付着しており、反応器の底部低温部や配管内には粉体が堆積していた。その後クリーニングを所定の時間行い、反応器内部、配管の状態を観察した。それらの結果を表6に示した。
Figure 0003555737
【0030】
【表6】
Figure 0003555737
【0031】
実施例33〜39
CFSOFを用いて、熱CVD法により、W(実施例33)、WSix(実施例34)、Ta(実施例35)、poly−Si(実施例36)、TiN(実施例37)、Si(実施例38)、SiO(実施例39)を成膜した後のコールドウオール型反応器壁に1〜20μm堆積した膜状不要物及び粉体の除去をマイクロ波電源(2.45GHz)を反応器外部に取り付け、リモートプラズマ法により下記条件でクリーニングした。
【0032】
クリーニング後の反応器内部、配管の状態を観察したところ堆積していた膜及び粉体は完全に除去できていた。
Figure 0003555737
【0033】
実施例40〜46
SOFを用いて、熱CVD法により、W(実施例40)、WSix(実施例41)、Ta(実施例42)、poly−Si(実施例43)、TiN(実施例44)、Si(実施例45)、SiO(実施例46)を成膜した後のコールドウオール型反応器壁に1〜20μm堆積した膜状不要物及び粉体の除去をマイクロ波電源(2.45GHz)を反応器外部に取り付け、リモートプラズマ法により下記条件でクリーニングした。
【0034】
クリーニング後の反応器内部、配管の状態を観察したところ堆積していた膜及び粉体は完全に除去できていた。
Figure 0003555737
【0037】
【発明の効果】
本発明のクリーニングガスを用いることにより、地球温暖化の問題もなく、高速で清浄なクリーニングを行うことができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cleaning method for removing unnecessary deposits deposited on inner walls, jigs, and the like of an apparatus for manufacturing a thin film, a thick film, a powder, and a whisker using a CVD method, a sputtering method, a sol-gel method, and an evaporation method. About gas.
[0002]
2. Description of the Related Art
In the thin film device manufacturing process, optical device manufacturing process, and super steel material manufacturing process centered on the semiconductor industry, various thin films, thick films, powders, and whiskers are manufactured using CVD, sputtering, sol-gel, and evaporation methods. Have been. When these are produced, deposits are also formed on the inner wall of the reactor other than on the target on which films, whiskers and powders are to be deposited, jigs carrying the target, and the like. The generation of unnecessary deposits causes the generation of particles, which makes it difficult to produce high-quality films, particles, and whiskers, and must be removed as needed.
[0003]
At present, gases such as CF 4 , C 2 F 6 , CHF 3 , SF 6 , and NF 3 are used for cleaning of a thin film forming apparatus such as a CVD apparatus, but these gases have a high global warming potential. Has become a problem. Further, since these are relatively stable gases, high energy is required to generate CF 3 .radicals, F.radicals, etc. useful as an etchant. There are problems such as difficulty in treating the reaction exhaust gas.
[0004]
JP-A-6-13350 is characterized in that a silicon compound layer is etched using at least one compound selected from a sulfonic acid having a fluorocarbon side chain, a halide thereof, or an acid anhydride thereof. In the dry etching method, specifically, a method using (CF 3 SO 2 ) 2 O and CF 3 (CF 2 ) 3 SO 2 F is described. JP-A-6-13350 relates to an etching step for processing a fine hole in a semiconductor manufacturing process. In a cleaning step, the deposition amount and the volume film thickness of a symmetric substance to be gasified and removed are smaller than those in the etching step. Because of the large size, a faster reaction rate is required. However, the compounds described in the above publications have a low reaction rate and cannot be adapted to the cleaning step aimed at by the present inventors. Further, in the cleaning step, a larger amount of gas is used than in the etching step. Therefore, in the compound described in the above publication, carbon is deposited in a pipe or a low-temperature portion of a reactor, and the secondary of the reaction system due to cleaning is generated. There is a problem such as causing environmental pollution.
[0005]
[Specific means for solving the problem]
As a result of intensive studies, the present inventors have found that CF 3 SO 2 F and C 2 F 5 SO 2 F have a high reaction rate, an excellent cleaning ability, and are free from secondary carbon contamination due to cleaning. The present invention has been found to be able to perform excellent cleaning, and it has been found that more excellent cleaning can be performed by using a mixed gas with oxygen.
[0006]
That is, the present invention provides a cleaning gas containing at least one gas of CF 3 SO 2 F and C 2 F 5 SO 2 F in order to remove unnecessary deposits generated in the thin film forming apparatus. Further, the present invention provides a cleaning gas containing at least one of CF 3 SO 2 F and C 2 F 5 SO 2 F and O 2 .
[0007]
Hereinafter, the present invention will be described in detail.
