JP3541961B2 - Valve device of positive displacement compressor - Google Patents

Valve device of positive displacement compressor Download PDF

Info

Publication number
JP3541961B2
JP3541961B2 JP04856494A JP4856494A JP3541961B2 JP 3541961 B2 JP3541961 B2 JP 3541961B2 JP 04856494 A JP04856494 A JP 04856494A JP 4856494 A JP4856494 A JP 4856494A JP 3541961 B2 JP3541961 B2 JP 3541961B2
Authority
JP
Japan
Prior art keywords
valve
hole
reed
seat surface
reed valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04856494A
Other languages
Japanese (ja)
Other versions
JPH07259740A (en
Inventor
哲志 鴻村
昭 中本
和宏 野村
博之 元浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP04856494A priority Critical patent/JP3541961B2/en
Publication of JPH07259740A publication Critical patent/JPH07259740A/en
Application granted granted Critical
Publication of JP3541961B2 publication Critical patent/JP3541961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、容積型圧縮機の弁装置に係り、詳しくは圧力変動並びに振動騒音の低減を図った弁装置の改良に関する。
【0002】
【従来の技術】
主として冷凍用に供されている容積型圧縮機は、機内の低圧域及び高圧域と圧縮室とが通孔によって連通されており、往復式圧縮機においてはその双方の通孔を開閉する吸入弁及び吐出弁が設けられ、回転式圧縮機においても圧縮室と高圧域とを連通する通孔には同様な吐出弁が配設されている。なお、かかる弁体には通常差圧によって同通孔を開閉する単体若しくは複合体形式のリード弁が多用されている。
【0003】
図9は広く車両空調用に供されている往復式圧縮機のリヤ部分を例示するもので、複数の圧縮室(ボア)1aを並設したシリンダブロック1の外端は弁板2を挟んでハウジング3により封塞され、弁板2にはハウジング3内に形成された吸入室(低圧域)4及び吐出室(高圧域)5と圧縮室1aとをれぞれ連通する通孔、つまり吸入孔4a及び吐出孔5aが貫設されている。そして同弁板2の一方の弁座面とシリンダブロック1との間には、各吸入孔4aに対応する複数のリード弁6aを備えた吸入弁体6が介装され、また、吐出室5内に露出した弁板2の他方の弁座面上には、各吐出孔5aと対応する複数のリード弁7aを備えた吐出弁体7が装着されており、これらリード弁6a及び7aの開弁(撓曲)限界は、圧縮室1aの口端に設けられた切欠き8及び吐出弁体7と共締めされたリテーナ9によってそれぞれ規制されている。
【0004】
このように各リード弁6a、7aは、吸入孔4a及び吐出孔5aが開口される各弁座面に着座して圧縮室1aとの相対的な差圧により開閉されるが、同弁座面はリード弁6a、7aとの密合性の確保やこれを挟着するシリンダブロック1及びハウジング3との封止性を配慮する必要から、一般に表面粗さが2〜3μmRZ程度という極めて平滑な状態に仕上げられている。
【0005】
【発明が解決しようとする課題】
圧縮機内を流動する冷媒ガス中には微細な潤滑油粒が混在されており、上記弁座面やリード弁6a、7aは共に潤滑油粒が被着する環境におかれている。そして上述のごとき極めて平滑度の高い弁座面に着座した閉弁状態のリード弁6a、7aは、いずれも吸入孔4a、吐出孔5aの開口全周域を平面的な接触によって封塞しているため、その開弁時においてもかかる封塞域に介在する潤滑油の主として表面張力により、同弁座面にかなり強く密着せしめられている。
【0006】
したがって、リード弁6a、7aは圧縮室1a内の圧力が所定の開弁圧力に加算された上記潤滑油の表面張力に打勝つまで開弁に抵抗し、開弁と同時に冷媒ガスの急激な吸入又は吐出が一挙に開始される。その結果、単なる吸入圧損や過圧縮のみにとどまらず、その瞬発的な圧力波と開弁規制面に激突するリード弁6a、7aの衝撃振動波とが複合されて騒音を誘起し、特に車両空調用に供される圧縮機では、かかる騒音が運転環境を阻害する重大な要因として、かねてより指摘されているのが実情である。
【0007】
本発明は、吸入圧損や過圧縮に加えて複合騒音をも効果的に低減し、しかもリード弁の良好な封塞性を確保することを解決すべき技術課題とするものである。
【0008】
【課題を解決するための手段】
本発明は上記課題解決のため、機内の低圧域及び高圧域と圧縮室とをそれぞれ連通する通孔を有し、少なくとも弁座面に開口する該通孔を差圧によって開閉するリード弁を備えた容積型圧縮機において、上記弁座面上の通孔を跨いだ開弁軸方向の両側に、上記リード弁が伸直した常態では該リード弁と弁座面との接触を妨げ、かつ該リード弁の弾性撓曲によって該通孔を閉鎖させる干渉段差部を設けるとともに、該弁座面及び該リード弁のいずれか一方に、該通孔の周辺を囲包し、かつ該リード弁の弾性撓曲に追従して撓屈する封止体を被装した新規な構成を採用している。
【0009】
本発明の好適な形態として、上記封止体は上記リード弁に被覆された円形状皮膜であり、より好ましい封止体はアクリロニトリルーブタジェンゴム皮膜である。なお、上記リード弁は開弁軸方向の基端側及び先端側のみが上記干渉段差部の上面に載置されている。また、上記干渉段差部は、弁座面を直接凹刻するか又は弁座面に樹脂皮膜を被覆することによって形成される。
【0010】
【作用】
本発明の弁装置においては、弁座面上の通孔を跨いだ開弁軸方向の両側に、上記リード弁が伸直した常態では該リード弁と弁座面との接触を妨げ、かつ該リード弁の弾性撓曲によって通孔を閉鎖させる干渉段差部が設けられているため、無負荷時のリード弁は開弁軸方向の基端側及び先端側が干渉段差部の上面に載置されて伸直した常態を保持しており、リード弁と弁座面との接触は妨げられ、かつ該通孔の閉鎖が妨げられている。
【0011】
しかし、ひとたび圧縮室との相対的な差圧がリード弁を閉じる向きに作用すると、該リード弁は直ちに撓曲して通孔の全開口周縁と衝接することにより該通孔を閉鎖し、同時に封止体も該リード弁の撓曲に追従撓屈して通孔の周辺を密に封止する。なお、このようなリード弁の撓曲に伴って行われる通孔の閉鎖は、開口周辺の封塞域におけるリード弁の実質的な接触面積を大幅に縮小させるので、潤滑油の表面張力に基づく開弁抵抗は格段と低減される。その後圧縮室との相対的な差圧が反転してリード弁の開弁圧力に達すると、ほとんど無害な程度に低減された表面張力の影響に加えて、上記撓曲姿勢からの復元反力が効果的にリード弁の開弁を助勢するため、瞬発的な冷媒ガスの圧力波や開弁規制面との衝突振動波は巧みに減衰される。しかも通孔の周辺を囲包する上記封止体の介入は、作用差圧が小さくなってリード弁の閉塞性能がもっとも減衰する時期においても良好な密封性を確保し、冷媒ガスの異常な流動を防止する。
【0012】
【実施例】
以下、図に基づいて本発明の実施例を具体的に説明する。
図1〜図3は、図9に例示した往復式圧縮機の弁板2部分と、該弁板2の一方の弁座面2a上に装着された吐出弁体7を示しており、該吐出弁体7を構成する複数のリード弁7aは、弁座面2aに開口された通孔(吐出孔)5aを、圧縮室1aと高圧域(吐出室)5との相対的な差圧に応じて周期的に開閉するものである。
【0013】
さて、本実施例の上記弁座面2aには例えばフッ素系の樹脂皮膜10が被覆されており、0.1〜0.2mm程度の膜厚を有する該樹脂皮膜10は、各通孔5aの周辺を包括する環状の領域Pのみが欠落された形態で構成されている。すなわち、各通孔5aを跨いだ開弁軸X−X方向の両側には、該樹脂皮膜10の膜厚によって弁座面2aとリード弁7aとの平面的な接触を妨げるとともに、該リード弁7aの弾性撓曲によって通孔5aを閉鎖させる干渉段差部P1 、P2 が形成されている。なお、通孔5aの開口縁から各干渉段差部P1 、P2 までの距離及びリード弁7aの先端から干渉段差部P1 までの距離は、リード弁7aの板厚や撓み特性に基づいて適宜選択される。
【0014】
そしてリード弁7aには、弁座面2a、つまり欠落領域Pの域内において該通孔5aの周辺を囲包し、かつ、該リード弁7aの弾性撓曲に追従して撓屈する封止体20、本例では図4に示す環状の封止体20aが被装されている。該封止体20aはアクリロニトリルーブタジエンゴム(NBR)若しくは水素化ニトリルーブタジエンゴム(HNBR)の被覆皮膜であり、その膜厚は樹脂皮膜10のそれとほぼ同等に設定されている。
