JP3537241B2 - Method for producing silicon nitride sintered body - Google Patents
Method for producing silicon nitride sintered bodyInfo
- Publication number
- JP3537241B2 JP3537241B2 JP31936795A JP31936795A JP3537241B2 JP 3537241 B2 JP3537241 B2 JP 3537241B2 JP 31936795 A JP31936795 A JP 31936795A JP 31936795 A JP31936795 A JP 31936795A JP 3537241 B2 JP3537241 B2 JP 3537241B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- weight
- sintered body
- less
- nitride sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Ceramic Products (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱伝導性の高い窒
化珪素焼結体の製造方法、特に窒化珪素本来の高強度特
性に加えて熱伝導率が高く放熱性に優れており、特に回
路基板の作製に好適な窒化珪素焼結体の製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride sintered body having a high thermal conductivity, and more particularly to a method of producing a silicon nitride sintered body having a high thermal conductivity and excellent heat dissipation in addition to the inherent high strength characteristics of silicon nitride. The present invention relates to a method for manufacturing a silicon nitride sintered body suitable for manufacturing a substrate.
【0002】窒化珪素を主成分とするセラミックス焼結
体は、1000℃以上の高温度環境下でも優れた耐熱性
を有し、かつ低熱膨張係数のため耐熱衝撃性も優れてい
る等の諸特性を持つことから、従来の耐熱性超合金に代
わる高温構造材料としてガスタービン用部品、エンジン
用部品、製鋼用機械部品等の各種高強度耐熱部品への応
用が試みられている。また、金属に対する耐食性が優れ
ていることから溶融金属の耐溶材料としての応用も試み
られ、さらに耐摩耗性も優れていることから、軸受等の
摺動部材、切削工具への実用化も図られている。2. Description of the Related Art A ceramic sintered body containing silicon nitride as a main component has excellent heat resistance even in a high temperature environment of 1000 ° C. or more, and has excellent thermal shock resistance due to a low coefficient of thermal expansion. Therefore, application to various high-strength heat-resistant parts such as gas turbine parts, engine parts, and steelmaking machine parts has been attempted as a high-temperature structural material replacing conventional heat-resistant superalloys. In addition, because of its excellent corrosion resistance to metals, application of molten metal as a melting-resistant material has been attempted, and because of its excellent wear resistance, it has been put to practical use in sliding members such as bearings and cutting tools. ing.
【0003】[0003]
【従来の技術】従来、窒化珪素焼結体は、窒化珪素−希
土類元素の酸化物(酸化イットリウム等)−酸化アルミ
ニウム系、窒化珪素−希土類元素の酸化物−酸化アルミ
ニウム−窒化アルミニウム系、窒化珪素−希土類元素の
酸化物−酸化アルミニウム−チタニウム又はジルコニウ
ムの酸化物系などのように、焼結助剤として希土類元素
の酸化物と酸化アルミニウムを併用する系が主流であ
る。2. Description of the Related Art Conventionally, silicon nitride sintered bodies include silicon nitride-rare earth element oxide (such as yttrium oxide) -aluminum oxide, silicon nitride-rare earth element oxide-aluminum oxide-aluminum nitride, silicon nitride. A system mainly using a rare earth element oxide and aluminum oxide as a sintering aid, such as a rare earth element oxide-aluminum oxide-titanium or zirconium oxide system, is mainly used.
【0004】酸化イットリウム(Y2 O3 )などの希土
類元素の酸化物は、焼結性を高めて焼結体を緻密化し高
強度化するために添加されており、また酸化アルミニウ
ムは高温構造材料の耐久性を高めるために添加されてい
る。[0004] Oxides of rare earth elements such as yttrium oxide (Y 2 O 3 ) are added to enhance the sinterability and to densify and increase the strength of the sintered body, and aluminum oxide is used as a high-temperature structural material. Is added to increase the durability of the steel.
【0005】しかしながら、上記窒化珪素焼結体にあっ
ては、絶縁耐圧などの電気的特性は窒化アルミニウム程
度であり問題はなく、また靱性値などの機械的強度も優
れているが、熱伝導特性は窒化アルミニウム(AlN)
焼結体、酸化ベリリウム(BeO)焼結体や炭化珪素
(SiC)焼結体などと比較して著しく低いため、特に
放熱性の要求される半導体用回路基板に適用するには難
点があった。However, in the above-mentioned silicon nitride sintered body, electrical characteristics such as withstand voltage are similar to those of aluminum nitride, so that there is no problem. Is aluminum nitride (AlN)
Since the sintered body, beryllium oxide (BeO) sintered body, silicon carbide (SiC) sintered body and the like are remarkably low, there has been a problem in applying to a circuit board for a semiconductor that requires heat radiation. .