A gas containing CF 3 SO 2 F or C 2 F 5 SO 2 F is introduced into a device provided with an electrode capable of generating a high frequency or a microwave, and B, P, W is obtained by performing cleaning. , Si, Ti, V, Nb, Ta, Se, Te, Mo, Re, Os, Ir, Sb, Ge, Au, Ag, As, Cr and compounds thereof, specifically, oxides, nitrides, carbides and These alloys can be etched at a higher speed than currently used gases such as CF 4 , C 2 F 6 , NF 3 , and C 4 F 8 and can realize excellent cleaning.
[0008]
Further, for example, in the case of CF 3 SO 2 F, powder or cullet-like deposits, which are by-products of a CVD reaction deposited in a pipe or an apparatus, may be cleaned without plasma, even in a plasma state. It has the excellent feature that it is possible.
[0009]
Furthermore, the gas of the present invention has the effect of avoiding the bond between free fluorine and carbon fluoride (CF 3 ) due to the effect of oxygen contained in the molecule on the formation of CF 4 , an undesirable global warming gas in the plasma reaction. Therefore, there is no problem of secondary environmental pollution. Furthermore, for example, CF 3 SO 2 F can be decomposed with an aqueous alkaline solution and fixed as solid CF 3 SO 3 K as shown in the following formula, and thus there is a risk that unreacted exhaust gas is released from the reaction system into the environment. It has an excellent feature that it does not contribute to global warming because it has a low reactivity and gradually reacts and decomposes with water even if released into the environment.
CF 3 SO 2 F + KOH → CF 3 SO 3 K + HF
[0010]
The cleaning method using the gas of the present invention can be performed under various dry cleaning conditions such as plasma cleaning, microwave plasma cleaning, remote plasma cleaning, and plasma rescreening.
[0011]
CF 3 SO 2 F and C 2 F 5 SO 2 F exhibit excellent etching and cleaning capabilities without using an accompanying gas. However, a simple gas such as Ar, He, N 2 , O 2 , H 2 , F 2 or a compound such as CO, NO, N 2 O, CH 4 , NH 3 is mixed and used at an appropriate ratio as an accompanying gas. It is also possible.
[0012]
When CF 3 SO 2 F or C 2 F 5 SO 2 F is used for cleaning, the flow rate is preferably in the range of 1 to 10000 SCCM. Cleaning, unlike etching, involves a large amount of undesired substances to be removed. Therefore, if the supply amount is less than 1 SCCM, the amount of fluorine to be supplied in order to remove unnecessary substances in a short time is small, and cleaning is undesirably long. On the other hand, if the supply amount is more than 10,000 SCCM, the amount of unreacted exhaust gas becomes extremely large, so that it is not possible to efficiently remove the harmful gas. The pressure inside the reactor for generating plasma is preferably in the range of 0.01 to 50 Torr. If the pressure is less than 0.01 Torr, the reaction speed decreases, and high-speed cleaning becomes difficult. If the pressure exceeds 50 Torr, a good plasma state cannot be maintained. However, in the case of cleaning a portion where the fluorine gas plasma does not reach, such as in a pipe, or performing plasma rescreening of a reactor, the gas pressure is set within a range of 0.1 to 760 Torr to obtain an etching rate compatible with the process. Pressure can be selected. The reaction rate between CF 3 SO 2 F and C 2 F 5 SO 2 F and a metal or a compound thereof is proportional to the pressure in a pressure range of 0.1 Torr to 5 Torr or less, but the reaction rate rapidly decreases below 0.1 Torr. It is not preferable because it tends to decrease. In the pressure range of 5 Torr or more, the rate of increase of the reaction rate with respect to the pressure rise is smaller than in the range of 0.1 to 5 Torr, but the reaction rate increases linearly with the increase of the pressure. However, cleaning at a pressure of 760 Torr or more is not preferable in terms of safety because there is a possibility of gas leaking out of the reaction system.
[0013]
Next, cleaning is made more effective by adding O 2 to at least one gas of CF 3 SO 2 F and C 2 F 5 SO 2 F. When oxygen gas is added, the amount of free F generated can be increased, and the life of free F can be prolonged. Further, the generation of CF 4 can be almost completely avoided because it is combined with free fluorocarbon.
[0014]