【0015】
本実施例は上述のように構成されており、図4に示す無負荷時のリード弁7aは先端側及び基端側の双方が干渉段差部P1 、P2 を形成する樹脂皮膜10上に載置されて伸直した常態に保持されており、上記弁座面2aとの間に形成される微小空隙によって通孔5aの閉鎖は妨げられている。
そして圧縮機の運転時、圧縮室1aと高圧域5との相対的な差圧がリード弁7aを閉じる向きに作用すると、図5に示すように該リード弁7aは干渉段差部P1 、P2 を支点として通孔5aの求心方向に撓曲し、その開口全周縁と衝接することにより該通孔5aを閉鎖し、同時に封止体20aも該リード弁7aの撓曲に追従撓屈して、通孔5aの周辺を密に封止する。このようにリード弁7aの撓曲に伴って行なわれる通孔5aの閉鎖は、開口周辺の弁座面2aと封止体20aとの間に幾分かの平面的な密合を生じるものの、従来に比べてリード弁7aの接触面積は大幅に縮小されるので、潤滑油の表面張力に基づいた開弁抵抗は格段と低減される。その後圧縮室1aと高圧域5との相対的な差圧が反転してリード弁7aの開弁圧力に達すると、実質的に無害な程度に低減された表面張力の影響に加えて、上記撓曲姿勢からの復元反力が効果的にリード弁7aの開弁を助勢するため、瞬発的な冷媒ガスの圧力波や開弁規制面との激突振動波は巧みに減衰される。
【0016】
なお、リード弁7aの撓み特性に基づく通孔5a周縁の閉塞性能は、開弁軸XーX方向を頂点として弱小化傾向にあるため、とくにリード弁7aに作用する差圧の反転期近傍における閉塞性能に不安が残る嫌いがあるが、本実施例における封止体20aは、かかる状態においても弁座面2aとの密合により通孔5a周辺の封止を確保するので、冷媒ガスの異常な流動は防止される。
【0017】
図4に鎖線で示す封止体20bは、上記環状の封止体20aの中空部を充填して円形状に形成したものであって、本例ではリード弁7aが差圧によって撓曲した際、閉鎖される通孔5aの開口に直接封止体20bが介入することとなるので、リード弁7aの金属接触に伴って生じる衝撃音も有効に和らげることができる(図6)。
【0018】
図7は、上記環状の封止体20aを弁座面2a側に被装した実施例であり、さらに同図に鎖線で示す封止体20cは、上記封止体20aの環幅を拡張してその内径を通孔5aと一致させたものであるが、いずれの実施形態においても生産性の面での差こそあれ、主たる作用効果についてはなんら変るところはない。
図8は、上記弁板2の他方の弁座面2b上に装着された吸入弁体6を示しており、該吸入弁体6を構成する複数のリード弁6aも、弁座面2bに開口された通孔(吸入孔)4aを、圧縮室1aと低圧域(吸入室)4との相対的な差圧に応じて周期的に開閉するものである。
【0019】
そして該弁座面2bにも同様に樹脂皮膜10が被覆されるが、この場合は弁板2に貫設されている他の冷媒通路との交錯を避けるため、樹脂皮膜10の欠落を各通孔4aごとに設けた長孔状の領域P′(図は1か所のみ示し他は省略)として、やはり通孔4aを跨いだ開弁軸X−X方向の両側に干渉段差部P1 、P2 が形成されている。したがって、吸入弁体6においてもリード弁6aの弾性撓曲による通孔4aの閉鎖と、これに追従撓屈して通孔4aの周辺を密封する封止体20との複合機能により、先の吐出弁体7と同様きわめて円滑に動作する。
【0020】
なお、上述の実施例において、各通孔5aを包括する環状の領域Pを、各通孔4aごとに設けた長孔状の領域P′と同様に形成して実施することもでき、また、上記樹脂皮膜10に代え、機械加工、プレス加工、放電加工などにより上記弁座面2a、2bを直接凹刻し、弁板2自体に同様な干渉段差部P1 、P2 を形成して実施することも可能である。
【0021】
【発明の効果】
以上、詳述したように本発明は、特許請求の範囲に記載の構成を有するものであるから、次に掲記する優れた効果を奏する。
(1)吸入圧損及び過圧縮が低減されるので、性能とくに省動力化に貢献できる。
(2)開弁時の制振性により冷媒ガスの圧力脈動及び弁振動が良好に減衰されるため、振動騒音障害が著しく改善されてマフラ機能の装備も消去することができる。
(3)リード弁の撓曲に追従して撓屈する封止体が通孔の周辺を密に封止し、リード弁の閉塞性能に求められる安定性を確実に保障するので、冷媒ガスの異常な流動は良好に防止される。
(4)とくに閉鎖される通孔の開口に封止体が直接介入するように形成したものでは、リード弁の金属接触に伴って生じる衝撃音をも有効に和らげることができる。
【図面の簡単な説明】
【図1】本発明の実施例に係るリード弁と干渉段差部との関係を示す断面図。
【図2】同リード弁と干渉段差部との関係を示す側面図。
【図3】本発明の実施例に係る弁板の吐出弁体側を示す側面図。
【図4】本発明の実施例に係る封止体の撓屈前の状態を示す拡大断面図。
【図5】同封止体の撓屈後の状態を示す拡大断面図。
【図6】形状の異なる同封止体の撓屈後の状態を示す拡大断面図。
【図7】被装面の異なる同封止体の撓屈前の状態を示す拡大断面図。
【図8】本発明の実施例に係る弁板の吸入弁体側を示す側面図。
【図9】従来の往復式圧縮機のリヤ部分を示す断面図。
【符号の説明】
1aは圧縮室、2は弁板、2a、2bは弁座面、4は低圧域(吸入室)、5は高圧域(吐出室)、4aは通孔(吸入孔)、5aは通孔(吐出孔)、6a、7aはリード弁、P1 、P2 は干渉段差部、20は封止体
[0001]
[Industrial applications]
The present invention relates to a valve device for a positive displacement compressor, and more particularly to an improvement in a valve device for reducing pressure fluctuation and vibration noise.
[0002]
[Prior art]
In a positive displacement compressor mainly used for refrigeration, a low-pressure region and a high-pressure region in the device are communicated with a compression chamber by through holes. In a reciprocating compressor, a suction valve that opens and closes both the holes is provided. In the rotary compressor, a similar discharge valve is provided in a through hole communicating the compression chamber with the high-pressure region. In addition, a single or composite reed valve that opens and closes the through hole by a differential pressure is often used for such a valve body.
[0003]
FIG. 9 illustrates a rear portion of a reciprocating compressor widely used for vehicle air conditioning. An outer end of a cylinder block 1 having a plurality of compression chambers (bore) 1a arranged side by side is provided with a valve plate 2 interposed therebetween. The housing 3 is closed, and the valve plate 2 has through-holes for communicating the suction chamber (low-pressure area) 4 and the discharge chamber (high-pressure area) 5 formed in the housing 3 with the compression chamber 1a. The hole 4a and the discharge hole 5a are provided through. A suction valve element 6 having a plurality of reed valves 6a corresponding to the respective suction holes 4a is interposed between one valve seat surface of the valve plate 2 and the cylinder block 1. A discharge valve element 7 having a plurality of reed valves 7a corresponding to the respective discharge holes 5a is mounted on the other valve seat surface of the valve plate 2 exposed inside, and the reed valves 6a and 7a are opened. The valve (flexion) limit is regulated by a notch 8 provided at the mouth end of the compression chamber 1a and a retainer 9 fastened together with the discharge valve body 7.