【0006】一方、窒化アルミニウム焼結体は、他のセ
ラミックス焼結体と比較して高い熱伝導率と低熱膨張係
数を有するため、高速化、高出力化、多機能化、大型化
が進展する半導体チップの回路基板材料やパッケージ材
料として普及しているが、機械的強度が十分でない。On the other hand, an aluminum nitride sintered body has a higher thermal conductivity and a lower coefficient of thermal expansion as compared with other ceramic sintered bodies. Although it is widely used as a circuit board material or a package material for a semiconductor chip, its mechanical strength is not sufficient.
【0007】そこで、高強度と高熱伝導性を備えたセラ
ミックス焼結体の出現が切望されている。これらの要望
に応えるべく、希土類元素を酸化物に換算して2.0〜
7.5重量%、窒化アルミニウム及びアルミナの少なく
とも一方を2.0重量%以下、その他Li,Na,K,
Fe,Ca,Mg,Sr,Ba,Mn,Bなどの不純物
陽イオン元素を0.3重量%以下含有し、β相型窒化け
い素結晶及び粒界相から成り、粒界相中における結晶化
合物相の粒界相全体に対する面積比を20%以上に設定
し、更に気孔率を1.5%以下、熱伝導率を60W/m
・K以上、三点曲げ強度が室温で80kg/mm2 以上
である窒化珪素焼結体が提案されている(特開平6−1
35771号参照)。Therefore, the emergence of a ceramic sintered body having high strength and high thermal conductivity has been desired. In order to meet these demands, the conversion of rare earth elements to oxides is 2.0 to
7.5% by weight, not more than 2.0% by weight of at least one of aluminum nitride and alumina, and other Li, Na, K,
Fe, Ca, Mg, Sr, Ba, Mn, B, etc., containing 0.3% by weight or less of impurity cation elements, comprising β-phase silicon nitride crystal and grain boundary phase, and a crystalline compound in the grain boundary phase The area ratio of the phase to the whole grain boundary phase is set to 20% or more, the porosity is 1.5% or less, and the thermal conductivity is 60 W / m.
A silicon nitride sintered body having a K-point or more and a three-point bending strength of 80 kg / mm 2 or more at room temperature has been proposed (Japanese Patent Laid-Open No. 6-1).
35771).
【0008】その製造方法については、酸素含有量1.
7重量%以下好ましくは0.5〜1.5重量%、上記不
純物陽イオン元素が合計量で0.3重量%以下好ましく
は0.2重量%以下、α相90重量%以上好ましくは9
3重量%以上のα型窒化珪素粉末を用いて成形体を成形
し、脱脂後、温度1800〜2000℃で雰囲気加圧焼
結し、次いで上記焼結温度から上記希土類元素の酸化物
により形成された液相が凝固するまでの温度を毎時10
0℃以下の冷却速度で冷却することが開示されている。[0008] The production method, oxygen content 1.
7% by weight or less, preferably 0.5 to 1.5% by weight, the total amount of the impurity cation element is 0.3% by weight or less, preferably 0.2% by weight or less, α phase 90% by weight or more, preferably 9%
A molded body is molded using 3% by weight or more of α-type silicon nitride powder, degreased, and then subjected to atmospheric pressure sintering at a temperature of 1800 to 2000 ° C., and then formed of the rare earth element oxide from the sintering temperature. The temperature until the liquid phase solidifies is 10
It is disclosed that cooling is performed at a cooling rate of 0 ° C. or less.
【0009】すなわち、この方法は、焼結助剤としてア
ルミニウム成分を必須とし、徐冷という特殊な方法によ
り粒界相(焼結助剤相)を結晶化させ、さらにLi,N
a,K,Fe,Ca,Mg,Sr,Ba,Mn,Bなど
の陽イオン元素を悪影響のある不純物として規定するこ
とにより高熱伝導化を達成するものである。In other words, this method requires an aluminum component as a sintering aid, crystallizes a grain boundary phase (sintering aid phase) by a special method of slow cooling, and further comprises Li, N
High thermal conductivity is achieved by defining cation elements such as a, K, Fe, Ca, Mg, Sr, Ba, Mn, and B as impurities having an adverse effect.
【0010】[0010]
【発明が解決しようとする課題】しかしながら、この方
法においては、焼結温度が1900℃と非常に高いので
焼成炉への負担が大きいばかりでなく、冷却速度を毎時
100℃以下と小さく設定するので生産性が著しく低下
するという問題がある。However, in this method, since the sintering temperature is very high at 1900 ° C., not only is the burden on the sintering furnace large, but also the cooling rate is set as low as 100 ° C./hour or less. There is a problem that productivity is significantly reduced.
【0011】本発明は、このような問題を解消し、機械
的特性と熱伝導性に優れた窒化珪素焼結体、特に回路基
板に好適な窒化珪素焼結体を、生産性を高めて製造する
ことを目的とするものである。The present invention solves such problems and manufactures a silicon nitride sintered body having excellent mechanical properties and thermal conductivity, particularly a silicon nitride sintered body suitable for a circuit board, with increased productivity. It is intended to do so.