The flow rate and other conditions when using a gas to which CF 3 SO 2 F, C 2 F 5 SO 2 F and O 2 are added for cleaning are the same as those when O 2 is not mixed. That is, the flow rate is preferably in the range of 1 to 10000 SCCM. The pressure inside the reactor for generating plasma is preferably in the range of 0.01 to 10 Torr. However, in the case of cleaning a portion where the fluorine gas plasma does not reach, such as in a pipe, or performing plasma rescreening of a reactor, the gas pressure is in the range of 0.1 to 760 Torr, and an etching rate suitable for the process is obtained. Pressure can be selected. When O 2 is used as the accompanying gas, it is preferable to use a flow rate of 1 to 100 with respect to a flow rate of 100 such as CF 3 SO 2 F. When the ratio is less than 1, the effect of adding O 2 is not remarkably recognized, and when it is more than 100, the oxidation of the deposit occurs preferentially, so that the reaction rate is reduced.
[0015]
The temperature conditions for performing plasma rescreening are as follows. When trying to remove film-like deposits deposited on the reactor wall, the reaction occurs at room temperature (20 ° C.) regardless of the presence or absence of oxygen, and the deposits gradually grow. Although gasification removal is possible, heating to a temperature of 100 ° C. or higher is more preferable because reaction can be removed at high speed. However, considering the corrosion of metals, ceramics, and resins, it is preferable to perform cleaning at the following temperature or lower depending on the type.
[0016]
Austenitic stainless steel: 300 ° C or less Ferritic stainless steel: 110 ° C or less High Ni-containing alloys such as Hastelloy and Haynes: 225 ° C
Monel: 465 ° C
Ni: 520 ° C
Ni-Cr steel: 245 ° C
Aluminum (and aluminum alloy): 500 ° C
Aluminum nitride (and composite material containing aluminum nitride): 700 ° C
Alumina (and alumina-containing composite material): 700 ° C
Carbon silicon: 490 ° C
Graphite, glassy carbon: 395 ° C
Perfluoroelastomer: 365 ° C
Fluorine rubber: 180 ° C
Hydrocarbon resin: 150 ° C
Vinyl chloride resin: 180 ° C
[0017]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0018]
Examples 1 to 17
Al, 5052, W, WSi, Mo, Re, Ti, TiC, TiN, polycrystalline Si (hereinafter referred to as poly-Si), Ge, Si 3 N 4 , and Ta 2 O 5 each having a thickness of 40 μm are formed by thermal CVD. And a sample in which amorphous Si (hereinafter, referred to as a-Si: H) and amorphous SiN (hereinafter, referred to as a-SiNx: H) were formed to a thickness of 40 μm by plasma CVD. These samples, a silicon wafer (hereinafter, referred to as single crystal Si), a wafer with a silicon oxide film (hereinafter, referred to as Th-SiO 2 ) obtained by subjecting a silicon wafer to surface oxidation at 920 ° C. in an oxygen atmosphere (film thickness: 10 μm), and Cr (film thickness 2 μm) and Au plate (thickness 0.1 mm) formed on Al5052 by sputtering are placed on a susceptor of a cold wool type plasma CVD apparatus, and the samples are heated and individually etched under the following conditions. Speed measurements were taken. As a result, it was found that any of the films (and wafers) can be etched at a very high speed. The results are shown in Table 1.
(conditions)
CF 3 SO 2 F flow rate: 1000 SCCM
Gas pressure: 150 Torr
[0019]
[Table 1]
Figure 0003555737
[0020]
Comparative Examples 1 and 2
The etching rate of a sample manufactured by the same method as that of W used in Example 1 was determined using (CF 3 SO 2 ) 2 O and CF 3 (CF 2 ) 2 SO 2 F under the same conditions. As a result, only (0.035 μm / min) was obtained with (CF 3 SO 2 ) 2 O and only 0.015 μm / min with CF 3 (CF 2 ) 2 SO 2 F.
[0021]
Examples 18 to 21
Using the W film manufactured in Example 1, oxygen, carbon monoxide, and nitrogen monoxide were added to CF 3 SO 2 F, and the etching rate was measured under the following conditions. When O 2 was used as an additive gas, a phenomenon in which the etching rate increased was observed. Table 2 shows the results. (conditions)
CF 3 SO 2 F flow rate: 1000 SCCM
Additive gas flow rate: 50 SCCM
Gas pressure: 150 Torr
[0022]
[Table 2]
Figure 0003555737
[0023]
Examples 22 to 29