[0004]
As described above, the reed valves 6a and 7a are seated on the respective valve seat surfaces where the suction hole 4a and the discharge hole 5a are opened and are opened and closed by the relative pressure difference with the compression chamber 1a. In order to ensure the tightness with the reed valves 6a and 7a and the sealing property between the cylinder block 1 and the housing 3 that sandwich the reed valves 6a and 7a, the surface roughness is generally extremely smooth with a surface roughness of about 2 to 3 μm RZ. It is finished.
[0005]
[Problems to be solved by the invention]
Fine lubricating oil particles are mixed in the refrigerant gas flowing in the compressor, and the valve seat surface and the reed valves 6a and 7a are both placed in an environment where the lubricating oil particles adhere. Each of the reed valves 6a and 7a in the closed state seated on the valve seat surface having extremely high smoothness as described above seals the entire opening of the suction hole 4a and the discharge hole 5a by planar contact. Therefore, even at the time of opening the valve, the lubricating oil interposed in the closed area mainly adheres to the valve seat surface quite strongly due to the surface tension.
[0006]
Accordingly, the reed valves 6a and 7a resist opening until the pressure in the compression chamber 1a overcomes the surface tension of the lubricating oil added to the predetermined valve opening pressure, and at the same time as the valves are opened, the refrigerant gas is rapidly aspirated. Or discharge is started at once. As a result, the instantaneous pressure wave and the shock vibration waves of the reed valves 6a and 7a colliding with the valve-opening restriction surface are combined to generate not only the suction pressure loss and the over-compression but also noise, and particularly the vehicle air conditioning. In compressors used for such purposes, it has been pointed out that such noise has long been pointed out as a serious factor impeding the operating environment.
[0007]
An object of the present invention is to solve the problem of effectively reducing combined noise in addition to suction pressure loss and over-compression, and ensuring good sealing of the reed valve.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention includes a reed valve that has a through hole that communicates a low-pressure region and a high-pressure region in the machine with a compression chamber, and opens and closes at least the through hole that opens in a valve seat surface by a differential pressure. In the displacement type compressor, on both sides in the axial direction of the valve opening straddling the through hole on the valve seat surface, the contact between the reed valve and the valve seat surface is prevented in a normal state where the reed valve is straightened , and An interference step is provided for closing the through-hole by elastic bending of the reed valve, and one of the valve seat surface and the reed valve surrounds the periphery of the through-hole, and the elasticity of the reed valve is increased. A novel configuration is adopted in which a sealing body that bends following the bending is covered.
[0009]
In a preferred embodiment of the present invention, the sealing body is a circular coating coated on the reed valve, and a more preferable sealing body is an acrylonitrile butadiene rubber coating. The reed valve is mounted on the upper surface of the interference step only on the base end side and the distal end side in the valve opening axial direction. Further, the interference step portion is formed by coating a resin film on either or the valve seat surface to intaglio a valve seat surface directly.
[0010]
[Action]
In the valve device of the present invention, on both sides in the axial direction of the valve opening straddling the through hole on the valve seat surface, the contact between the reed valve and the valve seat surface is prevented in a normal state where the reed valve is straightened , and Since the interference step portion that closes the through hole by the elastic bending of the reed valve is provided, the reed valve at the time of no load is mounted on the upper surface of the interference step portion at the base end side and the distal end side in the valve opening axial direction. The straightened state is maintained , the contact between the reed valve and the valve seat surface is prevented, and the closing of the through hole is prevented.
[0011]
However, once the relative pressure difference with the compression chamber acts in the direction to close the reed valve, the reed valve immediately bends and closes the through hole by abutting the entire opening periphery of the through hole, and at the same time, The sealing body also follows the bending of the reed valve and bends to tightly seal the periphery of the through hole. It should be noted that the closing of the through hole performed in association with such bending of the reed valve significantly reduces the substantial contact area of the reed valve in the sealing area around the opening, and therefore, is based on the surface tension of the lubricating oil. Valve opening resistance is significantly reduced. Thereafter, when the relative pressure difference between the compression chamber and the compression chamber is reversed and reaches the valve opening pressure of the reed valve, in addition to the effect of the surface tension reduced to an almost harmless degree, the reaction force for restoring from the above-mentioned bent posture is increased. In order to effectively assist the opening of the reed valve, the instantaneous refrigerant gas pressure wave and the collision vibration wave with the valve opening regulating surface are skillfully attenuated. In addition, the intervention of the above-mentioned sealing body surrounding the periphery of the through hole ensures good sealing even at the time when the acting differential pressure becomes small and the closing performance of the reed valve is most attenuated, and the abnormal flow of the refrigerant gas. To prevent
[0012]
【Example】
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
1 to 3 show a valve plate 2 portion of the reciprocating compressor illustrated in FIG. 9 and a discharge valve element 7 mounted on one valve seat surface 2a of the valve plate 2. The plurality of reed valves 7a constituting the valve body 7 have through holes (discharge holes) 5a opened in the valve seat surface 2a in accordance with a relative pressure difference between the compression chamber 1a and the high pressure region (discharge chamber) 5. It opens and closes periodically.
[0013]
Now, the valve seat surface 2a of this embodiment is coated with, for example, a fluorine-based resin film 10, and the resin film 10 having a thickness of about 0.1 to 0.2 mm is formed on each of the through holes 5a. It is configured in a form in which only the annular region P covering the periphery is missing. That is, on both sides in the valve opening axis XX direction straddling each through hole 5a, planar contact between the valve seat surface 2a and the reed valve 7a is prevented by the thickness of the resin film 10, and the reed valve Interference step portions P 1 and P 2 for closing the through-hole 5a by the elastic bending of 7a are formed. The distance from the opening edge of the through hole 5a to each of the interference step portions P 1 and P 2 and the distance from the tip of the reed valve 7a to the interference step portion P 1 are based on the plate thickness and the bending characteristics of the reed valve 7a. It is appropriately selected.
[0014]
The reed valve 7a has a sealing body 20 that surrounds the periphery of the through hole 5a within the valve seat surface 2a, that is, the area of the missing area P, and that flexes following the elastic flexure of the reed valve 7a. In this example, an annular sealing body 20a shown in FIG. 4 is provided. The sealing body 20a is a coating film of acrylonitrile-butadiene rubber (NBR) or hydrogenated nitrile-butadiene rubber (HNBR), and its film thickness is set substantially equal to that of the resin film 10.
[0015]
This embodiment is configured as described above, and the reed valve 7a at the time of no load shown in FIG. 4 is provided on the resin film 10 on which both the front end side and the base end side form the interference steps P 1 and P 2. It is placed and held in a stretched normal state, and the closing of the through hole 5a is prevented by the minute gap formed between the valve seat surface 2a and the valve seat surface 2a.
During operation of the compressor, when the relative pressure difference between the compression chamber 1a and the high-pressure area 5 acts in a direction to close the reed valve 7a, the reed valve 7a is moved to the interference stepped portions P 1 , P as shown in FIG. With the fulcrum 2 as a fulcrum, it bends in the centripetal direction of the through-hole 5a, and closes the through-hole 5a by abutting on the entire periphery of the opening. The periphery of the through hole 5a is tightly sealed. Although the closing of the through hole 5a performed in accordance with the bending of the reed valve 7a in this way causes some planar closeness between the valve seat surface 2a around the opening and the sealing body 20a, Since the contact area of the reed valve 7a is greatly reduced as compared with the related art, the valve opening resistance based on the surface tension of the lubricating oil is significantly reduced. Thereafter, when the relative pressure difference between the compression chamber 1a and the high-pressure area 5 reverses and reaches the valve opening pressure of the reed valve 7a, in addition to the effect of the surface tension reduced to a substantially harmless degree, Since the reaction force restored from the bent posture effectively assists the opening of the reed valve 7a, the instantaneous refrigerant gas pressure wave and the collision vibration wave with the valve opening regulating surface are skillfully attenuated.
[0016]
The closing performance of the periphery of the through hole 5a based on the bending characteristic of the reed valve 7a tends to be weakened with the valve opening axis XX as a vertex, and especially in the vicinity of the reversal period of the differential pressure acting on the reed valve 7a. Although there is a dislike that the sealing performance may remain unreliable, the sealing body 20a in this embodiment secures the sealing around the through hole 5a by the close contact with the valve seat surface 2a even in such a state. Flow is prevented.
[0017]
The sealing body 20b indicated by a chain line in FIG. 4 is formed by filling the hollow portion of the annular sealing body 20a into a circular shape, and in this example, when the reed valve 7a is bent by a differential pressure. Since the sealing body 20b directly intervenes in the opening of the through hole 5a to be closed, the impact noise generated due to the metal contact of the reed valve 7a can be effectively reduced (FIG. 6).
[0018]
FIG. 7 shows an embodiment in which the annular sealing body 20a is mounted on the valve seat surface 2a side. Further, a sealing body 20c shown by a dashed line in the figure expands the ring width of the sealing body 20a. Although the inner diameter of the lever is made to coincide with the through hole 5a, there is a difference in productivity in any of the embodiments, but there is no change in the main function and effect.
FIG. 8 shows the suction valve body 6 mounted on the other valve seat surface 2b of the valve plate 2. The plurality of reed valves 6a constituting the suction valve body 6 also have openings on the valve seat surface 2b. The opened through hole (suction hole) 4a is periodically opened and closed according to the relative pressure difference between the compression chamber 1a and the low pressure region (suction chamber) 4.
[0019]
The resin film 10 is similarly coated on the valve seat surface 2b. In this case, in order to avoid intersecting with other refrigerant passages penetrating through the valve plate 2, the resin film 10 is cut through each of the holes. As a slot-like region P 'provided in each hole 4a (only one portion is shown in the figure and the others are omitted), interference step portions P 1 , on both sides in the valve opening axis XX direction, also straddling the through hole 4a, P 2 is formed. Accordingly, the suction valve body 6 also has a combined function of the closing of the through hole 4a due to the elastic bending of the reed valve 6a and the sealing body 20 which follows the bending and bends to seal the periphery of the through hole 4a. It operates very smoothly as well as the valve element 7.
[0020]
In the above-described embodiment, the annular region P covering each through hole 5a can be formed and implemented in the same manner as the elongated region P ′ provided for each through hole 4a. instead of the resin film 10, machining, stamping, electrical discharge machining the valve seat surface 2a or the like, 2b directly to intaglio, carried out to form a valve plate 2 similar interference stepped portion itself P 1, P 2 It is also possible.
[0021]
【The invention's effect】
As described in detail above, the present invention has the configuration described in the claims, and thus has the following excellent effects.
(1) Since suction pressure loss and over-compression are reduced, it is possible to contribute to performance, especially power saving.
(2) Since the pressure pulsation of the refrigerant gas and the valve vibration are favorably attenuated by the vibration damping property at the time of opening the valve, the vibration noise disturbance is remarkably improved, and the muffler function equipment can be eliminated.
(3) The sealing body that bends following the bending of the reed valve tightly seals the periphery of the through hole, and ensures the stability required for the closing performance of the reed valve. Good flow is well prevented.
(4) In the case where the sealing member is formed so as to directly intervene in the opening of the through hole which is particularly closed, it is possible to effectively reduce the impact noise caused by the metal contact of the reed valve.
[Brief description of the drawings]
FIG. 1 is a sectional view showing the relationship between a reed valve and an interference step according to an embodiment of the present invention.
FIG. 2 is a side view showing the relationship between the reed valve and an interference step.
FIG. 3 is a side view showing a discharge valve body side of the valve plate according to the embodiment of the present invention.
FIG. 4 is an enlarged sectional view showing a state before bending of a sealing body according to the embodiment of the present invention.
FIG. 5 is an enlarged sectional view showing a state after bending of the sealing body.
FIG. 6 is an enlarged cross-sectional view showing a state after bending of the same sealing body having different shapes.
FIG. 7 is an enlarged cross-sectional view showing a state before bending of the same sealed body having different mounting surfaces.
FIG. 8 is a side view showing the intake valve body side of the valve plate according to the embodiment of the present invention.
FIG. 9 is a sectional view showing a rear part of a conventional reciprocating compressor.
[Explanation of symbols]
1a is a compression chamber, 2 is a valve plate, 2a and 2b are valve seat surfaces, 4 is a low pressure area (suction chamber), 5 is a high pressure area (discharge chamber), 4a is a through hole (suction hole), and 5a is a through hole ( Discharge holes), 6a and 7a are reed valves, P 1 and P 2 are interference steps, and 20 is a sealing body.

Claims (4)

機内の低圧域及び高圧域と圧縮室とをそれぞれ連通する通孔を有し、少なくとも弁座面に開口する該通孔を差圧によって開閉するリード弁を備えた容積型圧縮機において、
上記弁座面上の通孔を跨いだ開弁軸方向の両側に、上記リード弁が伸直した常態では該リード弁と弁座面との接触を妨げ、かつ該リード弁の弾性撓曲によって該通孔を閉鎖させる干渉段差部を設けるとともに、該弁座面及び該リード弁のいずれか一方に、該通孔の周辺を囲包し、かつ該リード弁の弾性撓曲に追従して撓屈する封止体を被装したことを特徴とする容積型圧縮機の弁装置。
A positive displacement compressor having a through-hole communicating the low-pressure area and the high-pressure area in the machine with the compression chamber, and a reed valve that opens and closes at least the through-hole opened on the valve seat surface by a differential pressure,
On both sides in the valve opening axial direction straddling the through hole on the valve seat surface, in a normal state where the reed valve is straightened, the contact between the reed valve and the valve seat surface is hindered, and the elastic bending of the reed valve causes An interference step for closing the through hole is provided, and one of the valve seat surface and the reed valve surrounds the periphery of the through hole, and flexes following the elastic bending of the reed valve. A valve device for a positive displacement compressor, wherein a valve body is provided with a buckling sealing body.
上記封止体は上記リード弁に被覆された円形状皮膜である請求項1記載の弁装置。The valve device according to claim 1, wherein the sealing body is a circular film coated on the reed valve. 上記封止体はアクリロニトリル−ブタジエンゴム皮膜からなる請求項1又は2記載の弁装置。3. The valve device according to claim 1, wherein the sealing body is made of an acrylonitrile-butadiene rubber film. 上記リード弁は開弁軸方向の基端側及び先端側のみが上記干渉段差部の上面に載置されていることを特徴とする請求項1ないし3のいずれか一項に記載の弁装置。4. The valve device according to claim 1, wherein the reed valve is mounted on the upper surface of the interference step only on the base end side and the distal end side in the valve opening axial direction. 5.
JP04856494A 1994-03-18 1994-03-18 Valve device of positive displacement compressor Expired - Fee Related JP3541961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04856494A JP3541961B2 (en) 1994-03-18 1994-03-18 Valve device of positive displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04856494A JP3541961B2 (en) 1994-03-18 1994-03-18 Valve device of positive displacement compressor

Publications (2)

Publication Number Publication Date
JPH07259740A JPH07259740A (en) 1995-10-09
JP3541961B2 true JP3541961B2 (en) 2004-07-14

Family

ID=12806895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04856494A Expired - Fee Related JP3541961B2 (en) 1994-03-18 1994-03-18 Valve device of positive displacement compressor

Country Status (1)

Country Link
JP (1) JP3541961B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569039B2 (en) * 2001-05-16 2010-10-27 株式会社デンソー Hermetic pump device
KR102043926B1 (en) * 2014-03-20 2019-12-02 한온시스템 주식회사 Reciprocating compressor

Also Published As

Publication number Publication date
JPH07259740A (en) 1995-10-09

Similar Documents

Publication Publication Date Title
US5454397A (en) Reed valve assembly and gas compressor incorporating same
JPH0450470Y2 (en)
KR960008051A (en) Valve type discharge device of refrigerant compressor
US20030160397A1 (en) Vibrationally decoupling gasket
US20070200301A1 (en) Sealing Gasket With Flexible Stopper
US11519290B2 (en) Spring washer for a variable flow rate valve mechanism
GB2317655A (en) Reciprocating machine
JP3541961B2 (en) Valve device of positive displacement compressor
JP2000161228A (en) Valve device for displacement type compressor
JP3226141B2 (en) Valve device of positive displacement compressor
KR870001338Y1 (en) Discharging valve device for a compressor
JPH10196535A (en) Gasket for compressor
EP1510734B1 (en) Sealing gasket with flexible stopper
CN113339239B (en) Piston assembly, compressor and have its electrical apparatus
JP4025984B2 (en) Sealing device
JPH0226713B2 (en)
JP3232839B2 (en) Compressor valve device
JP2006226113A (en) Port structure of valve plate used in compressor
JP3344643B2 (en) gasket
JPH09280167A (en) Valve plate device
JP3941809B2 (en) Compressor muffler mounting structure
JP2800355B2 (en) Compressor discharge valve device
JPH0791376A (en) Valve device of compressor
JP2561684Y2 (en) Valve structure in compressor
JPH02130279A (en) Discharge pressure pulsation reducing structure of compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

LAPS Cancellation because of no payment of annual fees