JP3548728B2 - Silver antibacterial agent and method for producing the same - Google Patents

Silver antibacterial agent and method for producing the same Download PDF

Info

Publication number
JP3548728B2
JP3548728B2 JP2001097408A JP2001097408A JP3548728B2 JP 3548728 B2 JP3548728 B2 JP 3548728B2 JP 2001097408 A JP2001097408 A JP 2001097408A JP 2001097408 A JP2001097408 A JP 2001097408A JP 3548728 B2 JP3548728 B2 JP 3548728B2
Authority
JP
Japan
Prior art keywords
silver
antibacterial agent
added
producing
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001097408A
Other languages
Japanese (ja)
Other versions
JP2002293705A (en
Inventor
幸道 中尾
三男 鈴木
力 室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001097408A priority Critical patent/JP3548728B2/en
Publication of JP2002293705A publication Critical patent/JP2002293705A/en
Application granted granted Critical
Publication of JP3548728B2 publication Critical patent/JP3548728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な銀系抗菌剤及びその製造方法に関するものである。
【0002】
【従来の技術】
銀が殺菌力を有し、飲料水や食品の腐敗防止に有効であることは、以前から知られている。
また、コロイド状銀についても、これが強力な殺菌作用を有し、人体に対する毒性が低いことから、治療薬、予防薬として用いられている。
【0003】
ところで、このコロイド状銀の製造方法としては、これまで銀塩水溶液に還元炎を吹き付ける方法、硝酸銀の希薄溶液を還元炎で還元する方法、酸化銀をタンニンの希薄溶液で処理する方法、酸化銀を水素ガスで還元する方法などが知られている。
【0004】
しかしながら、これらの方法で得られるコロイド状銀は、いずれも粒径50nm以上の比較的大きいコロイド粒子を形成するため、有効表面積が小さく、長時間にわたって使用している間に殺菌力が低下するのを免れない。
【0005】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、粒径が小さく、長期間にわたって使用しても抗菌力の低下が認められない銀コロイド粒子を有効成分とした銀系抗菌剤を提供することを目的としてなされたものである。
【0006】
【課題を解決するための手段】
本発明者らは、微細な銀コロイド粒子の生成方法について種々研究を重ねた結果、銀の水溶性塩の水溶液にカチオン性界面活性剤と複合金属水素化物を加えて反応させると、微細な銀コロイド微粒子が安定した状態で得られること、及びこれをカチオン性界面活性剤とともに無機質吸着剤に担持させたものは、殺菌力が相乗的に増大し、しかも長期間にわたって安定した抗菌性を示すことを見出し、この知見に基づいて本発明をなすに至った。
【0007】
すなわち、本発明は、銀コロイド粒子及びカチオン性界面活性剤を担持した無機質吸着剤からなる銀系抗菌剤、及び銀の水溶性塩を溶かした水溶液に、カチオン性界面活性剤及び複合金属水素化物を加えて反応させることにより銀ヒドロゾルを形成させたのち、この中に無機質吸着剤粉末を加え、これに銀コロイド粒子及びカチオン性界面活性剤を吸着させることを特徴とする銀系抗菌剤の製造方法を提供するものである。
【0008】
【発明の実施の形態】