【0012】[0012]
【課題を解決するための手段】すなわち、本発明は、以
下を要旨とする窒化珪素焼結体の製造方法である。
(請求項1)窒化珪素粉末、焼結助剤及び有機バインダ
ーを含む成形体を脱脂した後焼結してAl成分を金属換
算で0.25重量%以下、Fe成分を金属換算で0.3
重量%以下の窒化珪素焼結体を製造する方法において、
上記窒化珪素粉末がβ相含有量15〜40重量%のもの
であり、また上記焼結助剤がMg及び/又はCaの化合
物を含むものであって、該化合物の割合が上記窒化珪素
粉末と該化合物の酸化物換算との合計100重量部あた
り0.5〜7.0重量部であることを特徴とする窒化珪
素焼結体の製造方法。
(請求項2)焼結助剤として、更に希土類元素化合物を
含み、該希土類元素化合物の割合が窒化珪素粉末と該希
土類元素化合物の酸化物換算との合計100重量部あた
り15重量部以下であることを特徴とする請求項1記載
の窒化珪素焼結体の製造方法。
(請求項3)請求項1又は2記載の窒化珪素焼結体にお
いて、窒化珪素焼結体の研磨面に観察される粒界の数が
任意の断面において直線を引いたとき10μm当たり7
個未満であり、しかも熱伝導率が60W/m・K以上で
あることを特徴とする回路基板作製用窒化珪素焼結体の
製造方法。That is, the present invention is a method for producing a silicon nitride sintered body having the following gist. (Claim 1) A molded body containing a silicon nitride powder, a sintering aid and an organic binder is degreased and sintered, and the Al component is 0.25% by weight or less in terms of metal, and the Fe component is 0.3% or less in terms of metal.
In a method for producing a silicon nitride sintered body of not more than
The silicon nitride powder has a β phase content of 15 to 40% by weight, and the sintering aid contains a compound of Mg and / or Ca. A method for producing a silicon nitride sintered body, which is 0.5 to 7.0 parts by weight per 100 parts by weight of the total of the compound and oxides. (Claim 2) The sintering aid further contains a rare earth element compound, and the ratio of the rare earth element compound is 15 parts by weight or less per 100 parts by weight of the total of the silicon nitride powder and the rare earth element compound in terms of oxide. The method for producing a silicon nitride sintered body according to claim 1, wherein: (Claim 3) In the silicon nitride sintered body according to claim 1 or 2, the number of grain boundaries observed on the polished surface of the silicon nitride sintered body is 7 per 10 μm when a straight line is drawn in an arbitrary cross section.
A method for producing a silicon nitride sintered body for manufacturing a circuit board, wherein the number is less than 60 pieces and the thermal conductivity is 60 W / m · K or more.
【0013】[0013]
【発明の実施の形態】以下、さらに詳しく本発明につい
て説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.
【0014】本発明で使用される窒化珪素粉末は、焼結
性、強度及び熱伝導率を考慮して、β相含有量15〜4
0重量%好ましくは20〜35重量%であり、Alを金
属換算で0.25重量%以下好ましくは0.15重量%
以下、Feを金属換算で0.3重量%以下好ましくは
0.2重量%以下のものである。また、熱伝導率の低下
や耐候性などの低下を考慮すると、Li,Be,Na,
K,Mn,Gaなどの不純物陽イオン元素含有量は合計
で0.3重量%以下特に0.2重量%以下に抑制された
ものが好ましい。これらの不純物陽イオン元素は、一般
の窒化珪素粉末の製法では混入する可能性は小さいもの
である。The silicon nitride powder used in the present invention has a β phase content of 15 to 4 in consideration of sinterability, strength and thermal conductivity.
0% by weight, preferably 20 to 35% by weight, and Al is 0.25% by weight or less, preferably 0.15% by weight in terms of metal.
Hereinafter, Fe is 0.3% by weight or less, preferably 0.2% by weight or less in terms of metal. Further, in consideration of a decrease in thermal conductivity and a decrease in weather resistance, Li, Be, Na,
Preferably, the content of impurity cation elements such as K, Mn, and Ga is suppressed to a total of 0.3% by weight or less, particularly 0.2% by weight or less. These impurity cation elements are unlikely to be mixed in a general method for producing silicon nitride powder.
【0015】窒化珪素粉末の酸素量については、市販の
構造材料用窒化珪素原料粉末が通常に含んでいる酸素量
2.0重量%以下特に0.5〜1.5重量%程度であれ
ばよい。The amount of oxygen in the silicon nitride powder may be not more than 2.0% by weight, especially about 0.5 to 1.5% by weight, which is usually contained in a commercially available silicon nitride raw material powder for a structural material. .
【0016】窒化珪素粉末の平均粒径としては、緻密で
高強度の窒化珪素焼結体を製造する点から、3μm以下
特に2μm以下が好ましい。窒化珪素粉末には50μm
以上の粗大粒子を含ませないことが肝要である。The average particle diameter of the silicon nitride powder is preferably 3 μm or less, particularly preferably 2 μm or less from the viewpoint of producing a dense and high-strength silicon nitride sintered body. 50 μm for silicon nitride powder
It is important not to include the above coarse particles.
【0017】一方、本発明で使用される焼結助剤は、M
g及び/又はCaの化合物を含むものであり、それを例
示すると、MgO、CaO、フォルステライト(Mg2
SiO4 )、ステアタイト(MgSiO3 )、Mg(O
H)2 、Ca(OH)2 等の酸化物、水酸化物、珪化
物、窒化物や、更にはMg及び/又はCaの塩基性炭酸
塩、硝酸塩、ギ酸塩、酢酸塩、各種アルコキシドなどで
ある。On the other hand, the sintering aid used in the present invention is M
g and / or Ca compounds. Examples thereof include MgO, CaO, forsterite (Mg 2
SiO 4 ), steatite (MgSiO 3 ), Mg (O
H) 2 , oxides such as Ca (OH) 2 , hydroxides, silicides, nitrides, and basic carbonates, nitrates, formates, acetates and various alkoxides of Mg and / or Ca. is there.
【0018】焼結助剤は高純度なものほど好適であり、
特に本発明では高熱伝導性の窒化珪素焼結体を製造する
ことの目的から、Al成分を金属換算で0.25重量%
以下、Fe成分を金属換算で0.3重量%以下のものを
対象としているので、焼結助剤中のAl成分とFe成分
は極力少ないほうが望ましい。焼結助剤の平均粒径は、
窒化珪素粉末との混合性の点から3μm以下特に2μm
以下が好ましい。The higher the purity of the sintering aid, the better.
Particularly, in the present invention, for the purpose of producing a silicon nitride sintered body having high thermal conductivity, the Al component is 0.25% by weight in terms of metal.
Hereinafter, since the Fe component is 0.3% by weight or less in terms of metal, the Al component and the Fe component in the sintering aid are desirably as small as possible. The average particle size of the sintering aid is
3 μm or less, especially 2 μm, from the viewpoint of mixing with silicon nitride powder
The following is preferred.
【0019】焼結助剤の割合は、Mg及び/又はCaの
化合物の酸化物(MgO及び/又はCaO)換算値と窒
化珪素粉末との合計100重量部あたり0.5〜7.0
重量部である。0.5重量部未満では緻密化されず低強
度で低熱伝導率の焼結体となり、また7.0重量部を超
えると、過量の粒界相が生成し、熱伝導率が低下する。
好ましくは2〜5重量部である。The proportion of the sintering aid is 0.5 to 7.0 per 100 parts by weight of the total of the oxides of the compound of Mg and / or Ca (MgO and / or CaO) and the silicon nitride powder.
Parts by weight. If the amount is less than 0.5 part by weight, the sintered body is not densified and has low strength and low thermal conductivity. If the amount exceeds 7.0 parts by weight, an excessive amount of grain boundary phase is generated, and the thermal conductivity is reduced.
Preferably it is 2 to 5 parts by weight.
【0020】本発明においては、焼結助剤として、上記
Mg及び/又はCaの化合物と希土類元素化合物とを併
用することもできる。希土類元素化合物を例示すると、
Y,La,Sc,Pr,Ce,Nd,Sm,Dy,H
o,Gdなどの酸化物もしくは焼結過程でそれらの酸化
物となる前駆物質である。これらの希土類元素化合物
は、窒化珪素原料粉末と反応して液相を生成し焼結促進
剤として機能する。中でも、酸化イットリウム(Y2 O
3 )又は酸化セリウム(CeO2 )が好ましい。希土類
元素化合物の割合は、希土類元素化合物の酸化物換算値
と窒化珪素粉末との合計100重量部あたり15重量部
以下が好ましく、特に2〜10重量部更には3〜6重量
部が好ましい。15重量部を超えると、過量の粒界相が
生成し、熱伝導率の低下や強度の低下を招来する。In the present invention, the above Mg and / or Ca compound and a rare earth element compound can be used in combination as a sintering aid. As an example of a rare earth element compound,
Y, La, Sc, Pr, Ce, Nd, Sm, Dy, H
It is an oxide such as o or Gd or a precursor that becomes such an oxide in a sintering process. These rare earth element compounds react with the silicon nitride raw material powder to form a liquid phase and function as a sintering accelerator. Among them, yttrium oxide (Y 2 O
3 ) or cerium oxide (CeO 2 ) is preferred. The proportion of the rare earth element compound is preferably 15 parts by weight or less, more preferably 2 to 10 parts by weight, and even more preferably 3 to 6 parts by weight, per 100 parts by weight of the total of the oxide equivalent of the rare earth element compound and the silicon nitride powder. If the amount exceeds 15 parts by weight, an excessive amount of grain boundary phase is generated, which causes a decrease in thermal conductivity and a decrease in strength.
【0021】本発明で使用される有機バインダーを例示
すると、ポリビニルアルコール、ポリビニルブチラー
ル、ポリエチレングリコール、ポリエチレンオキサイ
ド、メチルセルロース、ヒドロキシプロピルメチルセル
ロース、カルボキシメチルセルロース、エチルセルロー
ス、エチルヒドロキシエチルセルロース、ヒドロキシプ
ロピルセルロース、各種ワックス、アクリル系樹脂(ポ
リアクリレート、ポリメタクリレート等)、ウレタン樹
脂などである。これらは、成形体の成形手段によって異
なるが、通常、窒化珪素と焼結助剤との合計100重量
部あたり0.1〜20重量部使用される。Examples of the organic binder used in the present invention include polyvinyl alcohol, polyvinyl butyral, polyethylene glycol, polyethylene oxide, methylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, ethylcellulose, ethylhydroxyethylcellulose, hydroxypropylcellulose, various waxes and acrylics. Base resin (polyacrylate, polymethacrylate, etc.), urethane resin and the like. These are usually used in an amount of 0.1 to 20 parts by weight based on a total of 100 parts by weight of the silicon nitride and the sintering aid, although they vary depending on the forming means of the formed body.
【0022】本発明においては、上記窒化珪素粉末、焼
結助剤及び有機バインダーを混合し、更に成形法に応じ
て、水、エチルアルコール、ベンゼン、トルエン等の媒
体を混合し、所定形状の成形体を成形する。成形方法と
しては、金型プレス法、ドクターブレード法、押し出し
成形法のようなシート成形法などを採用することができ
る。In the present invention, the above-mentioned silicon nitride powder, a sintering aid and an organic binder are mixed, and a medium such as water, ethyl alcohol, benzene, toluene or the like is further mixed according to the forming method to form a predetermined shape. Shape the body. As a forming method, a sheet forming method such as a mold press method, a doctor blade method, and an extrusion method can be employed.
【0023】成形体は、次いで温度300〜800℃で
加熱して有機バインダーを除去し脱脂する。脱脂雰囲気
は、有機バインダーの種類などにより異なるが、酸化性
雰囲気又は非酸化性雰囲気である。脱脂処理された成形
体は、窒素ガス、アルゴンガスなどの不活性ガス雰囲気
中、温度1600〜2000℃で所定時間焼結を行う。
焼結温度は使用する窒化珪素原料粉末の焼結性、焼結助
剤の種類及びその配合量、所望する焼結体組織によって
異なる。窒素ガスなどによる加圧を行なわず常圧で焼結
する場合には、1600〜1800℃程度の温度で行わ
れる。The molded body is then heated at a temperature of 300 to 800 ° C. to remove the organic binder and degrease. The degreasing atmosphere is an oxidizing atmosphere or a non-oxidizing atmosphere, depending on the type of the organic binder and the like. The degreased molded body is sintered at a temperature of 1600 to 2000 ° C. for a predetermined time in an inert gas atmosphere such as a nitrogen gas or an argon gas.
The sintering temperature varies depending on the sinterability of the silicon nitride raw material powder to be used, the type and amount of the sintering aid, and the desired sintered body structure. When sintering at normal pressure without pressurizing with nitrogen gas or the like, the sintering is performed at a temperature of about 1600 to 1800 ° C.
【0024】本発明においては、窒化珪素粉末のβ相含
有量と粒度、焼結助剤の種類と使用量を変化させること
によって焼結体の窒化珪素結晶粒子の大きさを特定値以
上に大きくすることができる。例えば、窒化珪素焼結体
の研磨面に観察される粒界の数が任意の断面において直
線を引いたとき10μm当たり7個未満とすることがで
きる。このような窒化珪素焼結体の熱伝導率は60W/
m・K以上を示すことから特に回路基板の作製に好適な
ものとなる。In the present invention, the size of the silicon nitride crystal grains of the sintered body can be increased to a specific value or more by changing the β phase content and particle size of the silicon nitride powder, and the type and amount of the sintering aid used. can do. For example, the number of grain boundaries observed on the polished surface of the silicon nitride sintered body can be less than 7 per 10 μm when a straight line is drawn in an arbitrary cross section. The thermal conductivity of such a silicon nitride sintered body is 60 W /
Since it shows m · K or more, it is particularly suitable for manufacturing a circuit board.
【0025】また、窒化珪素焼結体の気孔率は熱伝導率
と強度に影響を及ぼすため、2.0%以下特に1.5%
以下であることが好ましい。気孔率が2.0%を超える
と窒化珪素焼結体の熱伝導率が低下し、また強度も低下
する。気孔率は、窒化珪素粉末の粒度、焼結助剤の種類
と使用量、焼結条件を変化させることによって調整する
ことができる。Since the porosity of the silicon nitride sintered body affects the thermal conductivity and strength, it is 2.0% or less, particularly 1.5%.
The following is preferred. If the porosity exceeds 2.0%, the thermal conductivity of the silicon nitride sintered body decreases, and the strength also decreases. The porosity can be adjusted by changing the particle size of the silicon nitride powder, the type and amount of the sintering aid, and the sintering conditions.
【0026】更に、窒化珪素焼結体の強度及び破壊靭性
については、用途に応じ、熱伝導率を含めた三者のバラ
ンスで適宜選定されるが、一般的には室温三点曲げ強度
600MPa以上、室温破壊靭性値5MPa√m以上で
ある。これらの調整は、窒化珪素粉末のβ相含有量と粒
度、焼結助剤の種類と使用量、焼結条件を変化させるこ
とによって行うことができる。Further, the strength and fracture toughness of the silicon nitride sintered body are appropriately selected depending on the application, based on a balance between the three factors including thermal conductivity, but generally, the three-point bending strength at room temperature is 600 MPa or more. , A room temperature fracture toughness value of 5 MPa√m or more. These adjustments can be made by changing the β-phase content and particle size of the silicon nitride powder, the type and amount of the sintering aid, and the sintering conditions.
【0027】[0027]
【実施例】次に、本発明を実施例と比較例をあげて更に
具体的に説明する。Next, the present invention will be described more specifically with reference to examples and comparative examples.
【0028】実施例1〜25 比較例1〜6
窒化珪素粉末と焼結助剤(Mg及び/又はCaの化合
物、希土類元素化合物、シリカ粉末)とを表1に示す割
合とし、エチルアルコールを媒体、窒化珪素製ボールを
用いたボールミルにより20時間湿式混合したのち、乾
燥して原料粉末混合物を調製した。表1に示された焼結
助剤量は、それぞれの化合物の酸化物換算値と窒化珪素
粉末との合計100重量部に対するそれぞれの化合物の
酸化物換算値の重量部である。Examples 1 to 25 Comparative Examples 1 to 6 Silicon nitride powder and a sintering aid (Mg and / or Ca compound, rare earth element compound, silica powder) at the ratios shown in Table 1 and ethyl alcohol as a medium The mixture was wet-mixed by a ball mill using silicon nitride balls for 20 hours, and then dried to prepare a raw material powder mixture. The amounts of the sintering aids shown in Table 1 are parts by weight of the oxides of the respective compounds with respect to 100 parts by weight of the total of the oxides of the respective compounds and the silicon nitride powder.
【0029】なお、窒化珪素原料粉末中のAl及びFe
以外のLi,Be,Na,K,Mn,Gaなどの不純物
は検出限界以下であり、多くとも0.01重量%以下で
あった。また、焼結助剤の平均粒径は0.8〜1.5μ
mであり、Li,Be,Na,K,Mn,Gaなどの不
純物は検出限界以下で、Al及びFeを含めた総不純物
は多くとも0.01重量%以下であった。The Al and Fe in the silicon nitride raw material powder were
Other impurities such as Li, Be, Na, K, Mn, and Ga were below the detection limit, and at most 0.01% by weight or less. The average particle size of the sintering aid is 0.8 to 1.5 μm.
m, and impurities such as Li, Be, Na, K, Mn, and Ga were below the detection limit, and total impurities including Al and Fe were at most 0.01% by weight or less.
【0030】得られた原料粉末混合物にポリビニルアル
コールの5重量%水溶液を8重量%添加して均一に混合
したのち、2000kg/cm2 の成形圧力でCIP成
形し、長さ50mm×幅50mm×厚さ5mmの成形体
を成形し、それを空気中、温度500℃で2時間熱処理
して脱脂し、次いで表1に示す条件で焼結した。After adding 8% by weight of a 5% by weight aqueous solution of polyvinyl alcohol to the obtained raw material powder mixture and uniformly mixing the mixture, CIP molding was performed at a molding pressure of 2000 kg / cm 2 to obtain a length of 50 mm × width of 50 mm × thickness. A molded body having a thickness of 5 mm was formed, heat-treated in air at a temperature of 500 ° C. for 2 hours, degreased, and then sintered under the conditions shown in Table 1.
【0031】得られた窒化珪素焼結体について、以下に
従う10μm当たりの粒界の数、熱伝導率(25℃)、
室温における三点曲げ強度及び破壊靭性を測定した。そ
れらの結果を表1に示す。Regarding the obtained silicon nitride sintered body, the number of grain boundaries per 10 μm, thermal conductivity (25 ° C.)
The three-point bending strength and the fracture toughness at room temperature were measured. Table 1 shows the results.
【0032】(1)粒界の数
窒化珪素焼結体の研磨面をアルカリエッチングして粒界
が識別できるようにしたのち、走査型電子顕微鏡により
延べ長さ500μmの任意の直線上の粒界の数を測定
し、10μm当たりの粒界の数として算出した。
(2)熱伝導率(25℃)
レーザーフラッシュ法により測定した。
(3)室温三点曲げ強度
JIS−R1601に準じて測定した。
(4)室温破壊靭性値
JIS−R1607(IF法)に準じて測定した。な
お、破壊靭性値の算出に用いる弾性率はJIS−R16
02(静的弾性率試験法)に準じて測定した。(1) Number of Grain Boundaries After the polished surface of the silicon nitride sintered body is alkali-etched so that the grain boundaries can be identified, the grain boundaries on an arbitrary straight line having a total length of 500 μm are observed with a scanning electron microscope. Was measured and calculated as the number of grain boundaries per 10 μm. (2) Thermal conductivity (25 ° C.) Measured by a laser flash method. (3) Three-point bending strength at room temperature Measured according to JIS-R1601. (4) Room temperature fracture toughness value Measured according to JIS-R1607 (IF method). The elastic modulus used for calculating the fracture toughness is JIS-R16
02 (static elastic modulus test method).
【0033】[0033]
【表1】 [Table 1]
【0034】表1から明らかなように、実施例は比較例
に比べて高熱伝導性かつ高強度の窒化珪素焼結体であ
る。As is clear from Table 1, the example is a silicon nitride sintered body having higher thermal conductivity and higher strength than the comparative example.
【0035】[0035]
【発明の効果】本発明によれば、特に回路基板の作製に
好適な高熱伝導性、高強度の窒化珪素焼結体を、比較的
低い焼結温度でしかも徐冷などの特殊な焼結を行うこと
なく、生産性を高めて製造することができる。According to the present invention, a silicon nitride sintered body having a high thermal conductivity and a high strength, which is particularly suitable for manufacturing a circuit board, can be specially sintered at a relatively low sintering temperature and gradually cooled. Without performing, it can be manufactured with increased productivity.
【0036】本発明によって製造された窒化珪素焼結体
は、半導体用基板、回路基板、メタライズ基板、各種放
熱板などの電子用部材や、各種構造部材などに使用する
ことができる。The silicon nitride sintered body manufactured by the present invention can be used for electronic members such as semiconductor substrates, circuit boards, metallized substrates, various heat sinks, and various structural members.
フロントページの続き (56)参考文献 特開 平4−212441(JP,A) 特開 平1−145380(JP,A) 特開 平9−30866(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/584 - 35/596 Continuation of the front page (56) References JP-A-4-212441 (JP, A) JP-A-1-145380 (JP, A) JP-A-9-30866 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) C04B 35/584-35/596
Claims (3)
ダーを含む成形体を脱脂した後焼結してAl成分を金属
換算で0.25重量%以下、Fe成分を金属換算で0.
3重量%以下の窒化珪素焼結体を製造する方法におい
て、上記窒化珪素粉末がβ相含有量15〜40重量%の
ものであり、また上記焼結助剤がMg及び/又はCaの
化合物を含むものであって、該化合物の割合が上記窒化
珪素粉末と該化合物の酸化物換算との合計100重量部
あたり0.5〜7.0重量部であることを特徴とする窒
化珪素焼結体の製造方法。1. A molded body containing a silicon nitride powder, a sintering aid and an organic binder is degreased and sintered, and the Al component is 0.25% by weight or less in terms of metal, and the Fe component is 0.25% by weight or less in terms of metal.
In a method for producing a silicon nitride sintered body of 3% by weight or less, the silicon nitride powder has a β phase content of 15 to 40% by weight, and the sintering aid contains a compound of Mg and / or Ca. Wherein the proportion of the compound is 0.5 to 7.0 parts by weight per 100 parts by weight of the total of the silicon nitride powder and the oxide of the compound. Manufacturing method.
を含み、該希土類元素化合物の割合が窒化珪素粉末と該
希土類元素化合物の酸化物換算との合計100重量部あ
たり15重量部以下であることを特徴とする請求項1記
載の窒化珪素焼結体の製造方法。2. A rare earth element compound is further contained as a sintering aid, and the ratio of the rare earth element compound is 15 parts by weight or less per 100 parts by weight of the total of the silicon nitride powder and the oxide of the rare earth element compound in terms of oxide. The method for producing a silicon nitride sintered body according to claim 1, wherein:
おいて、窒化珪素焼結体の研磨面に観察される粒界の数
が任意の断面において直線を引いたとき10μm当たり
7個未満であり、しかも熱伝導率が60W/m・K以上
であることを特徴とする回路基板作製用窒化珪素焼結体
の製造方法。3. The silicon nitride sintered body according to claim 1, wherein the number of grain boundaries observed on the polished surface of the silicon nitride sintered body is less than 7 per 10 μm when a straight line is drawn in an arbitrary cross section. And a thermal conductivity of 60 W / m · K or more, and a method for producing a silicon nitride sintered body for producing a circuit board.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31936795A JP3537241B2 (en) | 1995-12-07 | 1995-12-07 | Method for producing silicon nitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31936795A JP3537241B2 (en) | 1995-12-07 | 1995-12-07 | Method for producing silicon nitride sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09157030A JPH09157030A (en) | 1997-06-17 |
JP3537241B2 true JP3537241B2 (en) | 2004-06-14 |
Family
ID=18109366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31936795A Expired - Fee Related JP3537241B2 (en) | 1995-12-07 | 1995-12-07 | Method for producing silicon nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3537241B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4346151B2 (en) | 1998-05-12 | 2009-10-21 | 株式会社東芝 | High thermal conductivity sintered silicon nitride, circuit board and integrated circuit using the same |
JPH11349381A (en) * | 1998-06-08 | 1999-12-21 | Hitachi Metals Ltd | Silicon nitride sintered compact and sputter target comprising the same |
JP4332824B2 (en) * | 1999-06-07 | 2009-09-16 | 日立金属株式会社 | Method for producing high thermal conductivity silicon nitride sintered body, sintered body thereof, substrate, circuit board for semiconductor element |
JP4571728B2 (en) * | 1999-06-23 | 2010-10-27 | 日本碍子株式会社 | Silicon nitride sintered body and manufacturing method thereof |
JP4332828B2 (en) * | 2000-05-25 | 2009-09-16 | 日立金属株式会社 | High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device |
US6874942B2 (en) | 2001-03-02 | 2005-04-05 | Nsk Ltd. | Rolling device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2631115B2 (en) * | 1987-11-30 | 1997-07-16 | 京セラ株式会社 | Manufacturing method of silicon nitride sintered body |
JP2742619B2 (en) * | 1989-11-30 | 1998-04-22 | 京セラ株式会社 | Silicon nitride sintered body |
JPH0727995B2 (en) * | 1990-09-18 | 1995-03-29 | 日本碍子株式会社 | Ceramic wiring board |
JP3501317B2 (en) * | 1995-07-21 | 2004-03-02 | 日産自動車株式会社 | High thermal conductivity silicon nitride sintered body and insulating substrate made of silicon nitride sintered body |
-
1995
- 1995-12-07 JP JP31936795A patent/JP3537241B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09157030A (en) | 1997-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0963966B1 (en) | High thermal conductive silicon nitride sintered body and method of producing the same | |
JP5444387B2 (en) | Semiconductor device heat sink | |
KR101794410B1 (en) | Sintered silicon nitride having high thermal conductivity and Manufacturing method thereof | |
JP3100871B2 (en) | Aluminum nitride sintered body | |
EP0587119A2 (en) | High thermal conductive silicon nitride sintered body and method of producing the same | |
KR960016070B1 (en) | Sintered aluminium nitride and its production | |
JP3537241B2 (en) | Method for producing silicon nitride sintered body | |
JP3100892B2 (en) | High thermal conductive silicon nitride sintered body and method for producing the same | |
JP3145519B2 (en) | Aluminum nitride sintered body | |
JP3561153B2 (en) | Silicon nitride heat dissipation member and method of manufacturing the same | |
JP5289184B2 (en) | Method for producing high thermal conductivity silicon nitride sintered body | |
JP3426823B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2752227B2 (en) | AlN-BN composite sintered body and method for producing the same | |
JP3929335B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JP2000191376A (en) | Aluminum nitride sintered body and its production | |
KR102141812B1 (en) | Sintered aluminum nitride and its manufacturing method | |
JP4702978B2 (en) | Aluminum nitride sintered body | |
JP4912530B2 (en) | Aluminum nitride sintered body and manufacturing method thereof | |
JP2541150B2 (en) | Aluminum nitride sintered body | |
JPH1017365A (en) | Silicon carbide sintered compact and its production | |
JP2002173373A (en) | Aluminum nitride sintered compact, method of producing the same and electronic component using the same | |
JP4500515B2 (en) | Parts for semiconductor manufacturing equipment and mirrors for length measurement | |
JP2000095569A (en) | High heat conductivity silicon nitride sintered compact and its production | |
JPH11180774A (en) | Silicon nitride-base heat radiating member and its production | |
JPH0523921A (en) | Silicone nitride basis sintered body for cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040316 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040316 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080326 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090326 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100326 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110326 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120326 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140326 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |