JP3520730B2 - Engine catalyst deterioration diagnosis device - Google Patents

Engine catalyst deterioration diagnosis device

Info

Publication number
JP3520730B2
JP3520730B2 JP22366597A JP22366597A JP3520730B2 JP 3520730 B2 JP3520730 B2 JP 3520730B2 JP 22366597 A JP22366597 A JP 22366597A JP 22366597 A JP22366597 A JP 22366597A JP 3520730 B2 JP3520730 B2 JP 3520730B2
Authority
JP
Japan
Prior art keywords
fuel ratio
catalyst
air
nox
nox absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22366597A
Other languages
Japanese (ja)
Other versions
JPH1162562A (en
Inventor
康二 石原
隆之 戸城
一雄 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP22366597A priority Critical patent/JP3520730B2/en
Publication of JPH1162562A publication Critical patent/JPH1162562A/en
Application granted granted Critical
Publication of JP3520730B2 publication Critical patent/JP3520730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンの触媒劣
化診断装置に関し、詳しくは、排気空燃比が理論空燃比
よりもリーンであるときに排気中のNOxを吸収し、排
気空燃比が理論空燃比又は理論空燃比よりもリッチであ
るときに前記吸収したNOxを放出して還元処理するN
Ox吸収触媒におけるNOx吸収性能の劣化を診断する
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine catalyst deterioration diagnosing device, and more specifically, when the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio, it absorbs NOx in the exhaust gas and the exhaust air-fuel ratio is stoichiometric. N, which releases the absorbed NOx and performs a reduction process when the fuel ratio is richer than the stoichiometric air-fuel ratio
The present invention relates to a technique for diagnosing deterioration of NOx absorption performance of an Ox absorption catalyst.

【0002】[0002]

【従来の技術】従来から、排気空燃比がリーンであると
きに排気中のNOxを吸収し、排気空燃比が理論空燃比
(ストイキ)又はリッチであるときに前記吸収したNO
xを放出(脱離)して還元処理するNOx吸収触媒(N
Ox吸収型三元触媒)を備えたリーン燃焼エンジンが知
られている(特開平7−139397号公報等参照)。
2. Description of the Related Art Conventionally, when the exhaust air-fuel ratio is lean, it absorbs NOx in the exhaust gas, and when the exhaust air-fuel ratio is stoichiometric or rich, the absorbed NOx is absorbed.
NOx absorption catalyst (N
A lean combustion engine equipped with an Ox absorption type three-way catalyst is known (see Japanese Patent Laid-Open No. 7-139397).

【0003】一方、触媒劣化を診断する技術として、従
来、特開平2−130245号公報,特開平8−140
30号公報に開示されるようなものがあった。特開平2
−130245号公報に開示される劣化診断技術は、フ
ィードバック制御中における触媒前空燃比に対する触媒
後空燃比の遅れ時間を検出して、該遅れ時間に基づいて
三元触媒の劣化を診断するものである。
On the other hand, as a technique for diagnosing the deterioration of the catalyst, there have been heretofore known JP-A-2-130245 and JP-A-8-140.
There was one disclosed in Japanese Patent No. 30. JP-A-2
The deterioration diagnosis technique disclosed in Japanese Patent Laid-Open No. 130245 detects a delay time of a post-catalyst air-fuel ratio with respect to a pre-catalyst air-fuel ratio during feedback control, and diagnoses deterioration of a three-way catalyst based on the delay time. is there.

【0004】また、特開平8−14030号公報に開示
される劣化診断技術は、三元触媒又はNOx吸収性能を
有する触媒において、混合気の空燃比をリーンからリッ
チ又はリッチからリーンに切り換え、この切り換え期間
中における触媒下流側の酸素センサのピーク出力から、
触媒劣化を検出するものである。
The deterioration diagnosis technique disclosed in Japanese Unexamined Patent Publication No. 8-14030 switches the air-fuel ratio of the air-fuel mixture from lean to rich or from rich to lean in a three-way catalyst or a catalyst having NOx absorption performance. From the peak output of the oxygen sensor downstream of the catalyst during the switching period,
The catalyst deterioration is detected.

【0005】[0005]

【発明が解決しようとする課題】ところで、前記特開平
2−130245号公報に開示される劣化診断技術で
は、空燃比フィードバック中の短い周期でリッチ・リー
ンを繰り返すときの空燃比変化の微小な遅れから触媒劣
化を診断する構成であるため、高精度に劣化診断を行う
ことが困難であると共に、通常の三元性能の劣化を診断
するものであり、該三元性能の劣化状態とは必ずしも一
致しないNOx吸収性能の劣化を診断できないという問
題があった。
In the deterioration diagnosis technique disclosed in Japanese Patent Laid-Open No. 2-130245, a slight delay in air-fuel ratio change when rich / lean is repeated in a short cycle during air-fuel ratio feedback. Since it is a configuration for diagnosing catalyst deterioration from the above, it is difficult to perform deterioration diagnosis with high accuracy, and it is for diagnosing deterioration of normal three-way performance, and it does not always match the deterioration state of the three-way performance. There was a problem that the deterioration of NOx absorption performance could not be diagnosed.

【0006】また、特開平8−14030号公報に開示
される劣化診断技術では、酸素センサの検出信号のピー
ク値に基づいて診断を行う構成であるが、前記ピーク値
は、センサばらつきやセンサへの排気のあたり方等に影
響されて変化するために、触媒劣化を精度良く診断する
ことが困難であるという問題があった。本発明は上記問
題点に鑑みなされたものであり、NOx吸収触媒におけ
るNOx吸収性能の劣化を精度良く診断できる劣化診断
装置を提供することを目的とする。
Further, in the deterioration diagnosis technique disclosed in Japanese Patent Laid-Open No. 8-14030, the diagnosis is made on the basis of the peak value of the detection signal of the oxygen sensor. However, there is a problem in that it is difficult to accurately diagnose the catalyst deterioration because it is affected by the exhaust gas and the like. The present invention has been made in view of the above problems, and an object of the present invention is to provide a deterioration diagnosis device that can accurately diagnose deterioration of the NOx absorption performance of a NOx absorption catalyst.

【0007】[0007]

【課題を解決するための手段】そのため請求項1記載の
発明は、排気空燃比が理論空燃比よりもリーンであると
きに排気中のNOxを吸収し、排気空燃比が理論空燃比
又は理論空燃比よりもリッチであるときに前記吸収した
NOxを放出して還元処理するNOx吸収触媒を備え、
理論空燃比よりもリーン空燃比での燃焼運転を行いうる
エンジンの触媒劣化診断装置であって、リーン燃焼中に
前記NOx吸収触媒に対するNOx吸収量を推定すると
共に、前記NOx吸収触媒前の排気空燃比のリーンから
リッチへの反転に対して前記NOx吸収触媒後の排気空
燃比がリーンからリッチに反転するまでの遅れ時間を計
測し、前記NOx吸収量の推定値と前記遅れ時間との相
関から前記NOx吸収触媒におけるNOx吸収性能の劣
化を診断する構成とし、かつ、前記遅れ時間に基づく劣
化診断を、始動後初回のリッチ反転時に計測された遅れ
時間のみに基づいて行う構成とした。
Therefore, the invention according to claim 1 absorbs NOx in the exhaust gas when the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio, and the exhaust air-fuel ratio is the stoichiometric air-fuel ratio or the stoichiometric air-fuel ratio. A NOx absorption catalyst that releases the absorbed NOx and performs reduction processing when the fuel ratio is richer than the fuel ratio,
A catalyst deterioration diagnosis device for an engine capable of performing a combustion operation at a lean air-fuel ratio rather than a stoichiometric air-fuel ratio, wherein the NOx absorption amount for the NOx absorption catalyst is estimated during lean combustion, and the exhaust air before the NOx absorption catalyst is also estimated. The delay time until the exhaust air-fuel ratio after the NOx absorption catalyst changes from lean to rich is measured with respect to the change of the fuel ratio from lean to rich, and from the correlation between the estimated value of the NOx absorption amount and the delay time. The configuration is such that deterioration of the NOx absorption performance of the NOx absorption catalyst is diagnosed , and the deterioration based on the delay time is used.
Delay measured at the time of the first rich reversal after engine start
The configuration is based on time only.

【0008】かかる構成によると、触媒前に対する触媒
後のリーン→リッチ変化の応答遅れと、リッチ変化前ま
でのNOx吸収量との相関から、NOx吸収性能の劣化
が診断される。NOx吸収触媒前の空燃比がリーンから
リッチに反転すると、リーン燃焼中に吸収したNOxの
脱離が開始されるが、NOxの脱離と同時に酸素O2
脱離するため、この酸素の影響で触媒後の空燃比がリッ
チに反転するのは、NOxの脱離が完了した後となり、
触媒前のリッチ反転に対して、NOx吸収量に応じた時
間だけ触媒後のリッチ反転が遅れることになる。従っ
て、予測されるNOx吸収量に見合った時間だけの遅れ
がない場合には、予測したNOx吸収量よりも実際の吸
収量が少なく触媒におけるNOx吸収性能が低下してい
るものと判断できる。
According to this structure, the deterioration of the NOx absorption performance is diagnosed from the correlation between the response delay of the lean-to-rich change after the catalyst with respect to the before catalyst and the NOx absorption amount before the rich change. When the air-fuel ratio before the NOx absorption catalyst is changed from lean to rich, the desorption of NOx absorbed during lean combustion is started, but oxygen O 2 is desorbed at the same time as the desorption of NOx. Therefore, the air-fuel ratio after the catalyst reverses to rich after the desorption of NOx is completed.
The rich inversion after the catalyst is delayed by a time corresponding to the NOx absorption amount with respect to the rich inversion before the catalyst. Therefore, when there is no delay corresponding to the predicted NOx absorption amount, it can be determined that the actual absorption amount is smaller than the predicted NOx absorption amount and the NOx absorption performance of the catalyst is deteriorated.

【0009】ここで、運転状態等の変化で触媒温度が高
温から低温に移行する場合、NOx吸収触媒が吸収でき
るNOx量が減少変化するために、低温から高温に移行
する場合に比べて同じ温度条件のときでもより多くのN
Oxが脱離することになり、劣化診断の精度が低下す
る。そこで、始動後初回のリーン反転時のみを診断対象
として、高温から低温への移行時に診断が行われること
を回避する。尚、NOx吸収物質としてバリウムBaを
用いた場合のNOx吸収,脱離の作用は、以下のように
表すことができる。 Ba(NO32+CO2⇔BaCO3+2NO2+1/2CO2
[0009] Here, the catalyst temperature becomes high due to changes in operating conditions.
The NOx absorption catalyst can absorb when the temperature changes from low to high.
Change from low temperature to high temperature because the amount of NOx that changes is decreasing
More N under the same temperature conditions than when
Ox will be desorbed, and the accuracy of deterioration diagnosis will decrease.
It Therefore, the diagnosis target is only for the first lean reversal after the start.
As a result, the diagnosis should be made at the transition from high temperature to low temperature.
To avoid. The action of NOx absorption and desorption when barium Ba is used as the NOx absorbing substance can be expressed as follows. Ba (NO 3 ) 2 + CO 2 ⇔ BaCO 3 + 2NO 2 + 1 / 2CO 2

【0010】請求項2記載の発明は、排気空燃比が理論
空燃比よりもリーンであるときに排気中のNOxを吸収
し、排気空燃比が理論空燃比又は理論空燃比よりもリッ
チであるときに前記吸収したNOxを放出して還元処理
するNOx吸収触媒を備え、理論空燃比よりもリーン空
燃比での燃焼運転を行いうるエンジンの触媒劣化診断装
置であって、前記NOx吸収触媒に吸収されたNOxを
還元処理すべく燃焼混合気の空燃比をリーンからリッチ
に一時的に反転させたときに、前記NOx吸収触媒の下
流側の排気空燃比の応答遅れ時間を計測し、該遅れ時間
に基づいて前記NOx吸収触媒におけるNOx吸収性能
の劣化を診断する構成とし、かつ、前記遅れ時間に基づ
く劣化診断を、始動後初回のリッチ反転時に計測された
遅れ時間のみに基づいて行う構成とした。
According to the second aspect of the present invention, when the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio, NOx in the exhaust gas is absorbed, and when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio or is richer than the stoichiometric air-fuel ratio. A catalyst deterioration diagnosis device for an engine, which is equipped with a NOx absorption catalyst that releases the absorbed NOx and performs a reduction process, and is capable of performing a combustion operation at a lean air-fuel ratio rather than a stoichiometric air-fuel ratio, and is absorbed by the NOx absorption catalyst. When the air-fuel ratio of the combustion mixture is temporarily inverted from lean to rich to reduce NOx, the response delay time of the exhaust air-fuel ratio on the downstream side of the NOx absorption catalyst is measured, and the response time is set to the delay time. Based on the delay time, it is configured to diagnose deterioration of the NOx absorption performance of the NOx absorption catalyst based on the above.
The deterioration diagnosis was measured at the first rich reversal after the start.
The configuration is based on only the delay time.

【0011】かかる構成によると、リーン燃焼中に吸収
したNOxを還元処理すべく、燃焼混合気の空燃比を一
時的にリーンからリッチに反転させるが、このときに、
NOx吸収触媒の下流側がリッチに反転するのに要した
遅れ時間に基づいて、NOx吸収性能を診断する。前述
のように、前記遅れ時間がNOxの脱離に要した時間で
あって、この脱離時間が実際のNOx吸収量によって変
化することから、前記遅れ時間の初期状態からの短縮
は、NOx吸収性能の低下を示すことになる。また、始
動後初回のリーン反転時のみを診断対象として、NOx
吸収触媒が吸収できるNOx量が減少変化する高温から
低温への移行時に診断が行われることを回避する。
According to this structure, the air-fuel ratio of the combustion mixture is temporarily inverted from lean to rich in order to reduce the NOx absorbed during lean combustion, but at this time,
The NOx absorption performance is diagnosed based on the delay time required for the downstream side of the NOx absorption catalyst to be richly reversed. As described above, the delay time is the time required for desorption of NOx, and since the desorption time changes depending on the actual amount of NOx absorbed, the reduction of the delay time from the initial state is due to NOx absorption. This will indicate a decrease in performance. Also, the beginning
Only the first lean reversal after the movement is targeted for diagnosis, NOx
From the high temperature at which the amount of NOx that the absorption catalyst can absorb decreases and changes
Avoid making diagnostics when transitioning to low temperatures.

【0012】請求項3記載の発明では、請求項2記載の
発明において、前記NOx吸収触媒におけるNOx吸収
量を推定し、該推定されるNOx吸収量が飽和量に達し
ているときに、燃焼混合気の空燃比をリーンからリッチ
に一時的に反転させる構成とした。かかる構成による
と、リーン燃焼中にNOx吸収量が増大して飽和量に達
すると、NOxを処理すべく、燃焼混合気の空燃比をリ
ーンからリッチに一時的に反転させるが、このときに、
飽和量に見合った時間だけ触媒後の空燃比変化が遅れた
か否かに基づいて、NOx吸収性能の劣化を診断する。
According to a third aspect of the present invention, in the second aspect of the present invention, the NOx absorption amount in the NOx absorption catalyst is estimated, and when the estimated NOx absorption amount reaches the saturation amount, combustion mixing is performed. The air-fuel ratio of air is temporarily changed from lean to rich. With this configuration, when the NOx absorption amount increases during lean combustion and reaches the saturation amount, the air-fuel ratio of the combustion mixture is temporarily inverted from lean to rich in order to process NOx.
The deterioration of the NOx absorption performance is diagnosed based on whether or not the change in the air-fuel ratio after the catalyst is delayed by a time commensurate with the saturation amount.

【0013】請求項4記載の発明では、請求項1〜3記
載の発明において、前記遅れ時間と前記NOx吸収触媒
の温度とに基づいてNOx吸収性能の劣化を診断する構
成とした。かかる構成によると、触媒前に対する触媒後
の空燃比変化の遅れ時間と共に、そのときの触媒温度に
基づいて、NOx吸収性能の劣化が診断される。NOx
吸収触媒におけるNOx吸収量は触媒温度に相関し、前
記遅れ時間が触媒温度で変化することになるので、その
ときの触媒温度に対応するNOx量が実際に吸収されて
いるか否かを、前記遅れ時間から判断して、NOx吸収
性能の低下を診断する。
According to a fourth aspect of the present invention, in the first to third aspects of the invention, the deterioration of the NOx absorption performance is diagnosed based on the delay time and the temperature of the NOx absorption catalyst. According to this configuration, deterioration of the NOx absorption performance is diagnosed based on the catalyst temperature at that time as well as the delay time of the air-fuel ratio change after the catalyst with respect to the catalyst before. NOx
The NOx absorption amount in the absorption catalyst correlates with the catalyst temperature and the delay time changes with the catalyst temperature. Therefore, it is necessary to determine whether or not the NOx amount corresponding to the catalyst temperature at that time is actually absorbed. Judging from the time, a decrease in NOx absorption performance is diagnosed.

【0014】請求項5記載の発明では、前記遅れ時間に
基づく劣化診断を、始動時のエンジン温度が所定温度以
下であったときに行わせる構成とした。かかる構成によ
ると、始動時のエンジン温度が所定温度を越えている高
温再始動時には、NOx吸収触媒に前回運転時に吸収さ
れたNOxが溜まっている可能性があってNOx吸収量
の推定精度を低下させるので、始動時のエンジン温度が
所定温度以下であって、即ち前回の運転時のNOxが触
媒内に無いと推定される始動後初回の脱離制御時に、N
Ox吸収量に相関する前記遅れ時間に基づいてNOx吸
収性能の劣化を診断させる。
According to a fifth aspect of the invention, the deterioration diagnosis based on the delay time is performed when the engine temperature at the time of starting is below a predetermined temperature. With this configuration, at the time of high temperature restart when the engine temperature at startup exceeds the predetermined temperature, there is a possibility that the NOx absorbed during the previous operation may have accumulated in the NOx absorption catalyst, and the estimation accuracy of the NOx absorption amount will decrease. Therefore, when the engine temperature at the time of starting is equal to or lower than the predetermined temperature, that is, when NOx at the time of the previous operation is estimated to be not present in the catalyst, N
The deterioration of the NOx absorption performance is diagnosed based on the delay time correlated with the Ox absorption amount.

【0015】一方、請求項記載の発明は、排気空燃比
が理論空燃比よりもリーンであるときに排気中のNOx
を吸収し、排気空燃比が理論空燃比又は理論空燃比より
もリッチであるときに前記吸収したNOxを放出して還
元処理するNOx吸収触媒を備え、理論空燃比よりもリ
ーン空燃比での燃焼運転を行いうるエンジンの触媒劣化
診断装置であって、図1に示すように構成される。
On the other hand, according to the sixth aspect of the invention, when the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio, NOx in the exhaust gas is exhausted.
And a NOx absorption catalyst that releases the absorbed NOx and performs reduction treatment when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio or is richer than the stoichiometric air-fuel ratio, and burns at a leaner air-fuel ratio than the stoichiometric air-fuel ratio. It is a catalyst deterioration diagnosis device for an engine that can be operated, and is configured as shown in FIG.

【0016】図1において、NOx吸収量推定手段は、
リーン燃焼中に前記NOx吸収触媒におけるNOx吸収
量を推定する。リッチ化手段は、NOx吸収量推定手段
で推定されたNOx吸収量が飽和量に達していると判断
したときに、燃焼混合気をリーンからリッチに一時的に
反転させる。上流側空燃比検出手段は、前記NOx吸収
触媒の上流側で排気空燃比を検出する手段であり、下流
側空燃比検出手段は、前記NOx吸収触媒の下流側で排
気空燃比を検出する手段である。
In FIG. 1, the NOx absorption amount estimating means is
The amount of NOx absorbed by the NOx absorption catalyst during lean combustion is estimated. The enriching means temporarily reverses the combustion mixture from lean to rich when it is determined that the NOx absorption amount estimated by the NOx absorption amount estimating means has reached the saturation amount. The upstream side air-fuel ratio detecting means is a means for detecting the exhaust air-fuel ratio on the upstream side of the NOx absorption catalyst, and the downstream side air-fuel ratio detecting means is a means for detecting the exhaust air-fuel ratio on the downstream side of the NOx absorption catalyst. is there.

【0017】ここで、遅れ時間計測手段は、前記リッチ
化手段により燃焼混合気の空燃比をリッチに反転させた
ときに、前記上流側空燃比検出手段による排気空燃比の
リーンからリッチへの反転検出から、前記下流側空燃比
検出手段による排気空燃比のリーンからリッチへの反転
検出までの遅れ時間を計測する。そして、劣化診断手段
は、前記リッチ化手段による始動後初回のリッチ反転時
に前記遅れ時間計測手段で計測された前記遅れ時間のみ
に基づいて、前記NOx吸収触媒におけるNOx吸収性
能の劣化を診断する。
Here, the delay time measuring means reverses the exhaust air-fuel ratio by the upstream side air-fuel ratio detecting means from lean to rich when the air-fuel ratio of the combustion mixture is reversed by the enriching means. A delay time from the detection to the detection of reversal of the exhaust air-fuel ratio from lean to rich by the downstream side air-fuel ratio detecting means is measured. Then, the deterioration diagnosing means is configured to perform the first rich reversal after the start by the enriching means.
Only the delay time measured by the delay time measuring means
Based on the above, the deterioration of the NOx absorption performance of the NOx absorption catalyst is diagnosed.

【0018】かかる構成によると、リーン燃焼中にNO
x吸収量が飽和量に達したものと推定されると、燃焼混
合気の空燃比をリッチ化させて、前記吸収されたNOx
の脱離・還元を図るが、このときに、触媒上流側の排気
空燃比がリッチに反転してから触媒下流側の排気空燃比
がリッチに反転するまでの遅れ時間が計測され、このN
Ox吸収量に相関する遅れ時間から、NOx吸収性能の
劣化を診断する。また、始動後初回のリーン反転時のみ
を診断対象として、NOx吸収触媒が吸収できるNOx
量が減少変化する高温から低温への移行時に診断が行わ
れることを回避する。
According to this structure, NO is generated during lean combustion.
When it is estimated that the x absorption amount has reached the saturation amount, the air-fuel ratio of the combustion mixture is made rich and the absorbed NOx is increased.
Desorption / reduction of the exhaust gas is attempted. At this time, the delay time from the exhaust air-fuel ratio on the upstream side of the catalyst reversing rich to the exhaust air-fuel ratio on the downstream side of the catalyst reversing rich is measured.
The deterioration of the NOx absorption performance is diagnosed from the delay time correlated with the Ox absorption amount. Also, only at the first lean reversal after starting
NOx that can be absorbed by the NOx absorption catalyst
Diagnosis is performed at the transition from high temperature to low temperature where the amount decreases
To avoid being

【0019】請求項記載の発明では、前記NOx吸収
触媒の温度を検出する触媒温度検出手段を備え、前記劣
化診断手段が、前記遅れ時間と前記検出されたNOx吸
収触媒の温度とに基づいて、NOx吸収性能の劣化を診
断する構成とした。かかる構成によると、NOx吸収量
に相関する触媒温度を加味して、触媒のNOx吸収性能
診断される。
According to a seventh aspect of the present invention, there is provided catalyst temperature detection means for detecting the temperature of the NOx absorption catalyst, and the deterioration diagnosis means is based on the delay time and the detected temperature of the NOx absorption catalyst. , NOx absorption performance deterioration is diagnosed. According to this configuration, the NOx absorption performance of the catalyst is diagnosed by taking into consideration the catalyst temperature that correlates with the NOx absorption amount .

【0020】請求項8記載の発明では、前記劣化診断手
段が、始動時のエンジン温度が所定温度以下であったと
きに劣化診断を行う構成とした。かかる構成によると、
始動時のエンジン温度が所定温度以下であって、即ち前
回の運転時のNOxが触媒内に無いと推定されるときに
のみ、最初の脱離処理時の空燃比変化の遅れ時間から、
NOx吸収性能の劣化を診断する。
According to the eighth aspect of the invention, the deterioration diagnosis means performs the deterioration diagnosis when the engine temperature at the time of starting is equal to or lower than a predetermined temperature. According to this configuration,
Only when the engine temperature at startup is equal to or lower than a predetermined temperature, that is, when it is estimated that NOx during the previous operation is not present in the catalyst, from the delay time of the air-fuel ratio change during the first desorption process,
The deterioration of the NOx absorption performance is diagnosed.

【0021】[0021]

【発明の効果】請求項1記載の発明によると、NOx吸
収量と、触媒前の空燃比のリーンからリッチへの反転に
対する触媒後空燃比の変化の遅れ時間との相関に基づい
て、NOx吸収触媒におけるNOx吸収性能の劣化を精
度良く診断できると共に、始動後初回のリッチ反転時の
みを診断条件とすることで、温度の減少変化に伴うNO
x脱離量の増大変化による診断精度の低下を回避できる
という効果がある。
According to the invention described in claim 1, the NOx absorption is based on the correlation between the NOx absorption amount and the delay time of the change in the post-catalyst air-fuel ratio with respect to the reversal of the air-fuel ratio before the catalyst from lean to rich. The deterioration of the NOx absorption performance of the catalyst can be accurately diagnosed , and at the time of the first rich reversal after starting.
By setting only the diagnostic condition, NO
x It is possible to avoid a decrease in diagnostic accuracy due to an increase in the desorption amount.
There is an effect.

【0022】請求項2記載の発明によると、NOxの脱
離を行わせるべく空燃比をリッチ化させたときに、NO
xの脱離完了を示す触媒後の空燃比のリッチ反転までに
要した遅れ時間に基づいて実際のNOx吸収量を知っ
て、NOx吸収触媒におけるNOx吸収性能の劣化を精
度良く診断できると共に、始動後初回のリッチ反転時の
みを診断条件とすることで、温度の減少変化に伴うNO
x脱離量の増大変化による診断精度の低下を回避できる
という効果がある。
According to the second aspect of the present invention, when the air-fuel ratio is made rich in order to desorb NOx, NO
By knowing the actual NOx absorption amount based on the delay time required until the rich reversal of the air-fuel ratio after the catalyst indicating the completion of desorption of x, it is possible to accurately diagnose the deterioration of the NOx absorption performance of the NOx absorption catalyst and to start the engine. After the first rich reverse
By setting only the diagnostic condition, NO
x It is possible to avoid a decrease in diagnostic accuracy due to an increase in the desorption amount.
There is an effect.

【0023】請求項3記載の発明によると、NOx吸収
量が飽和量になる毎に脱離を行わせてNOx吸収性能の
確保を図りつつ、触媒後空燃比の変化に前記飽和量に見
合った遅れ時間を必要としたか否かに基づいて、NOx
吸収性能の劣化を診断できるという効果がある。
According to the third aspect of the present invention, desorption is performed every time the NOx absorption amount reaches the saturation amount to secure the NOx absorption performance, and the change in the post-catalyst air-fuel ratio corresponds to the saturation amount. NOx based on whether a delay time was required
This has the effect of diagnosing the deterioration of absorption performance.

【0024】請求項4記載の発明によると、NOx吸収
量に相関する触媒温度を加味して劣化診断を行わせるこ
とで、触媒温度の低下によるNOx吸収量の低下を、N
Ox吸収性能の劣化として誤診断することを回避できる
という効果がある 。請求項5記載の発明によると、前回
運転時に吸収されたNOxが残っている可能性があると
きの診断を回避し、より一層高い精度でNOx吸収性能
の劣化を診断させることができるという効果がある。
According to the fourth aspect of the present invention, the deterioration of the NOx absorption amount due to the decrease of the catalyst temperature is reduced by performing the deterioration diagnosis by adding the catalyst temperature correlated with the NOx absorption amount.
It is possible to avoid erroneous diagnosis as deterioration of Ox absorption performance.
There is an effect . According to the invention of claim 5, it is possible to avoid the diagnosis when there is a possibility that the NOx absorbed during the previous operation may remain, and to diagnose the deterioration of the NOx absorption performance with higher accuracy. is there.

【0025】請求項記載の発明によると、飽和量に対
したNOxを脱離処理すべく燃焼混合気をリッチに反転
させたときに、触媒前の排気空燃比の反転に対する触媒
後の排気空燃比の反転の遅れ時間から、実際に飽和量の
NOxが吸収されていたか否かを判断し、以て、NOx
吸収触媒におけるNOx吸収性能の劣化を精度良く診断
できると共に、始動後初回のリッチ反転時のみを診断条
件とすることで、温度の減少変化に伴うNOx脱離量の
増大変化による診断精度の低下を回避できるという効果
がある。
According to the sixth aspect of the present invention, when the combustion air-fuel mixture is inverted to rich in order to desorb NOx corresponding to the saturation amount, the exhaust air after the catalyst with respect to the inversion of the exhaust air-fuel ratio before the catalyst is reversed. From the delay time of the reversal of the fuel ratio, it is judged whether or not the saturated amount of NOx was actually absorbed, and thus NOx
The deterioration of the NOx absorption performance of the absorption catalyst can be accurately diagnosed, and the diagnosis condition can be determined only at the first rich reversal after the start.
Depending on the conditions,
The effect of avoiding deterioration of diagnostic accuracy due to increased changes
There is.

【0026】請求項記載の発明によると、触媒温度に
よるNOx吸収量の違いに基づいて、NOx吸収性能の
劣化が誤診断されることを回避できるという効果があ
る。請求項8記載の発明によると、始動後初回のリッチ
反転時と共に、前回運転時に吸収されたNOxが溜まっ
ている可能性が少ない状態を条件とすることで、NOx
吸収性能の診断精度をより一層高くすることができると
いう効果がある。
According to the invention described in claim 7 , there is an effect that it is possible to avoid erroneous diagnosis of the deterioration of the NOx absorption performance based on the difference in the NOx absorption amount depending on the catalyst temperature.
It According to the invention as set forth in claim 8, the NOx absorbed during the previous operation is unlikely to be accumulated at the time of the first rich reversal after the start, so that the NOx is reduced.
There is an effect that the diagnostic accuracy of the absorption performance can be further enhanced.

【0027】[0027]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。図2は、実施の形態におけるエンジンのシステム
構成を示す図であり、エンジン1の吸気系には、上流側
から、吸気を浄化するエアクリーナ2,吸気量を計測す
るエアフローメータ3,吸気量をコントロールするスロ
ットルチャンバ4が取り付けられ、前記スロットルチャ
ンバ4の下流に、吸気マニホールド5とインジェクタ6
とが取り付けられる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 2 is a diagram showing a system configuration of the engine in the embodiment. The intake system of the engine 1 has an air cleaner for purifying intake air from an upstream side, an air flow meter 3 for measuring the intake amount, and an intake amount control. A throttle chamber 4 is installed, and an intake manifold 5 and an injector 6 are provided downstream of the throttle chamber 4.
And are attached.

【0028】一方、エンジン1には、エンジン1の冷却
水温度を検出する水温センサ7とエンジン1の回転数
(rpm)を検出するクランク角センサ8が取り付けら
れ、これら水温センサ7,クランク角センサ8の出力
は、前記エアフローメータ3の出力と共に、コントロー
ルモジュール9に入力される。
On the other hand, a water temperature sensor 7 for detecting the cooling water temperature of the engine 1 and a crank angle sensor 8 for detecting the number of revolutions (rpm) of the engine 1 are attached to the engine 1. These water temperature sensor 7 and crank angle sensor The output of 8 is input to the control module 9 together with the output of the air flow meter 3.

【0029】前記コントロールモジュール9では、エア
フローメータ3で検出される吸入空気量と、クランク角
センサ8で検出されるエンジン回転数とから、リーン,
ストイキ(理論空燃比)燃焼時の各基本噴射量を演算
し、更に水温センサ7で検出される水温データに応じた
燃料増量値等を前記基本噴射量に加えて最終的な燃料噴
射量を決定し、前記インジェクタ6から燃料を吸気マニ
ホールド5の各ブランチ部に噴射させる。尚、前記イン
ジェクタ6が、各気筒の燃焼室内に直接燃料を噴射する
筒内噴射式のガソリンエンジンであっても良い。
The control module 9 leans from the intake air amount detected by the air flow meter 3 and the engine speed detected by the crank angle sensor 8 to the lean,
The basic fuel injection amount during stoichiometric (fuel stoichiometric) combustion is calculated, and the final fuel injection amount is determined by adding the fuel increase value or the like according to the water temperature data detected by the water temperature sensor 7 to the basic fuel injection amount. Then, fuel is injected from the injector 6 into each branch portion of the intake manifold 5. The injector 6 may be a cylinder injection type gasoline engine that directly injects fuel into the combustion chamber of each cylinder.

【0030】エンジン1の排気通路10には、NOx吸収
性能を有するNOx吸収触媒11と、該NOx吸収触媒11
の上流側及び下流側にそれぞれ配置される上流側酸素セ
ンサ12(上流側空燃比検出手段),下流側酸素センサ13
(下流側空燃比検出手段)が取り付けられている。
In the exhaust passage 10 of the engine 1, a NOx absorption catalyst 11 having NOx absorption performance, and the NOx absorption catalyst 11
Upstream oxygen sensor 12 (upstream air-fuel ratio detecting means) and downstream oxygen sensor 13 respectively arranged on the upstream side and the downstream side of the
(Downstream air-fuel ratio detection means) is attached.

【0031】前記NOx吸収触媒11は、排気空燃比がリ
ーンであるときに排気中のNOxを吸収し、排気空燃比
が理論空燃比(ストイキ)又はリッチであるときに前記
吸収したNOxを放出(脱離)して還元処理するNOx
吸収型三元触媒であり、このNOx吸収触媒11には、触
媒温度を検出する触媒温度センサ14が取り付けられてい
る。
The NOx absorption catalyst 11 absorbs NOx in the exhaust when the exhaust air-fuel ratio is lean, and releases the absorbed NOx when the exhaust air-fuel ratio is stoichiometric or rich. NOx that is desorbed and reduced
It is an absorption type three-way catalyst, and a catalyst temperature sensor 14 for detecting the catalyst temperature is attached to the NOx absorption catalyst 11.

【0032】前記コントロールモジュール9では、エア
フローメータ3で検出される吸入空気量と、クランク角
センサ8で検出されるエンジン回転数とから、リーン燃
焼時のエンジン1からのNOx排出量を演算し、該演算
されたNOx排出量からNOx吸収触媒10に吸収された
NOxが飽和状態であることを検出した場合(NOx吸
収量推定手段)、所定期間だけ燃料増量値を前記基本噴
射量に加えることで、燃焼混合気の空燃比をリーンから
リッチに一時的に反転させて、前記吸収されたNOxの
脱離・還元処理を行わせ、NOx吸収性能を復活させる
(リッチ化手段)。更に、前記コントロールモジュール
9では、前記NOx吸収触媒11のNOx吸収性能の劣化
診断を、以下に示すようにして行う。
The control module 9 calculates the NOx emission amount from the engine 1 during lean combustion from the intake air amount detected by the air flow meter 3 and the engine speed detected by the crank angle sensor 8, When it is detected from the calculated NOx emission amount that the NOx absorbed in the NOx absorption catalyst 10 is in a saturated state (NOx absorption amount estimating means), the fuel increase value is added to the basic injection amount for a predetermined period. The air-fuel ratio of the combustion air-fuel mixture is temporarily inverted from lean to rich to perform the desorption / reduction processing of the absorbed NOx to restore the NOx absorption performance (enrichment means). Further, in the control module 9, the deterioration diagnosis of the NOx absorption performance of the NOx absorption catalyst 11 is performed as follows.

【0033】図3は、前記劣化診断を示す制御ブロック
図であり、リーン運転判定手段Aはリーン燃焼条件を判
定し、リーン燃焼条件が成立しているときには、NOx
吸収量検出手段(NOx吸収量推定手段)Bがエンジン
の運転条件からNOx吸収触媒11におけるNOx吸収量
を推定演算する。
FIG. 3 is a control block diagram showing the deterioration diagnosis . The lean operation judging means A judges the lean combustion condition, and when the lean combustion condition is satisfied, NOx is established.
The absorption amount detecting means (NOx absorption amount estimating means) B estimates and calculates the NOx absorption amount in the NOx absorption catalyst 11 from the operating condition of the engine.

【0034】そして、空燃比増量手段(リッチ化手段)
Cは、前記NOx吸収量検出手段Bで推定演算されるN
Ox吸収量が飽和量に達したときに、燃焼混合気の空燃
比をリーンからリッチに反転させて、NOx吸収触媒11
に吸収されたNOxの脱離・還元を行わせるべく燃料噴
射量を増量補正する。
Air-fuel ratio increasing means (enriching means)
C is N calculated and estimated by the NOx absorption amount detecting means B.
When the Ox absorption amount reaches the saturation amount, the air-fuel ratio of the combustion mixture is reversed from lean to rich, and the NOx absorption catalyst 11
The fuel injection amount is increased and corrected in order to desorb and reduce the absorbed NOx.

【0035】ここで、触媒後空燃比の触媒前空燃比に対
する遅れ時間検出手段(遅れ時間計測手段)Dは、前記
空燃比増量手段Cによる燃焼混合気のリッチ化によっ
て、触媒前の排気空燃比がリッチに反転したことを上流
側酸素センサ12で検出してから、下流側酸素センサ13で
検出される触媒後の排気空燃比が遅れてリッチに反転す
るまでの時間を計測する。
Here, the delay time detecting means (delay time measuring means) D for the post-catalyst air-fuel ratio with respect to the pre-catalyst air-fuel ratio is made rich by the air-fuel ratio increasing means C, whereby the exhaust air-fuel ratio before the catalyst is increased. Is measured from the upstream side oxygen sensor 12 until the exhaust air-fuel ratio after the catalyst detected by the downstream side oxygen sensor 13 is delayed and is then converted into rich state.

【0036】触媒劣化検出手段(劣化診断手段)Eは、
前記計測された遅れ時間と、触媒温度センサ14からの信
号に基づき触媒温度検出手段Fで検出された触媒温度と
に基づいて、前記NOx吸収触媒11におけるNOx吸収
性能の劣化を診断する。また、空燃比増量回数記憶手段
Gは、NOx吸収量検出手段Bにより推定されるNOx
吸収量が飽和量に達したために、空燃比増量手段Cによ
って燃焼混合気の空燃比をリーンから一時的にリッチに
反転させた回数を計数する手段であり、該空燃比増量回
数記憶手段Gによる計数結果に基づいて、劣化診断を行
う。
The catalyst deterioration detection means (deterioration diagnosis means) E is
Based on the measured delay time and the catalyst temperature detected by the catalyst temperature detecting means F based on the signal from the catalyst temperature sensor 14, the deterioration of the NOx absorption performance of the NOx absorption catalyst 11 is diagnosed. Further, the air-fuel ratio increase number storage means G has NOx estimated by the NOx absorption amount detection means B.
The air-fuel ratio increasing means C counts the number of times the air-fuel ratio of the combustion mixture is temporarily inverted from lean to rich because the absorption amount reaches the saturation amount. Deterioration diagnosis is performed based on the counting result.

【0037】図4は上記劣化診断を示すフローチャート
であり、まず、ステップ10(図中にはS10と記して
ある。以下同様)では、始動時の水温TWINTが所定
温度ITW(例えば40℃)以下であったか否かを判別す
る。尚、本実施の形態では、水温Twをエンジン温度を
代表するパラメータとして用いている。
FIG. 4 is a flow chart showing the above-mentioned deterioration diagnosis . First, in step 10 (denoted as S 10 in the figure. The same applies hereinafter), the water temperature TWINT at the time of starting is set to a predetermined value.
Determine whether it was below the temperature ITW (eg 40 ℃)
It In the present embodiment, the water temperature Tw is set to the engine temperature
It is used as a representative parameter.

【0038】始動時水温TWINTが前記所定温度IT
Wを越えていたときには、高温再始動の可能性があり、
前回の運転中に吸収されたNOxが触媒11内に溜まって
いる可能性がある。後述するように、本実施形態では、
NOxの吸収脱離を繰り返しているときに診断を行うの
ではなく、始動後に触媒11内に初めてNOxが溜まった
ときに劣化診断を行うので、前回運転時のNOxが触媒
11内に無い状態で診断を行わせた方が、より診断精度が
向上する。
The starting water temperature TWINT is the predetermined temperature IT.
If it exceeds W, there is a possibility of high temperature restart,
NOx absorbed during the previous operation accumulated in the catalyst 11.
There is a possibility that As will be described later, in this embodiment,
Make a diagnosis while repeating NOx absorption and desorption
Instead, NOx was accumulated in the catalyst 11 for the first time after starting.
Sometimes deterioration diagnosis is performed, so NOx from the previous operation is a catalyst.
It is more accurate to make a diagnosis in a state that is not within 11.
improves.

【0039】従って、始動時水温TWINTが前記所定
温度ITWを越える高温再始動時であって、前回運転時
のNOxが触媒11内に溜まっている可能性がある場合に
は、診断を行うことなくそのまま本ルーチンを終了させ
る。一方、始動時水温TWINTが前記所定温度ITW
以下であるときに、ステップ11へ進む。ステップ11
では、そのときの水温Twがリーン燃焼の条件となる水
温TWLEAN(例えば80℃)以上であるか否かを判別
する。
Therefore, the starting water temperature TWINT is the above-mentioned predetermined value.
At the time of a high temperature restart exceeding the temperature ITW and during the previous operation
If there is a possibility that NOx of
Terminates this routine without diagnosis.
It On the other hand, the starting water temperature TWINT is equal to the predetermined temperature ITW.
When it is the following, go to step 11. Step 11
Then, it is determined whether or not the water temperature Tw at that time is equal to or higher than the water temperature TWLEAN (for example, 80 ° C.) that is a condition for lean combustion.

【0040】ステップ11で、Tw≧TWLEANであ
ると判別されたときには、リーン燃焼での運転が可能な
状態と判断してステップ12へ進むが、Tw<TWLE
ANであるときには、そのまま本ルーチンを終了させ
る。ステップ12では、エンジン回転数と吸入空気量と
から求められるエンジン負荷条件がリーン燃焼条件であ
るときに1がセットされるリーン燃焼フラグFLEAN
を判別し、前記フラグFLEANが1であればステップ
13へ進む。
When it is judged at step 11 that Tw≥TWLEAN, it is judged that the lean combustion operation is possible and the routine proceeds to step 12 , where Tw <TWLE.
When it is AN, this routine is finished as it is. In step 12 , the lean combustion flag FLEAN is set to 1 when the engine load condition obtained from the engine speed and the intake air amount is the lean combustion condition.
And if the flag FLEAN is 1, step
Proceed to 13 .

【0041】一方、前記フラグFLEANが0であっ
て、エンジン負荷条件がリーン燃焼条件でないときに
は、本ルーチンを終了させる。上記ステップ11,12
の部分がリーン運転判定手段Aに相当する。ステップ
(NOx吸収量検出手段B)では、エンジン回転数と
吸入空気量とから求められるエンジン負荷条件にてエン
ジンから排出されるNOx量を演算し、該NOx量の積
算値として求めたNOx吸収触媒11におけるNOx吸収
量NOXADPと、飽和量NOXMAXとを比較する。
On the other hand, when the flag FLEAN is 0 and the engine load condition is not the lean combustion condition, this routine is ended. Steps 11 and 12 above
This portion corresponds to lean operation determination means A. Step 1
3 (NOx absorption amount detecting means B) calculates the NOx amount discharged from the engine under the engine load condition obtained from the engine speed and the intake air amount, and the NOx absorption catalyst obtained as an integrated value of the NOx amount. The NOx absorption amount NOXADP in 11 and the saturation amount NOXMAX are compared.

【0042】そして、NOx吸収量NOXADPが飽和
量NOXMAX以上になっているときには、ステップ
(空燃比増量手段C)へ進み、NOx吸収触媒11内の
雰囲気を還元雰囲気にして、吸収されているNOxの脱
離・還元を行わせるべく、空燃比増量係数KRSによる
噴射量の増量補正を行って、燃焼混合気の空燃比をリー
ンからリッチに一時的に反転させるようにする。
When the NOx absorption amount NOXADP is equal to or more than the saturation amount NOXMAX, step 1
4 (air-fuel ratio increasing means C), the atmosphere in the NOx absorption catalyst 11 is made into a reducing atmosphere, and the injection amount increase correction by the air-fuel ratio increasing coefficient KRS in order to desorb and reduce the absorbed NOx. Then, the air-fuel ratio of the combustion mixture is temporarily reversed from lean to rich.

【0043】NOx吸収量NOXADPが飽和量NOX
MAXに達していないときには、ステップ12へ戻っ
て、リーン燃焼条件の判別と、NOx吸収量の積算とを
繰り返す。ステップ15では、前記ステップ14におけ
る増量補正を実行したのが、始動後初めてであるか否か
を判別するために、前記増量補正の始動からの回数を計
数する回数フラグRSCNTを参照する(空燃比増量回
数記憶手段G)。
NOx absorption amount NOXADP is saturated amount NOX
When it has not reached MAX, the routine returns to step 12 to repeat the lean combustion condition determination and the NOx absorption amount integration. In step 15, go to step 14
Whether it is the first time after the start that the increase correction is performed.
In order to determine the
Refer to the count flag RSCNT for counting (air-fuel ratio increase count
Number storage means G).

【0044】そして、前記フラグRSCNTが1であっ
て、始動後初回の増量補正時であるときには、ステップ
16へ進むが、前記フラグRSCNTが0であって増量
補正が2回目以降であることを示す場合には、診断を行
うことなくそのまま本ルーチンを終了させる。
The flag RSCNT is 1
If it is the time of the first increase correction after starting,
16, but the flag RSCNT is 0 and the amount is increased.
If the correction indicates that it is the second time or later, make a diagnosis.
This routine is ended without any action.

【0045】NOx吸収触媒11においてNOxの吸収,
脱離を繰り返しているときには、触媒温度が高温から低
温に移行してNOx吸収量が減少変化することがあり、
このように、触媒温度が高温から低温に移行すると、低
温から高温に移行する場合よりもNOxの脱離量が多く
なって、前記遅れ時間TFRとしてより長い時間が計測
されることになり、前記遅れ時間TFRに基づく劣化診
断の精度が低下する。
Absorption of NOx in the NOx absorption catalyst 11,
When desorption is repeated, the catalyst temperature changes from high to low.
The amount of NOx absorbed may change when the temperature changes to
Thus, when the catalyst temperature shifts from high temperature to low temperature,
More desorption of NOx than when changing from high temperature to high temperature
Therefore, a longer time is measured as the delay time TFR.
The deterioration diagnosis based on the delay time TFR is performed.
The disconnection accuracy decreases.

【0046】そこで、始動後初回の増量補正(脱離)時
に計測された遅れ時間TFRのみに基づいて劣化診断を
行わせる構成とすることで、触媒温度が高温から低温に
移行するときに計測された遅れ時間TFRに基づく診断
を間接的に禁止し、前記遅れ時間TFRに基づく診断の
精度を向上させる。
Therefore, at the first increase correction (desorption) after the start
Deterioration diagnosis based only on the delay time TFR measured in
The catalyst temperature can be changed from high temperature to low temperature
Diagnosis based on the delay time TFR measured at the time of transition
Of the diagnosis based on the delay time TFR.
Improve accuracy.

【0047】ステップ16(触媒後空燃比の触媒前空燃
比に対する遅れ時間検出手段D)では、前記空燃比増量
係数KRSによって燃焼混合気の空燃比をリッチに反転
させたときに、上流側酸素センサ12でリッチへの反転が
検出されてから、下流側酸素センサ13でリッチへの反転
が検出されるまでの遅れ時間TFRを計測する(図5参
照)。
In step 16 (delay time detecting means D of the post-catalyst air-fuel ratio with respect to the pre-catalyst air-fuel ratio), when the air-fuel ratio of the combustion mixture is inverted to rich by the air-fuel ratio increasing coefficient KRS, the upstream oxygen sensor The delay time TFR from when the reversal to rich is detected at 12 to when the reversal to rich is detected at the downstream oxygen sensor 13 is measured (see FIG. 5).

【0048】触媒上流側の排気空燃比がリッチに反転し
てNOx吸収触媒11においてNOxの脱離・還元の開始
されると、NOxの脱離と同時に脱離する酸素O2によ
って触媒下流の空燃比がストイキ近傍に保持され、NO
xの脱離が完了してから触媒下流側の排気空燃比が上流
側と同等にリッチに反転することになり、かかる触媒前
に対する触媒後のリッチ反転の遅れ時間は、図6に示す
ように、NOx吸収触媒11における実際のNOx吸収量
に相関する。
[0048] When the exhaust air-fuel ratio upstream of the catalyst is initiated release and reduction of NOx in the NOx absorbent catalyst 11 is inverted to the rich, the oxygen O 2 which leaves at the same time leaving the the NOx catalyst downstream air The fuel ratio is maintained near stoichiometry and NO
After the desorption of x is completed, the exhaust air-fuel ratio on the downstream side of the catalyst will be inverted to the same rich level as on the upstream side, and the delay time of such rich inversion after the catalyst with respect to before the catalyst is as shown in FIG. , NOx absorption catalyst 11 is correlated with the actual NOx absorption amount.

【0049】本実施の形態の場合、NOx吸収量が所定
の飽和量に達していると推定されるときに、空燃比をリ
ッチ化させているから、NOx吸収触媒11の初期状態で
は、前記飽和量に見合った遅れ時間を要するはずであ
り、前記遅れ時間が初期状態よりも短くなった場合に
は、NOx吸収性能の劣化によって、実際に吸収できる
NOx量が減少しているものと推定できる。
In the case of the present embodiment, the air-fuel ratio is made rich when it is estimated that the NOx absorption amount has reached the predetermined saturation amount. Therefore, in the initial state of the NOx absorption catalyst 11, the saturation is achieved. A delay time commensurate with the amount should be required, and when the delay time becomes shorter than that in the initial state, it can be estimated that the NOx amount that can actually be absorbed has decreased due to deterioration of the NOx absorption performance.

【0050】尚、三元触媒では、酸素ストレージ効果に
よりHC,COとO2とが結び付き転化するため、図5
に示したように、触媒下流の空燃比は触媒内のO2が消
費されるまで一時的に略ストイキ近傍となるが、その時
間は、NOx吸収触媒に比べて極端に短い。これは、N
Ox吸収性能がない通常の三元触媒の特質であり、仮
に、本実施の形態と同様に遅れ時間を計測しても、これ
は触媒の三元性能を示すに過ぎない。
In the three-way catalyst, HC, CO, and O 2 are bound and converted by the oxygen storage effect, and therefore, as shown in FIG.
As shown in, the air-fuel ratio downstream of the catalyst temporarily becomes substantially stoichiometric until O 2 in the catalyst is consumed, but the time is extremely shorter than that of the NOx absorption catalyst. This is N
This is a characteristic of an ordinary three-way catalyst having no Ox absorption performance, and even if the delay time is measured as in the present embodiment, this only shows the three-way performance of the catalyst.

【0051】ステップ17(触媒温度検出手段F)で
は、NOx吸収触媒11の温度TCATを、触媒温度セン
サ14からの検出信号に基づいて検出する。尚、触媒温度
センサ14を備えない場合には、エンジン回転数と負荷条
件とから触媒11の温度を推定する構成であっても良い。
ステップ18では、図7に示すように、前記遅れ時間T
FRと触媒温度とに応じて、NOx吸収性能の劣化度合
いを予め記憶した劣化マップMAPEAKを参照し、ス
テップ19(触媒劣化検出手段E)では、実際の遅れ時
間TFR,触媒温度TCATに対応する劣化度合いNR
EKを検索する。
In step 17 (catalyst temperature detecting means F), the temperature TCAT of the NOx absorption catalyst 11 is detected based on the detection signal from the catalyst temperature sensor 14. When the catalyst temperature sensor 14 is not provided, the temperature of the catalyst 11 may be estimated from the engine speed and the load condition.
In step 18, as shown in FIG. 7, the delay time T
The deterioration map MAPEAK in which the degree of deterioration of the NOx absorption performance is stored in advance according to the FR and the catalyst temperature is referred to, and in step 19 (catalyst deterioration detection means E), deterioration corresponding to the actual delay time TFR and the catalyst temperature TCAT is performed. Degree NR
Search for EK.

【0052】NOx吸収触媒11におけるNOx吸収量
は、触媒温度に影響され、図8に示すように、触媒温度
が高過ぎても低下し、また、低過ぎても低下する。従っ
て、触媒温度とは無関係に劣化診断を行うと、触媒温度
が例えば低いためにNOx吸収量が低下し、これによっ
て、前記遅れ時間TFRが短くなった場合に、これを、
NOx吸収性能の劣化によるものとして誤診断する可能
性がある。そこで、図7に示すように、前記遅れ時間T
RFと触媒温度とからNOx吸収性能の劣化度合いを診
断するようにして、触媒温度によるNOx吸収性能のば
らつきを加味して劣化を診断できるようにしてある。
The NOx absorption amount in the NOx absorption catalyst 11 is influenced by the catalyst temperature, and as shown in FIG. 8, it decreases when the catalyst temperature is too high or too low. Therefore, when the deterioration diagnosis is performed irrespective of the catalyst temperature, the NOx absorption amount decreases because the catalyst temperature is low, for example, and when the delay time TFR becomes short,
There is a possibility of erroneous diagnosis due to deterioration of NOx absorption performance. Therefore, as shown in FIG. 7, the delay time T
The degree of deterioration of the NOx absorption performance is diagnosed from the RF and the catalyst temperature, and the deterioration can be diagnosed by taking into consideration the dispersion of the NOx absorption performance depending on the catalyst temperature.

【0053】尚、前記診断されたNOx吸収性能の劣化
度合いを整備情報として記憶させ、また、NOx吸収触
媒11の劣化度合いが許容レベル以上になった場合には、
触媒劣化を示す警告灯を点灯させたり、リーン燃焼を禁
止するなどの処置を施すようにすることができる。ま
た、NOx吸収性能の劣化度合いに応じて、飽和量を修
正して、空燃比をリッチ反転させてNOxの脱離・還元
を行わせるタイミングを、劣化が進むにつれて早めるよ
うにしても良い。
The diagnosed degree of deterioration of NOx absorption performance is stored as maintenance information, and when the degree of deterioration of the NOx absorption catalyst 11 exceeds an allowable level,
It is possible to take measures such as turning on a warning light indicating catalyst deterioration and prohibiting lean combustion. In addition, the saturation amount may be modified according to the degree of deterioration of the NOx absorption performance, and the timing at which the air-fuel ratio is richly inverted to desorb and reduce NOx may be advanced as the deterioration progresses .

【0054】上記実施の形態では、NOx吸収量が飽和
量に達していると推定されるときに空燃比をリッチ化さ
せ、このときの触媒前後における空燃比変化の位相差に
基づいて触媒11のNOx吸収性能の劣化を診断させる構
成としたが、劣化診断においては、必ずしも飽和量まで
NOxを吸収させる必要はなく、リーン燃焼からリッチ
に反転させる直前までのNOx吸収量の推定値と、触媒
後の空燃比反転の遅れ時間とから、NOx吸収性能の劣
化を診断させることができる。
In the above embodiment , the air-fuel ratio is made rich when it is estimated that the NOx absorption amount has reached the saturation amount, and the catalyst 11 of the catalyst 11 is based on the phase difference of the air-fuel ratio change before and after the catalyst at this time. Although the deterioration of the NOx absorption performance is diagnosed, in the deterioration diagnosis, it is not always necessary to absorb the NOx up to the saturation amount, and the estimated value of the NOx absorption amount immediately before the lean combustion to the rich reversal and the post-catalyst The deterioration of the NOx absorption performance can be diagnosed from the delay time of the air-fuel ratio reversal.

【0055】また、上記実施の形態では、触媒上流側の
排気空燃比がリッチに反転してから、触媒下流側の排気
空燃比がリッチに反転するまでの時間を遅れ時間として
計測させたが、燃料噴射量の増量時点から触媒下流側の
排気空燃比がリッチに反転するまでの時間を遅れ時間と
して計測させる構成であっても良い。
In the above embodiment, the delay time is measured from the time when the exhaust air-fuel ratio on the upstream side of the catalyst reverses to rich to the time when the exhaust air-fuel ratio on the downstream side of the catalyst changes to rich. The delay time may be measured from the time when the fuel injection amount is increased until the exhaust air-fuel ratio on the downstream side of the catalyst is reversed to rich.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項記載の発明に係る触媒劣化診断装置の
構成ブロック図。
FIG. 1 is a configuration block diagram of a catalyst deterioration diagnosing device according to a sixth aspect of the invention.

【図2】実施の形態におけるエンジンのシステム構成
図。
FIG. 2 is a system configuration diagram of an engine according to the embodiment.

【図3】劣化診断の実施形態を示す制御ブロック図。FIG. 3 is a control block diagram showing an embodiment of deterioration diagnosis.

【図4】劣化診断の実施形態を示すフローチャート。FIG. 4 is a flowchart showing an embodiment of deterioration diagnosis.

【図5】NOx脱離時における触媒前後の空燃比変化を
示すタイムチャート。
FIG. 5 is a time chart showing changes in the air-fuel ratio before and after the catalyst during NOx desorption.

【図6】触媒前に対する触媒後の空燃比変化の遅れ時間
とNOx吸収量との相関を示す線図。
FIG. 6 is a graph showing the correlation between the delay time of the air-fuel ratio change after the catalyst compared to before the catalyst and the NOx absorption amount.

【図7】触媒温度と遅れ時間とに応じて劣化度合いを記
憶したマップを示す線図。
FIG. 7 is a diagram showing a map in which a degree of deterioration is stored according to a catalyst temperature and a delay time.

【図8】触媒温度とNOx吸収量との相関を示す線図。FIG. 8 is a diagram showing a correlation between catalyst temperature and NOx absorption amount.

【符号の説明】[Explanation of symbols]

1…エンジン 2…エアクリーナ 3…エアフローメータ 4…スロットルチャンバ 5…吸気マニホールド 6…燃料噴射弁 7…水温センサ 8…クランク角センサ 9…コントロールモジュール 10…排気通路 11…NOx吸収触媒 12…上流側酸素センサ 13…下流側酸素センサ 14…触媒温度センサ 1 ... engine 2 ... Air cleaner 3 ... Air flow meter 4 ... Throttle chamber 5 ... Intake manifold 6 ... Fuel injection valve 7 ... Water temperature sensor 8 ... Crank angle sensor 9 ... Control module 10 ... Exhaust passage 11 ... NOx absorption catalyst 12 ... upstream oxygen sensor 13 ... Downstream oxygen sensor 14 ... Catalyst temperature sensor

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−260948(JP,A) 特開 平8−260949(JP,A) 特開 平6−200737(JP,A) 特開 平10−121944(JP,A) 特開 平5−195759(JP,A) (58)調査した分野(Int.Cl.7,DB名) F01N 3/08 - 3/36 F02D 41/04 F02D 41/14 F02D 45/00 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-8-260948 (JP, A) JP-A-8-260949 (JP, A) JP-A-6-200737 (JP, A) JP-A-10- 121944 (JP, A) JP-A-5-195759 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F01N 3/08-3/36 F02D 41/04 F02D 41/14 F02D 45/00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】排気空燃比が理論空燃比よりもリーンであ
るときに排気中のNOxを吸収し、排気空燃比が理論空
燃比又は理論空燃比よりもリッチであるときに前記吸収
したNOxを放出して還元処理するNOx吸収触媒を備
え、理論空燃比よりもリーン空燃比での燃焼運転を行い
うるエンジンの触媒劣化診断装置であって、 リーン燃焼中に前記NOx吸収触媒に対するNOx吸収
量を推定すると共に、前記NOx吸収触媒前の排気空燃
比のリーンからリッチへの反転に対して前記NOx吸収
触媒後の排気空燃比がリーンからリッチに反転するまで
の遅れ時間を計測し、前記NOx吸収量の推定値と前記
遅れ時間との相関から前記NOx吸収触媒におけるNO
x吸収性能の劣化を診断する構成とし、かつ、前記遅れ
時間に基づく劣化診断を、始動後初回のリッチ反転時に
計測された遅れ時間のみに基づいて行うことを特徴とす
るエンジンの触媒劣化診断装置。
1. When the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio, NOx in the exhaust gas is absorbed, and when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio or richer than the stoichiometric air-fuel ratio, the absorbed NOx is absorbed. A catalyst deterioration diagnosing device for an engine, comprising a NOx absorption catalyst for releasing and performing reduction processing, capable of performing a combustion operation at a lean air-fuel ratio rather than a stoichiometric air-fuel ratio, wherein the NOx absorption amount for the NOx absorption catalyst during lean combustion is In addition to estimating, the delay time until the exhaust air-fuel ratio after the NOx absorption catalyst changes from lean to rich is measured with respect to the change from the lean air to the rich exhaust air fuel ratio before the NOx absorption catalyst, and the NOx absorption From the correlation between the estimated value of the amount and the delay time, NO in the NOx absorption catalyst
x A structure for diagnosing deterioration of absorption performance , and the delay
Deterioration diagnosis based on time is performed at the first rich reversal after starting.
An engine catalyst deterioration diagnosing device characterized by performing only on the basis of the measured delay time .
【請求項2】排気空燃比が理論空燃比よりもリーンであ
るときに排気中のNOxを吸収し、排気空燃比が理論空
燃比又は理論空燃比よりもリッチであるときに前記吸収
したNOxを放出して還元処理するNOx吸収触媒を備
え、理論空燃比よりもリーン空燃比での燃焼運転を行い
うるエンジンの触媒劣化診断装置であって、 前記NOx吸収触媒に吸収されたNOxを還元処理すべ
く燃焼混合気の空燃比をリーンからリッチに一時的に反
転させたときに、前記NOx吸収触媒の下流側の排気空
燃比の応答遅れ時間を計測し、該遅れ時間に基づいて前
記NOx吸収触媒におけるNOx吸収性能の劣化を診断
する構成とし、かつ、前記遅れ時間に基づく劣化診断
を、始動後初回のリッチ反転時に計測された遅れ時間の
みに基づいて行うことを特徴とするエンジンの触媒劣化
診断装置。
2. When the exhaust air-fuel ratio is leaner than the theoretical air-fuel ratio, NOx in the exhaust gas is absorbed, and when the exhaust air-fuel ratio is the theoretical air-fuel ratio or is richer than the theoretical air-fuel ratio, the absorbed NOx is absorbed. A catalyst deterioration diagnosing device for an engine, comprising a NOx absorption catalyst for releasing and reducing the NOx absorption catalyst, capable of performing a combustion operation at a lean air-fuel ratio rather than a stoichiometric air-fuel ratio, wherein NOx absorbed by the NOx absorption catalyst is reduced. Therefore, when the air-fuel ratio of the combustion air-fuel mixture is temporarily inverted from lean to rich, the response delay time of the exhaust air-fuel ratio on the downstream side of the NOx absorption catalyst is measured, and the NOx absorption catalyst is based on the delay time. And a deterioration diagnosis based on the delay time.
Of the delay time measured at the first rich reversal after starting
An engine catalyst deterioration diagnosing device characterized in that it is carried out based only on the above .
【請求項3】前記NOx吸収触媒におけるNOx吸収量
を推定し、該推定されるNOx吸収量が飽和量に達して
いるときに、燃焼混合気の空燃比をリーンからリッチに
一時的に反転させることを特徴とする請求項2記載のエ
ンジンの触媒劣化診断装置。
3. An NOx absorption amount in the NOx absorption catalyst is estimated, and when the estimated NOx absorption amount reaches a saturation amount, the air-fuel ratio of the combustion mixture is temporarily inverted from lean to rich. The catalyst deterioration diagnosis device for an engine according to claim 2, wherein
【請求項4】前記遅れ時間と前記NOx吸収触媒の温度
とに基づいてNOx吸収性能の劣化を診断することを特
徴とする請求項1〜3のいずれか1つに記載のエンジン
の触媒劣化診断装置。
4. The engine catalyst deterioration diagnosis according to claim 1, wherein deterioration of NOx absorption performance is diagnosed based on the delay time and the temperature of the NOx absorption catalyst. apparatus.
【請求項5】前記遅れ時間に基づく劣化診断を、始動時
のエンジン温度が所定温度以下であったときに行わせる
ことを特徴とする請求項1〜4のいずれか1つに記載の
エンジンの触媒劣化診断装置。
5. A degradation diagnosis based on the delay time, the engine according to any one of claims 1 to 4, characterized in that to perform when the engine temperature at the start was equal to or lower than the predetermined temperature Catalyst deterioration diagnosis device.
【請求項6】排気空燃比が理論空燃比よりもリーンであ
るときに排気中のNOxを吸収し、排気空燃比が理論空
燃比又は理論空燃比よりもリッチであるときに前記吸収
したNOxを放出して還元処理するNOx吸収触媒を備
え、理論空燃比よりもリーン空燃比での燃焼運転を行い
うるエンジンの触媒劣化診断装置であって、 リーン燃焼中に前記NOx吸収触媒におけるNOx吸収
量を推定するNOx吸収量推定手段と、 該NOx吸収量推定手段で推定されたNOx吸収量が飽
和量に達していると判断したときに、燃焼混合気をリー
ンからリッチに一時的に反転させるリッチ化手段と、 前記NOx吸収触媒の上流側で排気空燃比を検出する上
流側空燃比検出手段と、 前記NOx吸収触媒の下流側で排気空燃比を検出する下
流側空燃比検出手段と、 前記リッチ化手段により燃焼混合気の空燃比をリッチに
反転させたときに、前記上流側空燃比検出手段による排
気空燃比のリーンからリッチへの反転検出から、前記下
流側空燃比検出手段による排気空燃比のリーンからリッ
チへの反転検出までの遅れ時間を計測する遅れ時間計測
手段と、前記リッチ化手段による始動後初回のリッチ反転時に前
記遅れ時間計測手段で計測された前記遅れ時間のみに基
づいて、 前記NOx吸収触媒におけるNOx吸収性能の
劣化を診断する劣化診断手段と、 を含んで構成されたことを特徴とするエンジンの触媒劣
化診断装置。
6. When the exhaust air-fuel ratio is leaner than the stoichiometric air-fuel ratio, NOx in the exhaust gas is absorbed, and when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio or is richer than the stoichiometric air-fuel ratio, the absorbed NOx is absorbed. A catalyst deterioration diagnosing device for an engine, comprising a NOx absorption catalyst for releasing and performing reduction processing, capable of performing a combustion operation at a lean air-fuel ratio rather than a stoichiometric air-fuel ratio, wherein the NOx absorption amount in the NOx absorption catalyst during lean combustion is A NOx absorption amount estimating means for estimating and a rich conversion for temporarily inverting the combustion mixture from lean to rich when it is determined that the NOx absorption amount estimated by the NOx absorption amount estimating means has reached the saturation amount. Means, an upstream air-fuel ratio detecting means for detecting an exhaust air-fuel ratio on the upstream side of the NOx absorption catalyst, and a downstream side air-fuel ratio detecting means for detecting an exhaust air-fuel ratio on the downstream side of the NOx absorption catalyst. And, when the air-fuel ratio of the combustion mixture is inverted to rich by the enriching means, from the lean-to-rich inversion detection of the exhaust air-fuel ratio by the upstream side air-fuel ratio detecting means, the downstream side air-fuel ratio detecting means Delay time measuring means for measuring the delay time from detection of lean to rich reversal of the exhaust air-fuel ratio by means of, and before the first rich reversal after starting by the enriching means.
Based on only the delay time measured by the delay time measuring means
Zui, the catalyst deterioration diagnosis system for an engine, characterized in that said the deterioration diagnosis means for diagnosing the deterioration of the NOx absorbing capacity of the NOx absorbent catalyst, which is configured to include.
【請求項7】前記NOx吸収触媒の温度を検出する触媒
温度検出手段を備え、前記劣化診断手段が、前記遅れ時
間と前記検出されたNOx吸収触媒の温度とに基づい
て、NOx吸収性能の劣化を診断することを特徴とする
請求項記載のエンジンの触媒劣化診断装置。
7. A catalyst temperature detection means for detecting the temperature of the NOx absorption catalyst, wherein the deterioration diagnosis means deteriorates the NOx absorption performance based on the delay time and the detected temperature of the NOx absorption catalyst. 7. The engine catalyst deterioration diagnosing device according to claim 6 , wherein the engine deterioration is diagnosed.
【請求項8】前記劣化診断手段が、始動時のエンジン温
度が所定温度以下であったときに劣化診断を行うことを
特徴とする請求項6又は7記載のエンジンの触媒劣化診
断装置。
8. A catalyst deterioration diagnosing device for an engine according to claim 6 or 7 , wherein said deterioration diagnosing means carries out the deterioration diagnosis when the engine temperature at the time of starting is lower than a predetermined temperature.
JP22366597A 1997-08-20 1997-08-20 Engine catalyst deterioration diagnosis device Expired - Lifetime JP3520730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22366597A JP3520730B2 (en) 1997-08-20 1997-08-20 Engine catalyst deterioration diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22366597A JP3520730B2 (en) 1997-08-20 1997-08-20 Engine catalyst deterioration diagnosis device

Publications (2)

Publication Number Publication Date
JPH1162562A JPH1162562A (en) 1999-03-05
JP3520730B2 true JP3520730B2 (en) 2004-04-19

Family

ID=16801740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22366597A Expired - Lifetime JP3520730B2 (en) 1997-08-20 1997-08-20 Engine catalyst deterioration diagnosis device

Country Status (1)

Country Link
JP (1) JP3520730B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354068B2 (en) 2000-02-02 2009-10-28 本田技研工業株式会社 Air-fuel ratio control device for exhaust gas of internal combustion engine
KR100482553B1 (en) * 2001-12-27 2005-04-14 현대자동차주식회사 Emission system monitoring method of vehicle
KR100928538B1 (en) 2002-12-23 2009-11-26 주식회사 포스코 Oxygen Plant Absorber MS Gel Diagnosis Device
US7121080B2 (en) 2003-09-08 2006-10-17 Ford Global Technologies, Llc Computer readable storage medium with instructions for monitoring catalytic device
US8647583B2 (en) 2010-04-14 2014-02-11 Toyota Jidosha Kabushiki Kaisha Electric heating type catalyst and a method for manufacturing the same
EP2716899B1 (en) * 2011-05-24 2018-04-04 Toyota Jidosha Kabushiki Kaisha Sensor characteristic correction device

Also Published As

Publication number Publication date
JPH1162562A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JP3649034B2 (en) Engine exhaust purification system
JP3873904B2 (en) Exhaust gas purification device for internal combustion engine
JP3456401B2 (en) Exhaust gas purification device for internal combustion engine
US7162860B2 (en) Diagnosis system of exhaust aftertreatment apparatus for internal combustion engine
JP4497132B2 (en) Catalyst degradation detector
JP2000265885A (en) Engine exhaust emission control device
JP2010185325A (en) DETERIORATION DIAGNOSIS DEVICE FOR NOx CATALYST
JP2002070625A (en) Deterioration detecting device for exhaust gas purifying catalyst
JP3997599B2 (en) Air-fuel ratio control device for internal combustion engine
JP3693855B2 (en) Air-fuel ratio control device for internal combustion engine
CN108884774B (en) Catalyst diagnosis device
JP3618598B2 (en) Exhaust gas purification device for internal combustion engine
JP4637213B2 (en) Catalyst deterioration judgment device
WO2008020287A2 (en) Catalyst monitoring system and method
JPH07305644A (en) Air-fuel ratio controller of internal combustion engine
KR20010076267A (en) Exhaust cleaning device of an engine
JP3520730B2 (en) Engine catalyst deterioration diagnosis device
US20020007627A1 (en) Exhaust emission control system for internal combustion engine
JP4693896B2 (en) Internal combustion engine control device
JP3528698B2 (en) Fuel sulfur concentration estimation device
JP2962127B2 (en) Control device for internal combustion engine
JP4389141B2 (en) Exhaust gas purification device for internal combustion engine
JP3409699B2 (en) Apparatus and method for diagnosing deterioration of HC adsorbent in internal combustion engine
JP4411755B2 (en) Exhaust purification catalyst deterioration state diagnosis device
JP4144405B2 (en) Deterioration judgment device for exhaust aftertreatment device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140213

Year of fee payment: 10

EXPY Cancellation because of completion of term