本発明の抗菌剤は、銀コロイド粒子とカチオン性界面活性剤とを無機質吸着剤粉末に担持させたものである。
上記の銀コロイド粒子としては、粒径20nm以下の微粒状のものが好ましい。
【0009】
また、銀コロイド粒子と併用されるカチオン性界面活性剤としては、長鎖アルキルアンモニウム塩、例えばステアリルアンモニウムクロリド、オレイルアンモニウムクロリド、長鎖カルボン酸とアミンとの縮合物、例えばヤシ油脂肪酸とジエタノールアミンとの縮合物、長鎖アルキル第四級アンモニウム塩、例えばセチルトリメチルアンモニウムクロリド、ステアリルトリメチルアンモニウムブロミド、ステアリルトリメチルアンモニウムクロリドなどがある。この場合、長鎖アルキル第四級アンモニウム塩を用いると殺菌力が向上するので有利である。
このカチオン性界面活性剤は、銀100質量部当り、10〜2000質量部、好ましくは50〜500質量部の範囲で用いられる。
【0010】
これらを担持させる無機質吸着剤としては、天然又は合成ゼオライト、ケイソウ土、タルク、シリカゲル、活性アルミナ、アロフェン又は粒状炭が好適である。これらは単独で用いてもよいし、また2種以上混合して用いてもよい。
この無機質吸着剤の使用量は、得られる銀系抗菌剤の使用目的に応じて、銀コロイド粒子の担持量が0.1〜100mg/g、好ましくは1〜50mg/gの範囲になるように適宜選択される。
【0011】
次に、本発明方法によると、この銀系抗菌剤は、銀の水溶性塩を溶かした水溶液に、カチオン性界面活性剤及び複合金属水素化物を加えて反応させることにより銀ヒドロゾルを形成させたのち、この中に無機質吸着剤粉末を加え、これに銀コロイド粒子を吸着させることによって製造される。
【0012】
この際の銀コロイド粒子を生成させる原料としては、銀の水溶性塩が用いられるが、このような銀の水溶性塩としては、例えば硝酸銀AgNO、亜硝酸銀AgNO、塩素酸銀AgClO、過塩素酸銀AgClO、酢酸銀Ag(CHCO)、硫酸銀AgSOなどを挙げることができる。そのほか[Ag(NH]Clのような錯銀も用いることができる。
これらの銀の水溶性塩は、0.05〜5mM、好ましくは0.1〜2mMの範囲の濃度で水に溶かし、水溶液として用いられる。
【0013】
次に、この銀の水溶性塩の水溶液に添加される複合金属水素化物としては、例えば水素化ホウ素ナトリウムNaBH、水素化ホウ素カリウムKBH、水素化アルミニウムリチウムLiAlHなど、各種反応において還元剤として慣用されているものを用いることができる。
これらは、銀の水溶性塩に基づき、2〜50倍モル量の範囲で用いられる。これよりも少ない量では、銀の還元が不十分になるし、またこれよりも多い量では後処理が厄介である。
【0014】
本発明方法においては、前記の銀の水溶性塩の水溶液にカチオン性界面活性剤及び複合金属水素化物を加えて反応させることにより、銀ヒドロゾルを生成させる。この反応は室温下、例えば20℃で十分に進行するが、所望ならば30〜60℃に加熱して反応を促進することもできる。反応時間は、使用する各成分の種類や反応条件により変わるが、通常は5〜30分の範囲である。反応が完了すると粒径10nm以下の銀コロイド粒子を含む淡黄色ないし暗褐色の銀ヒドロゾルが得られる。
【0015】
次に、この銀ヒドロゾルに無機質吸着剤粉末を加え、5〜30分間かきまぜると、銀コロイド粒子がこれに吸着され、液は無色になる。
【0016】
このようにして得られた銀系抗菌剤は所望により球状、顆粒状、板状、ロッド状などに成形することもできる。
【0017】
【実施例】
次に実施例により本発明をさらに詳細に説明するが、本発明はこれらによってなんら限定されるものではない。
【0018】
実施例1
0.05mM−硝酸銀水溶液94mlに、ステアリルトリメチルアンモニウムクロリド10mgを水1mlに溶かした水溶液と、0.2mM−水素化ホウ素ナトリウム水溶液5mlとを、かきまぜながら順々に添加して反応させることにより、黄色透明な銀ヒドロゾル100mlを得た。電子顕微鏡観察により、このヒドロゾル中の銀コロイド粒子の平均粒径を測定したところ、約10nmであった。
次に、このようにして得た銀ヒドロゾルに、ゼオライト(日東粉化工業社製、製品名「SP#600」)5.4gを加え、10分間かきまぜたところ、ヒドロゾル中の銀コロイド粒子はすべてゼオライトに吸着され、無色透明の液となった。このゼオライトをろ別し、減圧乾燥することにより、銀含有量0.1質量%の銀系抗菌剤が淡黄色ゼオライト粉末として得られた。
【0019】
実施例2