B 2 O 3, P 2 O 5, V, Nb, powder As, respectively polysilane powder was placed in an outer thermal Ni steel reaction tube only 1g, at 760Torr put CF 3 SO 2 F into the reactor After the reaction for 30 minutes, the weight of the sample was measured. As a result, it was found that the powder weight was reduced even at room temperature (18 ° C.), and that the powder accumulated in the pipe could be cleaned without plasma. Table 3 shows the results.
[0024]
[Table 3]
Figure 0003555737
[0025]
Example 30
Reaction after forming W (raw material WF 6 , H 2 , film formation temperature 500 ° C.) on a glass substrate by thermal CVD using a parallel plate type plasma CVD apparatus equipped with a high frequency power supply (13.56 MHz). Plasma cleaning was attempted under the following conditions to remove film-like undesired substances and powder deposited on the vessel wall at 1 to 20 μm. It should be noted that a film-like deposit had adhered to the vessel wall and the susceptor of the reactor, and powder had accumulated in the low-temperature portion at the bottom of the reactor and in the piping. Thereafter, cleaning was performed for a predetermined time, and the inside of the reactor and the state of the piping were observed. Table 4 shows the results.
Figure 0003555737
[0026]
[Table 4]
Figure 0003555737
[0027]
Example 31
Reaction after forming W (raw material WF 6 , H 2 , film formation temperature 500 ° C.) on a glass substrate by thermal CVD using a parallel plate type plasma CVD apparatus equipped with a high frequency power supply (13.56 MHz). Plasma cleaning was attempted under the following conditions to remove film-like undesired substances and powder deposited on the vessel wall at 1 to 20 μm. It should be noted that a film-like deposit had adhered to the vessel wall and the susceptor of the reactor, and powder had accumulated in the low-temperature portion at the bottom of the reactor and in the piping. Thereafter, cleaning was performed for a predetermined time, and the state of the inside of the reactor and the piping were observed. Table 5 shows the results.
Figure 0003555737
[0028]
[Table 5]
Figure 0003555737
[0029]
Example 32
Reaction after forming W (raw material WF 6 , H 2 , film formation temperature 500 ° C.) on a glass substrate by thermal CVD using a parallel plate type plasma CVD apparatus equipped with a high frequency power supply (13.56 MHz). Plasma cleaning was attempted under the following conditions to remove film-like undesired substances and powder deposited on the vessel wall at 1 to 20 μm. It should be noted that a film-like deposit had adhered to the vessel wall and the susceptor of the reactor, and powder had accumulated in the low-temperature portion at the bottom of the reactor and in the piping. Thereafter, cleaning was performed for a predetermined time, and the state of the inside of the reactor and the piping were observed. The results are shown in Table 6.
Figure 0003555737
[0030]
[Table 6]
Figure 0003555737
[0031]
Examples 33 to 39
W (Example 33), WSix (Example 34), Ta 2 O 5 (Example 35), poly-Si (Example 36), and TiN (Example) by thermal CVD using CF 3 SO 2 F. Example 37) The removal of film-like undesired substances and powder deposited on the wall of the cold wall type reactor after forming a film of Si 3 N 4 (Example 38) and SiO 2 (Example 39) by 1 to 20 μm was carried out by a microscopic method. A wave power supply (2.45 GHz) was attached to the outside of the reactor, and cleaning was performed by the remote plasma method under the following conditions.
[0032]
Observation of the inside of the reactor and the state of the piping after cleaning revealed that the deposited film and powder had been completely removed.
Figure 0003555737
[0033]
Examples 40 to 46
With C 2 F 5 SO 2 F, by a thermal CVD method, W (Example 40), WSix (Example 41), Ta 2 O 5 (Example 42), poly-Si (Example 43), TiN (Example 44), Removal of film-like unnecessary matter and powder deposited on a cold wall type reactor wall after forming a film of Si 3 N 4 (Example 45) and SiO 2 (Example 46) by 1 to 20 μm. Was installed outside the reactor with a microwave power supply (2.45 GHz), and was cleaned under the following conditions by a remote plasma method.
[0034]
Observation of the inside of the reactor and the state of the piping after cleaning revealed that the deposited film and powder had been completely removed.
Figure 0003555737
[0037]
【The invention's effect】
By using the cleaning gas of the present invention, high-speed and clean cleaning can be performed without a problem of global warming.

Claims (2)

薄膜形成装置の中に生成した不要な堆積物を除去するために、CF3SO2F、C25SO2Fの少なくとも1種以上のガスを含有したクリーニングガス。A cleaning gas containing at least one gas of CF 3 SO 2 F and C 2 F 5 SO 2 F in order to remove unnecessary deposits generated in the thin film forming apparatus. 薄膜形成装置の中に生成した不要な堆積物を除去するために、CF3SO2F、C25SO2Fの少なくとも1種以上のガスとO2とを含有したクリーニングガス。A cleaning gas containing at least one gas of CF 3 SO 2 F and C 2 F 5 SO 2 F and O 2 for removing unnecessary deposits generated in the thin film forming apparatus.
JP20671098A 1998-07-22 1998-07-22 Cleaning gas Expired - Fee Related JP3555737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20671098A JP3555737B2 (en) 1998-07-22 1998-07-22 Cleaning gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20671098A JP3555737B2 (en) 1998-07-22 1998-07-22 Cleaning gas

Publications (2)

Publication Number Publication Date
JP2000038676A JP2000038676A (en) 2000-02-08
JP3555737B2 true JP3555737B2 (en) 2004-08-18

Family

ID=16527837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20671098A Expired - Fee Related JP3555737B2 (en) 1998-07-22 1998-07-22 Cleaning gas

Country Status (1)

Country Link
JP (1) JP3555737B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9773679B2 (en) 2013-09-09 2017-09-26 American Air Liquide, Inc. Method of etching semiconductor structures with etch gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5707144B2 (en) * 2011-01-18 2015-04-22 東京エレクトロン株式会社 Substrate processing apparatus dry cleaning method and metal film removal method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9773679B2 (en) 2013-09-09 2017-09-26 American Air Liquide, Inc. Method of etching semiconductor structures with etch gas
US10115600B2 (en) 2013-09-09 2018-10-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of etching semiconductor structures with etch gas

Also Published As

Publication number Publication date
JP2000038676A (en) 2000-02-08

Similar Documents

Publication Publication Date Title
KR100299488B1 (en) Sediment Removal Gas and Sediment Removal Method Using the Gas
JP2904723B2 (en) Cleaning gas
KR102615363B1 (en) Dry etching method or dry cleaning method
JP3555737B2 (en) Cleaning gas
JP2000265275A (en) Cleaning method
JP3014368B2 (en) Cleaning gas
JP2776700B2 (en) Cleaning method of ammonium silicofluoride
KR102237848B1 (en) Cleaning method of semiconductor manufacturing equipment
JP2002184765A (en) Cleaning gas
JP3611722B2 (en) Etching gas
JP2003144905A (en) Gas cleaning method
JP2000038675A (en) Cleaning gas
JP3468412B2 (en) Cleaning gas
JP3836743B2 (en) Carbon nanotube, carbon nanotube film, silicon carbide substrate containing carbon nanotube film, and method of manufacturing carbon nanotube film body
JP3669864B2 (en) Cleaning method for Si3N4 film forming apparatus
JP2003218100A (en) Mixture cleaning gas composition
JP2768666B2 (en) Method for removing deposits in thin film forming apparatus
JP3183846B2 (en) Cleaning gas and etching gas
JP3611723B2 (en) Etching gas
JP2003229365A (en) Mixed cleaning gas composition
JP2000038674A (en) Cleaning gas
TW202430718A (en) Formation of metallic films on electroless metal plating of surfaces
JP4907009B2 (en) Carbon nanotube film, carbon nanotube film-containing SiC substrate, and method of manufacturing carbon nanotube film body
Selamoglu et al. Catalyzed Gaseous Etching of Silicon
JP3152386B2 (en) Cleaning method for tantalum oxide manufacturing equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees