JP3492135B2 - Heat flux meter - Google Patents
Heat flux meterInfo
- Publication number
- JP3492135B2 JP3492135B2 JP02889797A JP2889797A JP3492135B2 JP 3492135 B2 JP3492135 B2 JP 3492135B2 JP 02889797 A JP02889797 A JP 02889797A JP 2889797 A JP2889797 A JP 2889797A JP 3492135 B2 JP3492135 B2 JP 3492135B2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- heat
- receiving surface
- heat receiving
- outer frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Description
【発明の詳細な説明】
【0001】
【発明に属する技術分野】本発明は事業用、産業用のボ
イラ、加熱炉等の火炉内熱流束計に関する。
【0002】
【従来の技術】従来の熱流束計を図5〜図8により説明
する。
【0003】図5にて、基端閉の筒形の側筒01の前端
部は径の大きい段差になっており、受熱板02が挿入さ
れ、溶接fされている。また基端中央には穴があり、内
管06が挿入され、溶接fされている。さらに基端周面
には溝があり、外管04が挿入され、溶接fされてい
る。
【0004】内管06と外管04間に、側筒01の基端
面と所定の距離をあけて、中管05が同軸に配置されて
いる。
【0005】受熱板02は、熱抵抗が大きく、温度差が
えられるよう、熱伝導率の小さいクロメル製である。ま
た側筒01は、冷却効果を高め、受熱面中央との温度差
を大きくするため、熱伝導率の大きいアルメル製であ
る。
【0006】内管06内には2芯線(アルメル03a−
アルメル03b)のシース管07が通される。そして、
受熱板02の中央と、内管06近くの基端部に小穴があ
けられ、芯線がそれぞれ通され、溶接されている。受熱
板02と基端部とのメンテナンス空間aは受熱板02や
芯線の溶接に必要不可欠である。冷却水は外管04と中
管05間から導入され、中管05と内管06間からリタ
ーンする。図6に回路図を示す。
【0007】受熱板02(クロメル材)と、芯線アルメ
ル03aとの溶接により、温度接点bの起電力が発生
し、側筒01(アルメル材)と芯線アルメル03bの溶
接により受熱板02周囲と側筒01の溶接部に温度接点
cの起電力が発生する。図の様にアルメル線、同志で電
圧08を計測すれば熱電対の差動式が成立し、受熱板0
2の中央部の温度と受熱板周囲の温度との差、すなわち
温度差の起電力が発生することになる。
【0008】上記の起電力を計測しても、ボイラ等の熱
流束を直接求めることは出来ない為、起電力と熱量の検
定が必要となる。図7は、検定する場合の概略図を表し
ている。検定は一般に黒体炉31を用いる。耐火材33
とヒータ32からなり、小さな空洞が設けられている。
その空洞部に熱流計30を挿入して熱量と電圧08の関
係を得ることができる。熱量は以下のふく射量の計算式
で求められる。
Q=4.88×10-8*ε1 *ε2 (TW 4 −TH 4 ) Kcal/m2 h
ここに、
ε1 :炉壁面からの放射率(黒体炉でありε1 =1)
ε2 :熱流計受熱面010の吸収率(通常ε2 ≒1とな
るように面に黒体塗料等を塗布する)
TW :炉壁面の絶体温度(°K)
TH :受熱板の絶体温度(°K)(通常無視出来る)
4.88×10-8:ステファンボルツマン常数(Kca
l/m2 h°K)
すなわち、黒体炉31の炉壁面の温度と、熱流計30の
電圧08を求めることによって、図8に示す様な、縦軸
熱量、横軸電圧にて検定カーブを得ることが出来る。こ
の検定カーブから実際の加熱炉、ボイラ等の熱流束を求
めることが可能となる。
【0009】
【発明が解決しようとする課題】上記従来の熱流束計の
エレメント部は、構造上及び製作面で下記の問題点があ
った。
受熱板と側筒の溶接において異種金属同志の結合で
あり、熱膨張率が違うため、特に受熱板部で溶接後の冷
却時にクラックが発生し、製作上、歩止まりが悪い。
受熱板及び側筒に起電力を得るため、芯線を穴に挿
入して溶接するが、余りに芯線が細いため溶接不良が発
生する場合もある。
内管と側筒も通常は同様、異種金属の溶接となる
ため、不完全結合となり冷却水の濃洩(極小である
が)、引いては芯線同志に絶縁不良が発生する。
従来のエレメントの構造上、熱電対に用いる材質を
選択すれば、熱流束に対する起電力値を大きく得るため
にも受熱板は熱伝導率が小さいクロメル、側筒は受熱面
の表面温度を小さくするため、熱伝導率が大きいアルメ
ルが通常最適である。しかし、従来の様な構造では、ア
ルメル棒、クロメル棒を加工するため、原材料を特注す
る必要がある。(国外、国内のメーカでも入手が困難)
熱流束計を実際のボイラ等にて挿入して、熱流束を
計測する場合、炉壁面に受熱板をきっちり合せることは
むずかしく、従って余分に炉内に挿入するのが通常であ
るが、側筒の周囲(側面)から熱流束を受け、起電力値
に若干の誤差を発生させる。
メンテナンス空間に若干の水分(受熱板と側筒の溶
接不良から空気が出入りして空気中の水分がいたづらす
るときもある)があれば、絶縁不良の原因となる。
【0010】本発明は上記問題点を解決することを課題
とする。
【0011】
【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
【0012】先端面閉で先端面より小径の筒形の受熱面
筒と、基端閉の筒形で基端に上記受熱面筒の外径に同じ
径の穴を持つとともに内径が同受熱面筒の先端面の外径
に同じ外枠管と、上記受熱面筒の基端につながれる内管
と、上記外枠管の基端につながれる外管と、上記内管お
よび外管間に配置される中管と、上記受熱面筒の先端面
中央に穴をあけ先端部が挿入されるとともに固着される
シース管型の第1の熱電対と、上記受熱面筒の側面に径
方向の穴をあけ先端部が挿入されるとともに固着される
シース管型の第2の熱電対とを有し、上記受熱面筒は外
枠管内に挿入され、かつ同受熱面筒、外枠管および上記
シース管は同一材料製である。
【0013】以上において、先端部が計測対象の火炉内
に挿入される。そして、外管と中管間に冷却水が導入さ
れ、先端部で中管と内管間からリターンされる。すると
受熱面筒の先端面は熱負荷を直接受けるため、高い温度
になり、その側面は外枠管で熱遮へいされるとともに基
端部は冷却されるので大きい温度傾斜がえられる。これ
らは第1の熱電対と第2の熱電対により検出され、火炉
内の熱流束が算出される。
【0014】このようにして、構成が簡単であるので小
型化できる。受熱面筒、外枠管およびシース管が同一材
料であるため、固着性がよく、かつそれぞれの固着部の
熱応力が減少し、接続部の耐久性が大幅に向上する。
【0015】
【発明の実施の形態】本発明の実施の一形態を図1〜図
4により説明する。
【0016】図1と図2にて、受熱面筒2は先端面閉
で、筒部は先端面より小径の筒形になっている。また基
端部は外周面が削られている。外枠管3は基端閉の筒形
で、内径が受熱面筒2の先端面の外形と同一であり、基
端面に受熱面筒2の筒の外径と同径の穴があけられてい
る。そして受熱面筒2は外枠管3内に挿入され溶接fさ
れる。
【0017】内管6は受熱面筒2の基端部に挿入され溶
接される。また外枠管3の基端部外周面は削られ、外管
4の先端部に挿入され溶接される。さらに内管6と外管
4間に中管5が配置される。
【0018】受熱面筒2の先端面中央には穴dがあけら
れ、図3に示すようなシース管07型のアルメル線03
a、クロメル線03cを持つ第1の熱電対7aが挿入さ
れ、シース管07が溶接fされる。また受熱面筒2の筒
部には径方向の穴eがあけられ同様に第2の熱電対7b
が挿入され、溶接fされる。図1図中、8は端末ボック
ス、9は冷却水供給管、10は冷却水もどし管、11は
ターミナルボックス、12はリード線である。
【0019】なお受熱面筒2、外枠管3、シース管07
はSUS製である。熱電対7a,7b部の回路図を図4
に示す。熱電対7aは接地型とし受熱面筒2に接地され
る。熱電対7bは非接地型で使用する。これらは差動式
にターミナルボックス11で結線され、電圧08はクロ
メル線03c間で計測される。
【0020】以上において、先端部が計測対象の火炉内
に挿入される。そして、外管4と中管5間に冷却水が導
入され、先端部で中管と内管間からリターンされる。す
ると受熱面筒2の先端面は熱負荷を直接受けるため、高
温度になり、その側面は外枠管3で熱遮へいされるとと
もに基端部は冷却されるので大きい温度傾斜がえられ
る。これらは熱電対7aと熱電対7bにより検出され、
火炉内の熱流束が算出される。
【0021】このようにして、構成が簡単であるので小
型化できる。また受熱面筒、外枠管およびシース管が同
一材料であるため、溶接性がよく、かつそれぞれの溶接
部の熱応力が減少し、接続部の耐久性が大幅に向上す
る。
【0022】熱電対を、差動式として使用するため、従
来例同様の原理で温度差の起電力を得ることが出来る。
さらに絶縁不良が従来例に較べ皆無となる。
【0023】外枠管3と受熱面筒2の間に空気層gを設
置した。これにより外周部からの熱流束の影響を無視出
来るため、計測精度の向上が図れる。また従来例に較べ
筒部に取りつける熱電対7bの位置次第で大きな温度
差、すなわち、熱流束に対し、大きな起電力が発生する
ため、計測精度の向上が図れる。
【0024】
【発明の効果】以上に説明したように、本発明は構成が
簡単であるので、小型化できる。また同一材料製なので
溶接性がよく、耐久性が向上する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat flux meter in a furnace such as a commercial or industrial boiler or a heating furnace. 2. Description of the Related Art A conventional heat flux meter will be described with reference to FIGS. [0005] In FIG. 5, the front end of a cylindrical side tube 01 whose base end is closed has a step with a large diameter, and a heat receiving plate 02 is inserted and welded. There is a hole in the center of the base end, the inner tube 06 is inserted and welded. Further, there is a groove in the base end peripheral surface, and the outer tube 04 is inserted and welded. A middle tube 05 is coaxially arranged between the inner tube 06 and the outer tube 04 at a predetermined distance from the base end surface of the side tube 01. [0005] The heat receiving plate 02 is made of chromel having a small thermal conductivity so that the thermal resistance is large and a temperature difference can be obtained. The side cylinder 01 is made of alumel having a high thermal conductivity in order to enhance the cooling effect and increase the temperature difference from the center of the heat receiving surface. In the inner tube 06, a two-core wire (Alumel 03a-
A sheath tube 07 of alumel 03b) is passed through. And
A small hole is made in the center of the heat receiving plate 02 and the base end near the inner tube 06, and the core wires are passed through and welded. The maintenance space a between the heat receiving plate 02 and the base end is indispensable for welding the heat receiving plate 02 and the core wire. The cooling water is introduced between the outer pipe 04 and the middle pipe 05, and returns from between the middle pipe 05 and the inner pipe 06. FIG. 6 shows a circuit diagram. [0007] By welding the heat receiving plate 02 (chromel material) and the core wire alumel 03a, an electromotive force at the temperature contact b is generated, and by welding the side tube 01 (alumel material) and the core wire alumel 03b, the periphery of the heat receiving plate 02 is formed. An electromotive force at the temperature contact c is generated at the welded portion of the cylinder 01. As shown in the figure, if the voltage 08 is measured with the alumel wire and the other, the differential type of the thermocouple is established and the heat receiving plate 0
2, a difference between the temperature at the center and the temperature around the heat receiving plate, that is, a temperature difference electromotive force is generated. [0008] Even if the above-mentioned electromotive force is measured, the heat flux of the boiler or the like cannot be directly obtained, so that it is necessary to verify the electromotive force and the amount of heat. FIG. 7 shows a schematic diagram in the case of performing the test. In general, a blackbody furnace 31 is used for the verification. Refractory material 33
And a heater 32, and a small cavity is provided.
The relationship between the calorific value and the voltage 08 can be obtained by inserting the heat flow meter 30 into the cavity. The amount of heat is determined by the following formula for calculating the amount of radiation. Q = 4.88 × 10 -8 * ε 1 * ε 2 (T W 4 -T H 4) Kcal / m 2 h here, epsilon 1: emissivity of the furnace wall (a blackbody furnace epsilon 1 = 1) ε 2: the absorption of the heat flow meter heat receiving surface 010 (typically applying a black coating material or the like on the surface so that ε 2 ≒ 1) T W: furnace wall of absolute body temperature (° K) T H: heat Absolute temperature of plate (° K) (usually negligible) 4.88 × 10 -8 : Stefan Boltzmann constant (Kca
1 / m 2 h ° K) That is, by obtaining the temperature of the furnace wall surface of the black body furnace 31 and the voltage 08 of the heat flow meter 30, the calibration curve is obtained with the vertical axis calorie and the horizontal axis voltage as shown in FIG. Can be obtained. From this verification curve, it is possible to obtain the actual heat flux of the heating furnace, boiler, and the like. [0009] The element portion of the above-mentioned conventional heat flux meter has the following problems in structural and manufacturing aspects. In welding the heat receiving plate and the side tube, dissimilar metals are joined together, and the thermal expansion coefficients are different. Therefore, cracks are generated particularly at the time of cooling after welding in the heat receiving plate portion, and the yield is poor in manufacturing. In order to obtain an electromotive force in the heat receiving plate and the side tube, a core wire is inserted into a hole and welding is performed. However, since the core wire is too thin, poor welding may occur. Similarly, since the inner pipe and the side pipe are usually welded with different kinds of metals, they are incompletely connected and the cooling water leaks (although it is extremely small), and as a result, insulation defects occur between the core wires. In the structure of the conventional element, if the material used for the thermocouple is selected, in order to obtain a large electromotive force value for the heat flux, the heat receiving plate reduces the heat conductivity of the chromel, and the side tube reduces the surface temperature of the heat receiving surface. Therefore, alumel having a large thermal conductivity is usually optimal. However, with a conventional structure, it is necessary to custom order raw materials in order to process alumel bars and chromel bars. (It is difficult for foreign and domestic manufacturers to obtain it.) When measuring the heat flux by inserting a heat flux meter into an actual boiler, etc., it is difficult to fit the heat receiving plate exactly to the furnace wall, so extra It is usually inserted, but it receives a heat flux from the periphery (side surface) of the side tube and generates a slight error in the electromotive force value. If there is a small amount of water in the maintenance space (air may flow in and out due to poor welding between the heat receiving plate and the side tube, the water in the air may fluctuate), causing insulation failure. An object of the present invention is to solve the above problems. The present invention takes the following measures to solve the above-mentioned problems. A heat-receiving surface tube having a cylindrical shape having a closed front end surface and a smaller diameter than the front-end surface, and a heat-receiving surface having an inner diameter equal to the outer diameter of the heat-receiving surface tube at the base end having a base end closed shape. An outer frame tube having the same outer diameter as the outer diameter of the distal end surface of the tube, an inner tube connected to the base end of the heat receiving surface tube, an outer tube connected to the base end of the outer frame tube, and between the inner tube and the outer tube. A middle tube to be disposed, a sheath tube-type first thermocouple into which a hole is drilled at the center of the distal end surface of the heat receiving surface tube, and a distal end portion is inserted and fixed; A sheath tube type second thermocouple to which a hole is drilled and a tip portion is inserted and fixed, wherein the heat receiving surface tube is inserted into the outer frame tube, and the heat receiving surface tube, the outer frame tube, and The sheath tube is made of the same material. In the above, the tip is inserted into the furnace to be measured. Then, cooling water is introduced between the outer pipe and the middle pipe, and is returned from between the middle pipe and the inner pipe at the tip. Then, the distal end face of the heat receiving surface cylinder is directly subjected to a thermal load, so that the temperature becomes high, and the side face is heat shielded by the outer frame pipe and the base end part is cooled, so that a large temperature gradient is obtained. These are detected by the first thermocouple and the second thermocouple, and the heat flux in the furnace is calculated. In this way, the configuration is simple, so that the size can be reduced. Since the heat receiving surface tube, the outer frame tube, and the sheath tube are made of the same material, the fixing property is good, the thermal stress of each fixing portion is reduced, and the durability of the connecting portion is greatly improved. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. In FIGS. 1 and 2, the heat receiving surface cylinder 2 is closed at the distal end surface, and the cylindrical portion has a smaller diameter than the distal end surface. Further, the outer peripheral surface of the base end is shaved. The outer frame tube 3 is a cylindrical tube having a closed base end, the inner diameter is the same as the outer shape of the distal end surface of the heat receiving surface tube 2, and a hole having the same diameter as the outer diameter of the tube of the heat receiving surface tube 2 is formed in the base end surface. I have. Then, the heat receiving surface tube 2 is inserted into the outer frame tube 3 and welded. The inner tube 6 is inserted into the base end of the heat receiving surface tube 2 and welded. Also, the outer peripheral surface of the base end portion of the outer tube 3 is shaved, inserted into the distal end of the outer tube 4 and welded. Further, a middle tube 5 is arranged between the inner tube 6 and the outer tube 4. A hole d is formed at the center of the front end surface of the heat receiving surface tube 2, and a sheath tube 07 type alumel wire 03 as shown in FIG.
a, the first thermocouple 7a having the chromel wire 03c is inserted, and the sheath tube 07 is welded f. A hole e in the radial direction is formed in the cylindrical portion of the heat receiving surface cylinder 2 and the second thermocouple 7b is similarly formed.
Is inserted and welded. In FIG. 1, 8 is a terminal box, 9 is a cooling water supply pipe, 10 is a cooling water return pipe, 11 is a terminal box, and 12 is a lead wire. The heat receiving surface tube 2, outer frame tube 3, sheath tube 07
Is made of SUS. FIG. 4 is a circuit diagram of the thermocouples 7a and 7b.
Shown in The thermocouple 7 a is of a grounding type and is grounded to the heat receiving surface tube 2. The thermocouple 7b is used in a non-grounded type. These are differentially connected by the terminal box 11, and the voltage 08 is measured between the chromel wires 03c. In the above, the tip is inserted into the furnace to be measured. Then, cooling water is introduced between the outer pipe 4 and the middle pipe 5, and is returned from between the middle pipe and the inner pipe at the tip. Then, the distal end surface of the heat receiving surface tube 2 directly receives a thermal load, so that the temperature becomes high. The side surface thereof is thermally shielded by the outer frame tube 3 and the base end portion is cooled, so that a large temperature gradient is obtained. These are detected by the thermocouples 7a and 7b,
The heat flux in the furnace is calculated. In this way, the configuration is simple, so that the size can be reduced. Further, since the heat receiving surface tube, the outer frame tube and the sheath tube are made of the same material, the weldability is good, the thermal stress of each welded portion is reduced, and the durability of the connection portion is greatly improved. Since the thermocouple is used as a differential type, an electromotive force having a temperature difference can be obtained by the same principle as in the conventional example.
Furthermore, there is no insulation failure compared to the conventional example. An air layer g was provided between the outer frame tube 3 and the heat receiving surface tube 2. As a result, the influence of the heat flux from the outer peripheral portion can be ignored, so that the measurement accuracy can be improved. Further, as compared with the conventional example, a large temperature difference, that is, a large electromotive force is generated with respect to the heat flux depending on the position of the thermocouple 7b attached to the cylindrical portion, so that the measurement accuracy can be improved. As described above, the present invention has a simple structure and can be downsized. In addition, since it is made of the same material, the weldability is good and the durability is improved.
【図面の簡単な説明】 【図1】本発明の実施の一形態の部分断面図である。 【図2】同一形態の受熱面筒部の詳細断面図である。 【図3】同一形態の熱電対の断面図である。 【図4】同一形態の回路図である。 【図5】従来例の断面図である。 【図6】同従来例の回路図である。 【図7】同従来例の作用説明図である。 【図8】同従来例の検定カーブ図である。 【符号の説明】 01 側筒 01a 基板 02 受熱板 03a,03b アルメル線 03c クロメル線 04 外管 05 中管 06 内管 07 シース管 08 電圧計(電圧) 09 断熱材 1 熱流束計 2 受熱面筒 3 外枠管 4 外管 5 中管 6 内管 7a,7b 熱電対 8 端末ボックス 9 冷却水供給管 10 冷却水もどし管 11 ターミナルボックス 12 リード線 30 熱流束計 31 黒体炉 32 ヒータ 33 耐火材[Brief description of the drawings] FIG. 1 is a partial sectional view of an embodiment of the present invention. FIG. 2 is a detailed cross-sectional view of a heat receiving surface cylindrical portion having the same configuration. FIG. 3 is a cross-sectional view of a thermocouple of the same embodiment. FIG. 4 is a circuit diagram of the same embodiment. FIG. 5 is a sectional view of a conventional example. FIG. 6 is a circuit diagram of the conventional example. FIG. 7 is an operation explanatory view of the conventional example. FIG. 8 is a diagram showing a test curve of the conventional example. [Explanation of symbols] 01 side tube 01a substrate 02 Heat receiving plate 03a, 03b Alumel wire 03c Chromel wire 04 outer tube 05 medium pipe 06 Inner tube 07 sheath tube 08 Voltmeter (voltage) 09 Insulation 1 heat flux meter 2 Heat receiving tube 3 outer frame pipe 4 outer tube 5 Middle tube 6 Inner tube 7a, 7b thermocouple 8 Terminal box 9 Cooling water supply pipe 10 Cooling water return pipe 11 Terminal box 12 Lead wire 30 heat flux meter 31 Blackbody furnace 32 heater 33 refractory materials
フロントページの続き (72)発明者 川島 八郎 長崎市深堀町五丁目717番1号 三菱重 工業株式会社長崎研究所内 (72)発明者 辻岳 一良 長崎県西彼杵郡香焼町字堀切3021番18号 山里産業株式会社長崎営業所内 (56)参考文献 特開 平8−304185(JP,A) 実開 昭52−37984(JP,U) 実開 昭57−168030(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01K 17/08 G01K 7/02 Continuation of the front page (72) Inventor Hachiro Kawashima 5-717-1, Fukahori-cho, Nagasaki-shi Inside the Nagasaki Research Laboratory, Mitsubishi Heavy Industries, Ltd. Nagasaki Sales Office of Yamasato Sangyo Co., Ltd. (56) References JP-A-8-304185 (JP, A) Japanese Utility Model 52-37984 (JP, U) Japanese Utility Model Utility Model 57-168030 (JP, U) (58) Field (Int.Cl. 7 , DB name) G01K 17/08 G01K 7/02
Claims (1)
面筒と、基端閉の筒形で基端に上記受熱面筒の外径に同
じ径の穴を持つとともに内径が同受熱面筒の先端面の外
径に同じ外枠管と、上記受熱面筒の基端につながれる内
管と、上記外枠管の基端につながれる外管と、上記内管
および外管間に配置される中管と、上記受熱面筒の先端
面中央に穴をあけ先端部が挿入されるとともに固着され
るシース管型の第1の熱電対と、上記受熱面筒の側面に
径方向の穴をあけ先端部が挿入されるとともに固着され
るシース管型の第2の熱電対とを有し、上記受熱面筒は
外枠管内に挿入され、かつ同受熱面筒、外枠管および上
記シース管は同一材料製であることを特徴とする熱流束
計。(57) [Claims 1] A tubular heat-receiving surface tube having a closed front end surface and a smaller diameter than the front end surface, and a base-closed cylindrical shape having the same outer diameter as the heat-receiving surface tube at the base end. An outer frame tube having a hole with a diameter and an inner diameter equal to the outer diameter of the distal end surface of the heat receiving surface tube, an inner tube connected to the base end of the heat receiving surface tube, and an outer tube connected to the base end of the outer frame tube A tube, a middle tube disposed between the inner tube and the outer tube, and a sheath-tube-type first thermocouple to which a hole is drilled at the center of the distal end surface of the heat-receiving surface tube, and a distal end portion is inserted and fixed. A second thermocouple of a sheath tube type, which is formed by making a hole in the radial direction on a side surface of the heat-receiving surface tube and having a tip portion inserted and fixed, the heat-receiving surface tube being inserted into an outer frame tube; A heat flux meter, wherein the heat receiving surface tube, the outer frame tube and the sheath tube are made of the same material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02889797A JP3492135B2 (en) | 1997-02-13 | 1997-02-13 | Heat flux meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02889797A JP3492135B2 (en) | 1997-02-13 | 1997-02-13 | Heat flux meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10227703A JPH10227703A (en) | 1998-08-25 |
JP3492135B2 true JP3492135B2 (en) | 2004-02-03 |
Family
ID=12261200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02889797A Expired - Fee Related JP3492135B2 (en) | 1997-02-13 | 1997-02-13 | Heat flux meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3492135B2 (en) |
Families Citing this family (319)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7874726B2 (en) | 2007-05-24 | 2011-01-25 | Asm America, Inc. | Thermocouple |
US7946762B2 (en) * | 2008-06-17 | 2011-05-24 | Asm America, Inc. | Thermocouple |
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US8382370B2 (en) | 2009-05-06 | 2013-02-26 | Asm America, Inc. | Thermocouple assembly with guarded thermocouple junction |
US9297705B2 (en) | 2009-05-06 | 2016-03-29 | Asm America, Inc. | Smart temperature measuring device |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
US9659799B2 (en) | 2012-08-28 | 2017-05-23 | Asm Ip Holding B.V. | Systems and methods for dynamic semiconductor process scheduling |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US9484191B2 (en) | 2013-03-08 | 2016-11-01 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US9589770B2 (en) | 2013-03-08 | 2017-03-07 | Asm Ip Holding B.V. | Method and systems for in-situ formation of intermediate reactive species |
USD702188S1 (en) | 2013-03-08 | 2014-04-08 | Asm Ip Holding B.V. | Thermocouple |
US9240412B2 (en) | 2013-09-27 | 2016-01-19 | Asm Ip Holding B.V. | Semiconductor structure and device and methods of forming same using selective epitaxial process |
CN103674342B (en) * | 2013-12-15 | 2016-05-11 | 中国空气动力研究与发展中心超高速空气动力研究所 | A kind of water cassette heat flow transducer |
CN103698057A (en) * | 2013-12-15 | 2014-04-02 | 绵阳富林岚科技有限责任公司 | Heat-resistance heat flux sensor |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
KR102263121B1 (en) | 2014-12-22 | 2021-06-09 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor device and manufacuring method thereof |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US9960072B2 (en) | 2015-09-29 | 2018-05-01 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US9892913B2 (en) | 2016-03-24 | 2018-02-13 | Asm Ip Holding B.V. | Radial and thickness control via biased multi-port injection settings |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
KR102592471B1 (en) | 2016-05-17 | 2023-10-20 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming metal interconnection and method of fabricating semiconductor device using the same |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
US10381226B2 (en) | 2016-07-27 | 2019-08-13 | Asm Ip Holding B.V. | Method of processing substrate |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102532607B1 (en) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method of operating the same |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102613349B1 (en) | 2016-08-25 | 2023-12-14 | 에이에스엠 아이피 홀딩 비.브이. | Exhaust apparatus and substrate processing apparatus and thin film fabricating method using the same |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
KR102546317B1 (en) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Gas supply unit and substrate processing apparatus including the same |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
KR20180068582A (en) | 2016-12-14 | 2018-06-22 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
KR102700194B1 (en) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
KR102457289B1 (en) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
KR20190009245A (en) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR102491945B1 (en) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
KR102401446B1 (en) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
KR102630301B1 (en) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
KR102443047B1 (en) | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
KR102633318B1 (en) | 2017-11-27 | 2024-02-05 | 에이에스엠 아이피 홀딩 비.브이. | Devices with clean compact zones |
KR102597978B1 (en) | 2017-11-27 | 2023-11-06 | 에이에스엠 아이피 홀딩 비.브이. | Storage device for storing wafer cassettes for use with batch furnaces |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
TWI852426B (en) | 2018-01-19 | 2024-08-11 | 荷蘭商Asm Ip私人控股有限公司 | Deposition method |
US11482412B2 (en) | 2018-01-19 | 2022-10-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
WO2019158960A1 (en) | 2018-02-14 | 2019-08-22 | Asm Ip Holding B.V. | A method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
KR102636427B1 (en) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method and apparatus |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
KR102646467B1 (en) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102501472B1 (en) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
KR102709511B1 (en) | 2018-05-08 | 2024-09-24 | 에이에스엠 아이피 홀딩 비.브이. | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
TWI816783B (en) | 2018-05-11 | 2023-10-01 | 荷蘭商Asm 智慧財產控股公司 | Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures |
KR102596988B1 (en) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
TWI840362B (en) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Wafer handling chamber with moisture reduction |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
KR102568797B1 (en) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing system |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
TWI815915B (en) | 2018-06-27 | 2023-09-21 | 荷蘭商Asm Ip私人控股有限公司 | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
CN112292478A (en) | 2018-06-27 | 2021-01-29 | Asm Ip私人控股有限公司 | Cyclic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
KR102686758B1 (en) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102707956B1 (en) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for deposition of a thin film |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
CN110970344B (en) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | Substrate holding apparatus, system comprising the same and method of using the same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (en) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
KR102605121B1 (en) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
KR102546322B1 (en) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR20200051105A (en) | 2018-11-02 | 2020-05-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and substrate processing apparatus including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (en) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | A method for cleaning a substrate processing apparatus |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
TW202037745A (en) | 2018-12-14 | 2020-10-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming device structure, structure formed by the method and system for performing the method |
TW202405220A (en) | 2019-01-17 | 2024-02-01 | 荷蘭商Asm Ip 私人控股有限公司 | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
TWI756590B (en) | 2019-01-22 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
CN111524788B (en) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | Method for topologically selective film formation of silicon oxide |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
KR102626263B1 (en) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | Cyclical deposition method including treatment step and apparatus for same |
JP2020136678A (en) | 2019-02-20 | 2020-08-31 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method for filing concave part formed inside front surface of base material, and device |
JP7509548B2 (en) | 2019-02-20 | 2024-07-02 | エーエスエム・アイピー・ホールディング・ベー・フェー | Cyclic deposition method and apparatus for filling recesses formed in a substrate surface - Patents.com |
TWI842826B (en) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus and method for processing substrate |
KR20200108248A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | STRUCTURE INCLUDING SiOCN LAYER AND METHOD OF FORMING SAME |
KR20200108242A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer |
KR20200108243A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Structure Including SiOC Layer and Method of Forming Same |
JP2020167398A (en) | 2019-03-28 | 2020-10-08 | エーエスエム・アイピー・ホールディング・ベー・フェー | Door opener and substrate processing apparatus provided therewith |
KR20200116855A (en) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR20200125453A (en) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system and method of using same |
KR20200130118A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for Reforming Amorphous Carbon Polymer Film |
KR20200130121A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Chemical source vessel with dip tube |
KR20200130652A (en) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing material onto a surface and structure formed according to the method |
JP2020188254A (en) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | Wafer boat handling device, vertical batch furnace, and method |
JP2020188255A (en) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | Wafer boat handling device, vertical batch furnace, and method |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141003A (en) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system including a gas detector |
KR20200143254A (en) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (en) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Temperature control assembly for substrate processing apparatus and method of using same |
JP7499079B2 (en) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | Plasma device using coaxial waveguide and substrate processing method |
CN112216646A (en) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | Substrate supporting assembly and substrate processing device comprising same |
KR20210010307A (en) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210010816A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Radical assist ignition plasma system and method |
KR20210010820A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods of forming silicon germanium structures |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
TWI839544B (en) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming topology-controlled amorphous carbon polymer film |
KR20210010817A (en) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Method of Forming Topology-Controlled Amorphous Carbon Polymer Film |
CN112309843A (en) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | Selective deposition method for achieving high dopant doping |
CN112309899A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112309900A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
CN112323048B (en) | 2019-08-05 | 2024-02-09 | Asm Ip私人控股有限公司 | Liquid level sensor for chemical source container |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
JP2021031769A (en) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | Production apparatus of mixed gas of film deposition raw material and film deposition apparatus |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
KR20210024423A (en) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for forming a structure with a hole |
KR20210024420A (en) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210029090A (en) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selective deposition using a sacrificial capping layer |
KR20210029663A (en) | 2019-09-05 | 2021-03-16 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (en) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process |
TWI846953B (en) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
KR20210042810A (en) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
KR20210043460A (en) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (en) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (en) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for selectively etching films |
KR20210050453A (en) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (en) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (en) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
US11450529B2 (en) | 2019-11-26 | 2022-09-20 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112951697A (en) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885693A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885692A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
JP7527928B2 (en) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing apparatus and substrate processing method |
KR20210070898A (en) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
JP2021097227A (en) | 2019-12-17 | 2021-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method of forming vanadium nitride layer and structure including vanadium nitride layer |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
JP2021109175A (en) | 2020-01-06 | 2021-08-02 | エーエスエム・アイピー・ホールディング・ベー・フェー | Gas supply assembly, components thereof, and reactor system including the same |
TW202142733A (en) | 2020-01-06 | 2021-11-16 | 荷蘭商Asm Ip私人控股有限公司 | Reactor system, lift pin, and processing method |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR20210093163A (en) | 2020-01-16 | 2021-07-27 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming high aspect ratio features |
KR102675856B1 (en) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming thin film and method of modifying surface of thin film |
TW202130846A (en) | 2020-02-03 | 2021-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming structures including a vanadium or indium layer |
TW202146882A (en) | 2020-02-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (en) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | System dedicated for parts cleaning |
US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
KR20210116240A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate handling device with adjustable joints |
KR20210117157A (en) | 2020-03-12 | 2021-09-28 | 에이에스엠 아이피 홀딩 비.브이. | Method for Fabricating Layer Structure Having Target Topological Profile |
KR20210124042A (en) | 2020-04-02 | 2021-10-14 | 에이에스엠 아이피 홀딩 비.브이. | Thin film forming method |
TW202146689A (en) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | Method for forming barrier layer and method for manufacturing semiconductor device |
TW202145344A (en) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for selectively etching silcon oxide films |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
KR20210128343A (en) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
KR20210132600A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
KR20210132605A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Vertical batch furnace assembly comprising a cooling gas supply |
CN113555279A (en) | 2020-04-24 | 2021-10-26 | Asm Ip私人控股有限公司 | Method of forming vanadium nitride-containing layers and structures including the same |
KR20210134226A (en) | 2020-04-29 | 2021-11-09 | 에이에스엠 아이피 홀딩 비.브이. | Solid source precursor vessel |
KR20210134869A (en) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Fast FOUP swapping with a FOUP handler |
KR20210141379A (en) | 2020-05-13 | 2021-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Laser alignment fixture for a reactor system |
TW202146699A (en) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system |
KR20210143653A (en) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210145078A (en) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | Structures including multiple carbon layers and methods of forming and using same |
TW202200837A (en) | 2020-05-22 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | Reaction system for forming thin film on substrate |
TW202201602A (en) | 2020-05-29 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
TW202212620A (en) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate |
TW202218133A (en) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming a layer provided with silicon |
TW202217953A (en) | 2020-06-30 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
TW202202649A (en) | 2020-07-08 | 2022-01-16 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
TW202219628A (en) | 2020-07-17 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | Structures and methods for use in photolithography |
TW202204662A (en) | 2020-07-20 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | Method and system for depositing molybdenum layers |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
TW202229601A (en) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (en) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | Deposition method and an apparatus for depositing a silicon-containing material |
CN114293174A (en) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | Gas supply unit and substrate processing apparatus including the same |
TW202229613A (en) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing material on stepped structure |
TW202217037A (en) | 2020-10-22 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing vanadium metal, structure, device and a deposition assembly |
TW202223136A (en) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming layer on substrate, and semiconductor processing system |
TW202235649A (en) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Methods for filling a gap and related systems and devices |
TW202235675A (en) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Injector, and substrate processing apparatus |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202242184A (en) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Precursor capsule, precursor vessel, vapor deposition assembly, and method of loading solid precursor into precursor vessel |
TW202231903A (en) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate |
TW202226899A (en) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Plasma treatment device having matching box |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
-
1997
- 1997-02-13 JP JP02889797A patent/JP3492135B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10227703A (en) | 1998-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3492135B2 (en) | Heat flux meter | |
JP4214124B2 (en) | Ear thermometer | |
JP4502256B2 (en) | Flow sensor | |
JP2008530560A (en) | Differential scanning calorimeter (DSC) with temperature controlled furnace | |
CN102353468B (en) | Device for measuring temperature of solar cell sintering furnace and using method thereof | |
Diller et al. | Heat flux measurement | |
US5314247A (en) | Dual active surface, miniature, plug-type heat flux gauge | |
JP3418407B2 (en) | Temperature measurement type external connection mechanism for printed wiring boards | |
JPH09329503A (en) | Temperature measuring apparatus with function for correction of heat transfer | |
JP3492161B2 (en) | Heat flow meter | |
JP3696861B2 (en) | Heat flux meter, manufacturing method thereof, and assembly jig thereof | |
JP2002214046A (en) | Non-contact temperature sensor and infrared clinical thermometer therefor | |
De Lucas et al. | Measurement and analysis of the temperature gradient of blackbody cavities, for use in radiation thermometry | |
JPS60209158A (en) | Sample cell for heat flux differential scanning calorimeter | |
JP2003156395A (en) | Infrared temperature sensor | |
CN113984220A (en) | Differential blackbody radiation temperature difference correction method based on equivalent emissivity | |
EP3249369B1 (en) | Contactless temperature sensor for copper wires in movement | |
Ishii et al. | Radiation thermometry standards at NMIJ from− 30° C to 2800° C | |
JP2000019030A (en) | Heat flux meter | |
JP2002195885A (en) | Infrared sensor | |
Kreider et al. | Calibration of Radiation Thermometers in Rapid Thermal Processing Tools Using Si Wafers with Thin‐film Thermocouples | |
Martin et al. | Calibration of thermocouples and infrared radiation thermometers by comparison to radiation thermometry | |
Rall et al. | Application and Selection | |
CN207335900U (en) | Heating and thermometric two functional temp sensor | |
Hiraka et al. | Rapid-response hybrid-type surface-temperature sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20031014 |
|
LAPS | Cancellation because of no payment of annual fees |