1mM−硝酸銀水溶液280mlに、ステアリルトリメチルアンモニウムクロリド200mgを水20mlに溶かした水溶液と、4mM−水素化ホウ素ナトリウム水溶液100mlとを、かきまぜながら順々に添加して反応させることにより、暗褐色透明な銀ヒドロゾル400mlを得た。電子顕微鏡観察により、このヒドロゾル中の銀コロイド粒子の平均粒径を測定したところ、約8nmであった。
次に、このようにして得た銀ヒドロゾルに、ケイソウ土(関東化学社製)5.4gを加え、10分間かきまぜたところ、ヒドロゾル中の銀コロイド粒子はすべてケイソウ土に吸着され、無色透明の液となった。このケイソウ土をろ別し、減圧乾燥することにより、銀含有量2質量%の銀系抗菌剤が黄褐色粉末として得られた。
【0020】
実施例3
0.1mM−硝酸銀水溶液28mlに、ステアリルトリメチルアンモニウムクロリド20mgを水2mlに溶かした水溶液と、0.4mM−水素化ホウ素ナトリウム水溶液10mlとを、かきまぜながら順々に添加して反応させることにより、暗褐色透明な銀ヒドロゾル40mlを得た。電子顕微鏡観察により、このヒドロゾル中の銀コロイド粒子の平均粒径を測定したところ、約15nmであった。
次に、このようにして得た銀ヒドロゾルに、タルク(関東化学社製)5.4gを加え、10分間かきまぜたところ、ヒドロゾル中の銀コロイド粒子はすべてタルクに吸着され、無色透明の液となった。このタルクをろ別し、減圧乾燥することにより、銀含有量0.2質量%の銀系抗菌剤が淡黄色タルク粉末として得られた。
【0021】
比較例1
0.1mM−硝酸銀水溶液28mlに、ドデシルベンゼンスルホン酸ナトリウム20mgを水2mlに溶かした水溶液と0.4mM−水素化ホウ素ナトリウム水溶液10mlとを、かきまぜながら順々に添加して反応させることにより、暗褐色透明な銀ヒドロゾル40mlを得た。
次に、このようにして得た銀ヒドロゾルに硫酸バリウム粉末(和光純薬社製)5.4gを加え、10分間かきまぜたところ、ヒドロゾル中の銀コロイド粒子はすべて硫酸バリウム粉末に吸着され、無色透明の液となった。この硫酸バリウム粉末をろ別し、減圧乾燥することにより、銀含有量0.2質量%の銀系抗菌剤が淡黄色粉末として得られた。
【0022】
試験例1
市販カゼイン・ソイ混合ペプトンブイヨン培地に、大腸菌NIHJ株及び黄色ブドウ球菌209P株を、2cm画線塗抹し、37℃において20時間培養することにより、大腸菌NIHJ株約10/ml及び黄色ブドウ球菌209P株約10/mlを含む測定用培地を調製する。
次に、前記実施例1ないし3及び比較例1で得られた銀系抗菌剤及び比較のためのステアリルトリメチルアンモニウムクロリド200mgを、ケイソウ土(関東化学社製)5.4gに担持させた試料(比較例2)及び市販の銀コロイド製剤(比較例3)について最小発育阻止濃度を測定した。その結果を表1に示す。
この表から分るように、カチオン性界面活性剤単独又は銀系抗菌剤とアニオン性界面活性剤との組合せを用いた場合には、抗菌性が劣る。
【0023】
【表1】

Figure 0003548728
【0024】
試験例2
実施例1ないし3の銀系抗菌剤を大気中において1か月間静置後、試験例1と同様の効力試験を行ったところ、その効力はほとんど低下しなかった。
次に比較のために市販の銀コロイド製剤を同様にして1か月静置したのち、効力試験を行ったところ、その効力は約1/2に低下していた。
【0025】
【発明の効果】
本発明方法によると、高い効力を有する安定な銀系抗菌剤を簡単に得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel silver-based antibacterial agent and a method for producing the same.
[0002]
[Prior art]
It has long been known that silver has a bactericidal activity and is effective in preventing spoilage of drinking water and food.
Also, colloidal silver has a strong bactericidal action and low toxicity to the human body, and is therefore used as a therapeutic drug and a preventive drug.
[0003]
By the way, as a method for producing this colloidal silver, a method in which a reducing flame is sprayed on a silver salt aqueous solution, a method in which a dilute solution of silver nitrate is reduced with a reducing flame, a method in which silver oxide is treated with a dilute solution of tannin, a method in which silver oxide is used, And the like are known.
[0004]
However, the colloidal silver obtained by these methods forms relatively large colloidal particles having a particle size of 50 nm or more, so that the effective surface area is small and the bactericidal power is reduced during long-term use. I can not escape.
[0005]
[Problems to be solved by the invention]
Under such circumstances, the present invention provides a silver-based antibacterial agent containing silver colloid particles as active ingredients, having a small particle size and exhibiting no reduction in antibacterial activity even when used for a long period of time. It was made for the purpose.
[0006]
[Means for Solving the Problems]
The present inventors have conducted various studies on a method for producing fine silver colloid particles. As a result, when a cationic surfactant and a composite metal hydride were added to an aqueous solution of a water-soluble salt of silver and reacted, fine silver colloid was obtained. Colloidal fine particles can be obtained in a stable state, and those that are supported on an inorganic adsorbent together with a cationic surfactant have a synergistically increased bactericidal power and exhibit stable antibacterial properties over a long period of time. And found the present invention based on this finding.
[0007]
That is, the present invention provides a silver-based antibacterial agent comprising an inorganic adsorbent supporting silver colloid particles and a cationic surfactant, and a cationic surfactant and a composite metal hydride in an aqueous solution in which a water-soluble salt of silver is dissolved. To form a silver hydrosol by reacting the mixture, and then adding an inorganic adsorbent powder into the mixture and adsorbing silver colloid particles and a cationic surfactant thereto, thereby producing a silver-based antibacterial agent. It provides a method.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The antibacterial agent of the present invention is obtained by supporting colloidal silver particles and a cationic surfactant on an inorganic adsorbent powder.
The silver colloid particles are preferably fine particles having a particle size of 20 nm or less.
[0009]
Examples of the cationic surfactant used in combination with the silver colloid particles include long-chain alkyl ammonium salts such as stearyl ammonium chloride and oleyl ammonium chloride, condensates of long-chain carboxylic acids and amines such as coconut oil fatty acid and diethanolamine. And long-chain alkyl quaternary ammonium salts such as cetyltrimethylammonium chloride, stearyltrimethylammonium bromide, and stearyltrimethylammonium chloride . In this case, it is advantageous to use a long-chain alkyl quaternary ammonium salt because the bactericidal activity is improved.
The cationic surfactant is used in an amount of 10 to 2,000 parts by mass, preferably 50 to 500 parts by mass, per 100 parts by mass of silver.
[0010]
Suitable inorganic adsorbents for carrying these are natural or synthetic zeolites, diatomaceous earth, talc, silica gel, activated alumina, allophane or granular charcoal. These may be used alone or as a mixture of two or more.
The amount of the inorganic adsorbent used is determined so that the amount of the supported silver colloid particles is in the range of 0.1 to 100 mg / g, preferably 1 to 50 mg / g, depending on the intended use of the obtained silver-based antibacterial agent. It is appropriately selected.
[0011]
Next, according to the method of the present invention, this silver-based antibacterial agent formed a silver hydrosol by adding a cationic surfactant and a composite metal hydride to an aqueous solution in which a water-soluble salt of silver was dissolved, and reacting. After that, it is manufactured by adding an inorganic adsorbent powder into the mixture and adsorbing silver colloid particles.
[0012]
As a raw material for producing the silver colloid particles at this time, a water-soluble salt of silver is used. As such a water-soluble salt of silver, for example, silver nitrate AgNO 3 , silver nitrite AgNO 2 , silver chlorate AgClO 3 , Examples thereof include silver perchlorate AgClO 4 , silver acetate Ag (CH 3 CO 2 ), and silver sulfate Ag 2 SO 4 . In addition, complex silver such as [Ag (NH 3 ) 2 ] Cl can be used.
These water-soluble silver salts are dissolved in water at a concentration of 0.05 to 5 mM, preferably 0.1 to 2 mM, and used as an aqueous solution.
[0013]
Next, examples of the composite metal hydride added to the aqueous solution of the water-soluble salt of silver include a reducing agent in various reactions, such as sodium borohydride NaBH 4 , potassium borohydride KBH 4 , and lithium aluminum hydride LiAlH 4. What is conventionally used can be used.
These are used in a molar amount of 2 to 50 times based on the water-soluble salt of silver. Smaller amounts result in insufficient silver reduction, and higher amounts make post-treatment cumbersome.
[0014]
In the method of the present invention, a silver surfactant is produced by adding a cationic surfactant and a composite metal hydride to an aqueous solution of the water-soluble salt of silver described above. This reaction proceeds sufficiently at room temperature, for example, at 20 ° C., but can be heated to 30 to 60 ° C. to accelerate the reaction if desired. The reaction time varies depending on the type of each component used and the reaction conditions, but is usually in the range of 5 to 30 minutes. When the reaction is completed, a pale yellow to dark brown silver hydrosol containing silver colloid particles having a particle size of 10 nm or less is obtained.
[0015]
Next, an inorganic adsorbent powder is added to the silver hydrosol, and the mixture is stirred for 5 to 30 minutes, whereby the silver colloid particles are adsorbed thereon, and the liquid becomes colorless.
[0016]
The silver-based antibacterial agent thus obtained can be formed into a sphere, granule, plate, rod, or the like, if desired.
[0017]
【Example】
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
[0018]
Example 1
An aqueous solution obtained by dissolving 10 mg of stearyltrimethylammonium chloride in 1 ml of water and 94 ml of a 0.05 mM silver nitrate aqueous solution in 1 ml of water and 5 ml of a 0.2 mM aqueous sodium borohydride solution are added thereto sequentially with stirring to cause a yellow reaction. 100 ml of a clear silver hydrosol were obtained. When the average particle size of the silver colloid particles in this hydrosol was measured by electron microscopic observation, it was about 10 nm.
Next, 5.4 g of zeolite (product name "SP # 600", manufactured by Nitto Powder Chemical Co., Ltd.) was added to the silver hydrosol thus obtained, and the mixture was stirred for 10 minutes. It was adsorbed by zeolite and turned into a colorless and transparent liquid. The zeolite was separated by filtration and dried under reduced pressure to obtain a silver-based antibacterial agent having a silver content of 0.1% by mass as a pale yellow zeolite powder.
[0019]
Example 2
An aqueous solution in which 200 mg of stearyltrimethylammonium chloride was dissolved in 20 ml of water, and 100 ml of a 4 mM aqueous solution of sodium borohydride were added to 280 ml of a 1 mM silver nitrate aqueous solution sequentially with stirring to cause a reaction. 400 ml of hydrosol were obtained. The average particle size of the silver colloid particles in this hydrosol was measured by observation with an electron microscope and found to be about 8 nm.
Next, 5.4 g of diatomaceous earth (manufactured by Kanto Kagaku Co., Ltd.) was added to the silver hydrosol thus obtained, and the mixture was stirred for 10 minutes. It became a liquid. The diatomaceous earth was filtered off and dried under reduced pressure to obtain a silver-based antibacterial agent having a silver content of 2% by mass as a tan powder.
[0020]
Example 3
An aqueous solution prepared by dissolving 20 mg of stearyltrimethylammonium chloride in 2 ml of water and 28 ml of a 0.1 mM silver nitrate aqueous solution and 10 ml of a 0.4 mM aqueous sodium borohydride solution were added sequentially with stirring to cause a dark reaction. 40 ml of a brown transparent silver hydrosol were obtained. The average particle size of the silver colloid particles in this hydrosol was measured by electron microscope observation, and was about 15 nm.
Next, 5.4 g of talc (manufactured by Kanto Chemical Co., Ltd.) was added to the silver hydrosol thus obtained, and the mixture was stirred for 10 minutes. As a result, all the silver colloid particles in the hydrosol were adsorbed by talc, and a colorless transparent liquid was obtained. became. The talc was filtered off and dried under reduced pressure to obtain a silver-based antibacterial agent having a silver content of 0.2% by mass as a pale yellow talc powder.
[0021]
Comparative Example 1
An aqueous solution prepared by dissolving 20 mg of sodium dodecylbenzenesulfonate in 2 ml of water and 10 ml of a 0.4 mM aqueous solution of sodium borohydride were sequentially added to 28 ml of a 0.1 mM silver nitrate aqueous solution while stirring to cause a reaction. 40 ml of a brown transparent silver hydrosol were obtained.
Next, 5.4 g of barium sulfate powder (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the silver hydrosol thus obtained, and the mixture was stirred for 10 minutes. As a result, all the silver colloid particles in the hydrosol were adsorbed on the barium sulfate powder, and colorless. It became a transparent liquid. The barium sulfate powder was filtered off and dried under reduced pressure to obtain a silver-based antibacterial agent having a silver content of 0.2% by mass as a pale yellow powder.
[0022]
Test example 1
A commercially available casein soy mixture peptone bouillon medium, E. coli NIHJ strain and Staphylococcus aureus 209P strain, 2 cm streaked smear, by culturing for 20 hours at 37 ° C., Escherichia coli NIHJ strain about 10 9 / ml and Staphylococcus aureus 209P A measurement medium containing about 10 8 / ml strain is prepared.
Next, a sample in which 200 mg of the silver-based antibacterial agent obtained in Examples 1 to 3 and Comparative Example 1 and stearyltrimethylammonium chloride for comparison, 200 mg, was supported on 5.4 g of diatomaceous earth (manufactured by Kanto Chemical Co., Ltd.) The minimum growth inhibitory concentration was measured for Comparative Example 2) and a commercially available silver colloid preparation (Comparative Example 3). Table 1 shows the results.
As can be seen from this table, when a cationic surfactant alone or a combination of a silver-based antibacterial agent and an anionic surfactant is used, the antibacterial properties are poor.
[0023]
[Table 1]
Figure 0003548728
[0024]
Test example 2
After the silver antibacterial agents of Examples 1 to 3 were allowed to stand in the air for one month, an efficacy test similar to that of Test Example 1 was carried out. As a result, the efficacy was hardly reduced.
Next, for comparison, a commercially available silver colloid preparation was allowed to stand for one month in the same manner, and then an efficacy test was performed. As a result, the efficacy was reduced to about 2.
[0025]
【The invention's effect】
According to the method of the present invention, a stable silver-based antibacterial agent having high efficacy can be easily obtained.

Claims (4)

銀コロイド粒子及びカチオン性界面活性剤を担持した無機質吸着剤からなる銀系抗菌剤。A silver-based antibacterial agent comprising an inorganic adsorbent carrying silver colloid particles and a cationic surfactant. 無機質吸着剤がゼオライト、ケイソウ土、タルク、シリカゲル、活性アルミナ、アロフェン及び粒状炭の中から選ばれた少なくとも1種である請求項1記載の銀系抗菌剤 The silver antibacterial agent according to claim 1, wherein the inorganic adsorbent is at least one selected from zeolite, diatomaceous earth, talc, silica gel, activated alumina, allophane, and granular charcoal . 銀の水溶性塩を溶かした水溶液に、カチオン性界面活性剤及び複合金属水素化物を加えて反応させることにより銀ヒドロゾルを形成させたのち、この中に無機質吸着剤粉末を加え、これに銀コロイド粒子を吸着させることを特徴とする銀系抗菌剤の製造方法。A cationic surfactant and a composite metal hydride are added to and reacted with an aqueous solution in which a water-soluble salt of silver is dissolved to form a silver hydrosol, and then an inorganic adsorbent powder is added thereto, and silver colloid is added thereto. A method for producing a silver-based antibacterial agent, which comprises adsorbing particles. 銀の水溶性塩が、硝酸銀、亜硝酸銀、塩素酸銀、過塩素酸銀、酢酸銀及び硫酸銀の中から選ばれた少なくとも1種である請求項3記載の銀系抗菌剤の製造方法。The method for producing a silver-based antibacterial agent according to claim 3, wherein the water-soluble salt of silver is at least one selected from silver nitrate, silver nitrite, silver chlorate, silver perchlorate, silver acetate and silver sulfate.
JP2001097408A 2001-03-29 2001-03-29 Silver antibacterial agent and method for producing the same Expired - Fee Related JP3548728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001097408A JP3548728B2 (en) 2001-03-29 2001-03-29 Silver antibacterial agent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001097408A JP3548728B2 (en) 2001-03-29 2001-03-29 Silver antibacterial agent and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002293705A JP2002293705A (en) 2002-10-09
JP3548728B2 true JP3548728B2 (en) 2004-07-28

Family

ID=18951193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001097408A Expired - Fee Related JP3548728B2 (en) 2001-03-29 2001-03-29 Silver antibacterial agent and method for producing the same

Country Status (1)

Country Link
JP (1) JP3548728B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4807691B2 (en) 2001-09-26 2011-11-02 パイオニア株式会社 Image creating apparatus and method, electronic apparatus, and computer program
JP4614327B2 (en) * 2004-12-24 2011-01-19 松本 高明 Method for producing porous fired product
EE05508B1 (en) * 2005-01-05 2012-02-15 Robert@Holladay H be / water h gels and h oap formulations; methods of their preparation and use
CN101478875B (en) * 2006-02-17 2014-04-30 动态吸附剂股份有限公司 Anti-biocontaminant products and processes for making the same
KR100701851B1 (en) 2006-03-14 2007-03-30 주식회사 잉크테크 Antibacterial Composition Containing Organic Silver Complexes, Antibacterial Treatment Methods Using The Same And Antibacterial Formed Article
JPWO2010103682A1 (en) * 2009-03-10 2012-09-10 株式会社カネカ Antibacterial agent and method of use
CN101787646A (en) * 2010-03-05 2010-07-28 浙江理工大学 Antibiosis sorting method of fiber textile containing cellulose
EP3099771B1 (en) * 2014-01-29 2017-07-12 Unilever NV Cleansing compositions containing stable silver
CN112716822A (en) * 2021-02-03 2021-04-30 深圳市南门科技有限公司 Disinfectant for resisting new coronavirus and preparation method thereof

Also Published As

Publication number Publication date
JP2002293705A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
JPS60181002A (en) Antimicrobial composition containing zeolite as carrier and production thereof
JP3548728B2 (en) Silver antibacterial agent and method for producing the same
CN111202091A (en) Nano-silver loaded mesoporous silica antibacterial material and preparation method and application thereof
US7629293B2 (en) Manufacturing method of bamboo charcoal supporting silver and products thereof
CN103768643B (en) A kind of silver ion alginate sustained-release antibacterial gel and preparation method thereof
JPS60100504A (en) Antibacterial composition and its production
JP2012526777A (en) Biocide Nanostructured Composition and Method for Obtaining Nanostructured Biocide Composition
CN103041805A (en) Preparation method of high-activity palladium-carbon catalyst for synthesis of imipenem antibiotics
WO2010010569A1 (en) A process for forming a rice husk ash composition
JPH062570B2 (en) Antibacterial agent
CN108393076B (en) Copper-containing adsorbent, preparation method and application thereof in adsorption of tetracycline in water
JP2011063525A (en) Composition, method for producing composition and antimicrobial agent
JPH06239713A (en) Antimicrobial zeolite and its production
TW202033271A (en) Silver nanoparticles, porous material composition, and preparation method thereof wherein the porous material composition includes porous materials and silver nanoparticles
JPH0381209A (en) Antimicrobial agent and film
JPH0544923B2 (en)
JP5023258B2 (en) Method for producing organic-inorganic composite material having bioactive function
JP2965488B2 (en) Antimicrobial composition
JP3176054B2 (en) Antibacterial aluminum silicate composition and method for producing the same
JPH08157316A (en) Antibacterial composition and production thereof
JPH08259413A (en) Antibacterial and mildewproofing composition, and its production
Tsitsishvili et al. ANTIMICROBIAL AND ANTIBACTERIAL ACTIVITY OF METAL-CONTAINING MODIFIED HEULANDITE TYPE NATURAL ZEOLITES
JPH01306473A (en) Expandable thermoplastic resin composition
JP2851051B2 (en) Freshness preservative
JP2773612B2 (en) Antimicrobial ceramic and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees