JP3469436B2 - Split type magnetic field generator for MRI - Google Patents

Split type magnetic field generator for MRI

Info

Publication number
JP3469436B2
JP3469436B2 JP19825397A JP19825397A JP3469436B2 JP 3469436 B2 JP3469436 B2 JP 3469436B2 JP 19825397 A JP19825397 A JP 19825397A JP 19825397 A JP19825397 A JP 19825397A JP 3469436 B2 JP3469436 B2 JP 3469436B2
Authority
JP
Japan
Prior art keywords
coil
magnetic field
field generator
flat
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19825397A
Other languages
Japanese (ja)
Other versions
JPH1099296A (en
Inventor
恭幸 田原
肇 田邉
弘隆 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Hitachi Medical Corp filed Critical Mitsubishi Electric Corp
Priority to JP19825397A priority Critical patent/JP3469436B2/en
Publication of JPH1099296A publication Critical patent/JPH1099296A/en
Application granted granted Critical
Publication of JP3469436B2 publication Critical patent/JP3469436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、核磁気共鳴断層撮
像装置(以下、MRIと呼ぶ)に用いる分割型MRI用
磁場発生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a split-type magnetic field generator for MRI used in a nuclear magnetic resonance tomography apparatus (hereinafter referred to as MRI).

【0002】[0002]

【従来の技術】図5は、例えば特開平6−176917
号公報に記載された従来の分割型MRI用磁場発生装置
(以下、単に磁場発生装置という場合もある)の外観図
である。図中、100は磁極装置であり、超電導コイル
101と強磁性体の磁極片102で構成されている。磁
極装置100は図示のようにその軸を鉛直方向にして2
個が対をなすように対向配置されている。磁極装置の対
の中間に形成される撮像空間103内に均一磁界を発生
させ、ここに被検体(患者)がおかれる。
2. Description of the Related Art FIG. 5 shows, for example, JP-A-6-176917.
FIG. 3 is an external view of a conventional split type MRI magnetic field generation device (hereinafter, may be simply referred to as a magnetic field generation device) described in Japanese Patent Publication No. In the figure, reference numeral 100 denotes a magnetic pole device, which is composed of a superconducting coil 101 and a magnetic pole piece 102 of a ferromagnetic material. The magnetic pole device 100 has its axis vertical as shown in FIG.
The pieces are arranged so as to face each other. A uniform magnetic field is generated in the imaging space 103 formed in the middle of the pair of magnetic pole devices, and the subject (patient) is placed there.

【0003】MRIでは磁極装置の対の中間に位置情報
を得るための傾斜磁場発生装置とRFコイル(高周波送
信及び受信コイル)とを配設し、被検体の所望断面にお
ける特定原子核の分布情報を得て断層像を生成する。被
検体配置のための所要空間、RFコイルおよび傾斜磁場
発生装置(傾斜磁場発生装置としては、例えば特開平6
−14900号公報に記載のものがある)の大きさから
磁極装置の間隔が設定される。
In MRI, a gradient magnetic field generator for obtaining position information and an RF coil (high-frequency transmitting and receiving coils) are arranged in the middle of a pair of magnetic pole devices to obtain distribution information of specific atomic nuclei in a desired cross section of a subject. Then, a tomographic image is generated. Required space for arranging the subject, RF coil, and gradient magnetic field generator (for example, as a gradient magnetic field generator, see Japanese Patent Application Laid-Open No.
The space between the magnetic pole devices is set according to the size of the device (see Japanese Patent Publication No. 14900).

【0004】図6は、他の従来の磁場発生装置の要部を
示す断面図である。このものは、装置の重量を軽減する
ために強磁性体の磁極片を用いていない。図において、
110は磁極装置であり、次のように構成されている。
111は断面が矩形でZ軸を中心とする円環状の低温容
器、112はコイル集合体であり、断面矩形でZ軸を中
心とする円環状のサイドコイル112a、第2〜第5の
コイル112b〜112eを有する。114は円板状の
傾斜磁場発生装置、115は平板状の高周波送信コイル
(以下、単に送信コイルという場合もある)、116は
平板状の高周波受信コイル(以下、単に受信コイルとい
う場合もある)である。
FIG. 6 is a sectional view showing a main part of another conventional magnetic field generator. It does not use ferromagnetic pole pieces to reduce the weight of the device. In the figure,
110 is a magnetic pole device, which is configured as follows.
Reference numeral 111 denotes a cryogenic container having a rectangular section and an annular shape centered on the Z axis, 112 denotes a coil assembly, and an annular side coil 112a having a rectangular section and centered on the Z axis, and second to fifth coils 112b. ˜112e. Reference numeral 114 is a disk-shaped gradient magnetic field generator, 115 is a flat-plate high-frequency transmission coil (hereinafter may be simply referred to as a transmission coil), and 116 is a flat-plate high-frequency reception coil (hereinafter may be simply referred to as a reception coil). Is.

【0005】以上のように構成された磁極装置110
を、一対にしてZ軸方向に対向させている。二つの磁極
装置110は、受信コイル116同士の対向間隔Jを設
け被検体のための空間を確保している。このときのサイ
ドコイル112aの対向間隔はHである。この磁極装置
の対の中間に形成される撮像空間内に均一磁界を発生さ
せ、ここに被検体(患者)がおかれる。
The magnetic pole device 110 configured as described above.
Are paired and face each other in the Z-axis direction. The two magnetic pole devices 110 are provided with a facing distance J between the receiving coils 116 to secure a space for the subject. The facing distance between the side coils 112a at this time is H. A uniform magnetic field is generated in the imaging space formed in the middle of the pair of magnetic pole devices, and the subject (patient) is placed there.

【0006】被検体に開放感を与えるために、被検体配
置空間は大きいことが望ましく、大きな磁極装置同士の
間隔が要求される。また、断層像の分解能を高めるため
に大きな磁界出力が望まれている。このため、磁極装置
110は大きくなる傾向にある。
In order to give the subject a feeling of openness, it is desirable that the subject arrangement space is large, and a large gap between the magnetic pole devices is required. Further, a large magnetic field output is desired in order to improve the resolution of the tomographic image. Therefore, the magnetic pole device 110 tends to be large.

【0007】磁極装置110の間隔が大きくなると、必
然的に磁極装置が必要とする起磁力は増加する。図7
は、図6の磁場発生装置について、コイル間隔H(H/
2)と起磁力[AT]の関係を示すグラフである。中心
磁界は0.5[T]である。図7中、符号Hは撮像空間
を含むコイル間隔であり、横軸はH/2を基準にして目
盛を付している。なお、シールドコイルを有さず装置の
磁場が外部に漏れるノンシールド型(符号N/Sで示
す)と、外部への漏れを抑制するためのシールドコイル
を備えたアクティブシールド型(符号A/Sで示す)の
それぞれについて示している。
As the gap between the magnetic pole devices 110 increases, the magnetomotive force required by the magnetic pole devices inevitably increases. Figure 7
For the magnetic field generator of FIG.
2 is a graph showing the relationship between 2) and magnetomotive force [AT]. The central magnetic field is 0.5 [T]. In FIG. 7, the symbol H is the coil spacing including the imaging space, and the horizontal axis is graduated based on H / 2. It should be noted that a non-shield type (denoted by symbol N / S) that does not have a shield coil and the magnetic field of the device leaks to the outside, and an active shield type (symbol A / S that has a shield coil for suppressing leakage to the outside). (Indicated by) are shown.

【0008】図7から、所要起磁力はノンシールド型N
/S、アクティブシールド型A/Sのいずれにあっても
コイル間隔のほぼ5乗に比例することがわかる。
From FIG. 7, the required magnetomotive force is the non-shield type N
It can be seen that in both / S and active shield type A / S, the coil spacing is proportional to approximately the fifth power.

【0009】[0009]

【発明が解決しようとする課題】このように、従来の磁
場発生装置では対向する磁極装置同士の間隔、つまり対
向するコイル集合体間隔を大きくすると、所要起磁力が
著しく増大し、コイルが大型化して価格や重量の増大を
招くという問題があった。
As described above, in the conventional magnetic field generator, when the distance between the magnetic pole devices facing each other, that is, the interval between the coil assemblies facing each other, is increased, the required magnetomotive force is remarkably increased and the coil is enlarged. However, there is a problem that the price and the weight are increased.

【0010】この発明は、所要起磁力が小さく小型で安
価な分割型MRI用磁場発生装置の実現を目的としてい
る。
An object of the present invention is to realize a split type MRI magnetic field generator which has a small required magnetomotive force and is small in size and inexpensive.

【0011】[0011]

【課題を解決するための手段】上記のような目的を達成
するために、この発明の分割型MRI用磁場発生装置に
おいては、コイル集合体を収容しこのコイル集合体の軸
方向に所定の空間間隔をもって対向して配設された低温
用のコイル収容容器の相互の対向部にそれぞれ平板状の
傾斜磁場発生用コイルの収容用の凹状配置スペースを形
成したものである。このようにすれば、凹状配置スペー
スに平板状の傾斜磁場発生用コイルを収容することがで
き、その分コイル収容容器同士の対向間隔を狭くできる
ので、所定の磁界を発生するための起磁力が小さくな
る。
In order to achieve the above object, in the split type MRI magnetic field generator of the present invention, a coil assembly is housed and a predetermined space is provided in the axial direction of the coil assembly. Low temperature arranged facing each other at intervals
In this configuration, a concave arrangement space for accommodating a flat-plate gradient magnetic field generating coil is formed in each of the mutually opposing portions of the coil accommodating container for use. With this configuration, the flat-plate-shaped gradient magnetic field generating coil can be accommodated in the concave arrangement space, and the facing interval between the coil accommodating containers can be narrowed by that much, so that the magnetomotive force for generating the predetermined magnetic field is reduced. Get smaller.

【0012】そして、コイル収容容器の凹状配置スペー
スを取り卷く部分の内部にコイル集合体中の平板状の
定のコイルを収容し、この平板状の所定のコイルが凹状
配置スペースに収容される平板状の傾斜磁場コイルを取
り囲むように配置され平板状の傾斜磁場コイルとともに
全体として平板状にされているものである。
Then, a flat plate-shaped predetermined coil in the coil assembly is housed inside a portion of the coil accommodating container that surrounds the recessed layout space, and the predetermined flat plate-shaped coil is arranged in a concave shape. Along with the plate-shaped gradient magnetic field coil, it is arranged so as to surround the plate-shaped gradient magnetic field coil housed in the space.
It is a flat plate as a whole .

【0013】さらに、凹状配置スペースに平板状の傾斜
磁場発生用コイルを収容したものである。
Further, a flat-plate gradient magnetic field generating coil is housed in the concave arrangement space.

【0014】また、凹状配置スペースに、平板状の傾斜
磁場発生用コイルに加え平板状の高周波送信コイルと
板状の高周波受信コイルとのうちの少なくとも一つを収
容し平板状の傾斜磁場コイルとともに全体として平板状
にしたものである。
Further, the concave arrangement space, a flat high-frequency transmission coil in addition to the flat plate-like gradient magnetic field generating coil Rights
At least one of the plate-shaped high-frequency receiving coil
A flat plate as a whole with a flat plate-shaped gradient coil
It is the one.

【0015】そして、凹状配置スペースに平板状の傾斜
磁場発生用コイルを収容し、凹状配置スペースの外に高
周波送信コイルと高周波受信コイルとを配置したもので
ある。高周波送信コイルと高周波受信コイルとが凹状配
置スペースの外に配置されているので、容易に視認でき
るとともに凹状配置スペースの外にあるので、その位置
や姿勢の調整作業が容易になる。
A flat-plate gradient magnetic field generating coil is housed in the concave arrangement space, and a high frequency transmitting coil and a high frequency receiving coil are arranged outside the concave arranging space. Since the high-frequency transmitting coil and the high-frequency receiving coil are arranged outside the concave arrangement space, they can be easily visually recognized and are also outside the concave arrangement space, so that the position and orientation adjustment work becomes easy.

【0016】[0016]

【発明の実施の形態】実施の形態1. 図1は、この発明の実施の一形態を示す磁場発生装置の
要部を示す断面図である。図において、10は磁極装置
であり、次のように構成されている。11は、円筒型の
低温容器であり、詳細構成を図示していないが、真空
槽、80[K]と20[K]の2つの熱輻射シールド、
液体ヘリウム槽などで構成され、後述の超電導のコイル
集合体12を収容している。低温容器11は、被検体配
置空間側、つまり低温容器11同士が対向する側の対向
面周縁部に所定の高さ突設された断面矩形のZ軸を中心
とする円環状の凸部11aを有する。円環状の凸部11
aは、内側に断面矩形の円環状の収容部11bを形成し
ている。また、凸部11aの内周側(軸Z側)の側壁1
1cに囲まれて凹部11dが形成されている。低温容器
11の真空槽、液体ヘリウム槽は、非磁性のステンレス
鋼板を溶接して製作されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. FIG. 1 is a sectional view showing a main part of a magnetic field generator showing an embodiment of the present invention. In the figure, 10 is a magnetic pole device, which is configured as follows. Reference numeral 11 denotes a cylindrical cryogenic container, a detailed configuration of which is not shown in the drawing, but a vacuum chamber, two heat radiation shields of 80 [K] and 20 [K],
It is composed of a liquid helium tank or the like, and houses a superconducting coil assembly 12 described later. The cryogenic container 11 has an annular convex portion 11a centered on the Z axis having a rectangular cross section, which is provided at a predetermined height so as to project at a peripheral edge portion of the facing surface on the side of the subject arrangement space, that is, on the side where the cryogenic containers 11 face each other. Have. Annular convex portion 11
A has an annular housing portion 11b with a rectangular cross section formed inside. In addition, the sidewall 1 on the inner peripheral side (axis Z side) of the convex portion 11a
A recess 11d is formed surrounded by 1c. The vacuum tank and the liquid helium tank of the cryogenic container 11 are manufactured by welding non-magnetic stainless steel plates.

【0017】12はコイル集合体であり、おのおの断面
矩形のZ軸を中心とする円環状のサイドコイル12a、
第2のコイル12b、第3のコイル12c、第4のコイ
ル12dを有する。コイル集合体12は、低温容器11
に収容されており、超電導を示す温度に冷却保持され
る。なお、各コイル12a〜12dはそれぞれ断面がコ
状の円環状の巻枠に巻回されているが、巻枠の図示は省
略している。14は傾斜磁場発生装置、15は送信コイ
ル、16は受信コイルであり、この実施の形態において
は、傾斜磁場発生装置14、送信コイル15、受信コイ
ル16の三者が合成樹脂で一体に固められかつ全体が円
板状に整形されている。一体にされた傾斜磁場発生装置
14、送信コイル15、受信コイル16は、環状の凸部
11aにより形成された凹部11d内に凸部11aより
も突出しないようにして収容されている。
Reference numeral 12 denotes a coil assembly, each of which is an annular side coil 12a having a rectangular cross section and having the Z axis as its center.
It has the 2nd coil 12b, the 3rd coil 12c, and the 4th coil 12d. The coil assembly 12 is a cryogenic container 11
And is cooled and maintained at a temperature indicating superconductivity. Each of the coils 12a to 12d is wound around an annular winding frame having a U-shaped cross section, but the winding frame is not shown. Reference numeral 14 is a gradient magnetic field generating device, 15 is a transmitting coil, and 16 is a receiving coil. In this embodiment, the gradient magnetic field generating device 14, the transmitting coil 15, and the receiving coil 16 are integrally fixed with a synthetic resin. And the whole is shaped like a disc. The integrated gradient magnetic field generator 14, the transmitter coil 15, and the receiver coil 16 are housed in the recess 11d formed by the annular protrusion 11a so as not to project beyond the protrusion 11a.

【0018】磁極装置10は以上のように構成され、同
じ大きさの磁極装置10を対にしてZ軸方向に図のよう
に間隔Jを設けて対向配置し、分割型の磁場発生装置を
形成している。なお、この磁場発生装置では重量を軽く
するために、強磁性体の磁極片を設けていない。
The magnetic pole device 10 is constructed as described above, and the magnetic pole devices 10 of the same size are paired and arranged so as to face each other with a space J as shown in the drawing in the Z-axis direction to form a split type magnetic field generator. is doing. In addition, in order to reduce the weight in this magnetic field generator, the magnetic pole pieces are not provided.

【0019】このように、一体にされた傾斜磁場発生装
置14、送信コイル15、受信コイル16は、凹部11
d内に全体を収容しうるように凸部11aを所定の高さ
突出させているので、その分、磁極装置10同士の対向
間隔を小さくすることができる。特に、サイドコイル1
2a同士の対向間隔を小さくできるため、コイル集合体
12の所要起磁力が小さくてよい。従って、コイル集合
体12を小さくすることが可能で、磁場発生装置を小型
化できる。もちろん、一体にされた傾斜磁場発生装置1
4、送信コイル15、受信コイル16を凹部11d内に
完全に収容せず、一部が凹部11dの外へ出ていてもよ
い。
As described above, the gradient magnetic field generating device 14, the transmission coil 15 and the reception coil 16 which are integrated are formed in the recess 11
Since the convex portion 11a is protruded by a predetermined height so that the whole of the magnetic pole device 10 can be accommodated in d, the facing distance between the magnetic pole devices 10 can be reduced accordingly. Especially, the side coil 1
Since the facing distance between the two a can be made small, the required magnetomotive force of the coil assembly 12 may be small. Therefore, the coil assembly 12 can be downsized, and the magnetic field generator can be downsized. Of course, the integrated gradient magnetic field generator 1
4, the transmitting coil 15 and the receiving coil 16 may not be completely housed in the recess 11d, but a part may be out of the recess 11d.

【0020】なお、サイドコイル12aは、必要とされ
る全体の起磁力の例えば70[%]程度を、第2のコイ
ル12b〜第4のコイル12dが残りの起磁力を供給す
る。コイル集合体12のコイル総数及びサイドコイル1
2a、第2のコイル12b〜第4のコイル12dの相対
位置関係は図7の従来のものと異なるが、各コイルの位
置及び起磁力の分担を適切に設定することにより、必要
とする強さ及び均一度の磁場を発生させることができ
る。
The side coil 12a supplies, for example, about 70% of the required total magnetomotive force, and the second to fourth coils 12b to 12d supply the remaining magnetomotive force. Total number of coils of coil assembly 12 and side coil 1
The relative positional relationship between the second coil 12a and the second coil 12b to the fourth coil 12d is different from the conventional one shown in FIG. 7, but the required strength can be obtained by appropriately setting the position of each coil and the sharing of the magnetomotive force. And a magnetic field of homogeneity can be generated.

【0021】実施の形態2. 図2は、この発明の他の実施の形態を示す磁場発生装置
の要部を示す断面図である。この実施の形態において
は、凸部11aにて形成される凹部11d内に、それぞ
れ別体にされた傾斜磁場発生装置24、送信コイル2
5、受信コイル26を収容している。傾斜磁場発生装置
24、送信コイル25、受信コイル26は、銅板で製作
された図示しないコイル導体を合成樹脂で固めて板状に
されており、傾斜磁場発生装置24は円板状、送信コイ
ル25は傾斜磁場発生装置24よりも少し小さく矩形
状、受信コイル26は、送信コイル25よりももう少し
小さい矩形状である。送信コイル25は傾斜磁場発生装
置24に固定され、受信コイル26は送信コイル25に
固着されている。
Embodiment 2. FIG. 2 is a sectional view showing a main part of a magnetic field generator showing another embodiment of the present invention. In this embodiment, the gradient magnetic field generator 24 and the transmission coil 2 which are separate bodies are provided in the recess 11d formed by the projection 11a.
5, the receiving coil 26 is housed. The gradient magnetic field generation device 24, the transmission coil 25, and the reception coil 26 are plate-shaped by fixing a coil conductor (not shown) made of a copper plate with synthetic resin, and the gradient magnetic field generation device 24 is a disc-shaped transmission coil 25. Is a rectangle smaller than the gradient magnetic field generator 24, and the receiver coil 26 is a rectangle smaller than the transmitter coil 25. The transmission coil 25 is fixed to the gradient magnetic field generator 24, and the reception coil 26 is fixed to the transmission coil 25.

【0022】なお、傾斜磁場発生装置24、送信コイル
25、受信コイル26は、図示の都合上互いの間隔を実
際より大きくして示している。以上のように磁極装置2
0は構成され、受信コイル26同士が間隔Jで対向して
いる。
Note that the gradient magnetic field generator 24, the transmission coil 25, and the reception coil 26 are shown with a distance larger than the actual distance for convenience of illustration. As described above, the magnetic pole device 2
0 is configured so that the receiving coils 26 face each other at a distance J.

【0023】その他の構成については、図1に示したも
のと同様のものであるので、相当するものに同じ符号を
付して説明を省略する。
The other parts of the configuration are the same as those shown in FIG. 1, so the corresponding parts are designated by the same reference numerals and the description thereof is omitted.

【0024】このように、傾斜磁場発生装置24、送信
コイル25、受信コイル26をそれぞれ別体にして凹部
11d内に組込むことにより、個別にその位置や姿勢を
動かすことが可能となり、調整が容易である。
As described above, the gradient magnetic field generator 24, the transmission coil 25, and the reception coil 26 are separately formed and assembled in the recess 11d, so that the position and the posture can be individually moved, and the adjustment is easy. Is.

【0025】実施の形態3. 図3は、さらにこの発明の他の実施の形態を示す磁場発
生装置の要部を示す断面図である。この実施の形態にお
いては、磁極装置30は次のように構成されている。低
温容器31の凸部31aの側壁31cにて形成される凹
部31dに傾斜磁場コイル34及び送信コイル35を収
容し、受信コイル36はその外に配設している。コイル
集合体32のサイドコイル32aの一部が凸部31aの
収容部31bに収容されている。この磁極装置30を、
各受信コイル36の間隔がJとなるように軸方向に対向
させて磁場発生装置を構成している。この場合、対向す
るコイル集合体32同士の間隔が図2の実施の形態に比
し若干大きくなるが、各コイル32a〜32dをそれに
応じたものにすることにより、所定の場所において、所
定の強さ及び均一度の磁界を発生させることができる。
Embodiment 3. FIG. 3 is a sectional view showing a main part of a magnetic field generator according to another embodiment of the present invention. In this embodiment, the magnetic pole device 30 is configured as follows. The gradient magnetic field coil 34 and the transmission coil 35 are housed in the recess 31d formed by the side wall 31c of the projection 31a of the cryogenic container 31, and the reception coil 36 is arranged outside thereof. A part of the side coil 32a of the coil assembly 32 is housed in the housing portion 31b of the convex portion 31a. This magnetic pole device 30
The magnetic field generator is configured such that the receiving coils 36 are axially opposed to each other so that the distance between them is J. In this case, the interval between the coil assemblies 32 facing each other becomes slightly larger than that in the embodiment of FIG. 2, but by making the coils 32a to 32d according to that, a predetermined strength can be obtained at a predetermined place. It is possible to generate a magnetic field of uniform and uniform.

【0026】このように、受信コイル36を凹部31d
の外に配置することにより、受信コイルの位置を被験者
に合わせて調整をしたいとき、外から見ることができ、
また凹部31dの外で取扱いができるので、調整作業が
容易である。
In this way, the receiving coil 36 is formed in the recess 31d.
By arranging it outside of, you can see it from the outside when you want to adjust the position of the receiving coil according to the subject.
In addition, the adjustment work is easy because it can be handled outside the recess 31d.

【0027】実施の形態4. 図4は、さらにこの発明の他の実施の形態を示す磁場発
生装置の要部を示す断面図である。この実施の形態にお
いては、磁極装置40は次のように構成されている。低
温容器41の凸部41aの側壁41cにて形成される凹
部41dに傾斜磁場コイル44を収容し、送信コイル4
5及び受信コイル46をその外に配設している。コイル
集合体42のサイドコイル42aが凸部41aの収容部
41bに配置されている。この磁極装置40を、軸方向
に受信コイルの対向間隔がJとなるように対向させて磁
場発生装置を構成している。この場合、対向するコイル
集合体42同士の間隔が図2の実施の形態に比し若干大
きくなるが、各コイル42a〜42dをそれに応じたも
のにすることにより、所定の場所における磁界を所定の
強さ及び均一度にできる。
Fourth Embodiment FIG. 4 is a sectional view showing a main part of a magnetic field generator according to still another embodiment of the present invention. In this embodiment, the magnetic pole device 40 is configured as follows. The gradient magnetic field coil 44 is housed in the concave portion 41d formed by the side wall 41c of the convex portion 41a of the cryogenic container 41.
5 and the receiving coil 46 are arranged outside thereof. The side coil 42a of the coil assembly 42 is arranged in the housing portion 41b of the convex portion 41a. The magnetic pole devices 40 are arranged so as to face each other in the axial direction so that the facing distance between the receiving coils is J, thereby forming a magnetic field generator. In this case, the interval between the coil assemblies 42 facing each other is slightly larger than that in the embodiment of FIG. 2, but by making each of the coils 42a to 42d corresponding thereto, the magnetic field at a predetermined location can be set to a predetermined value. Can be strength and uniformity.

【0028】このように、送信コイル45及び受信コイ
ル46をともに凹部41dの外に配置することにより、
送信コイル45及び受信コイル46の位置や姿勢を被験
者に合わせて調整をしたいとき、外から見ることがで
き、また凹部41dの外で取扱いができるので、調整作
業が容易である。
As described above, by arranging both the transmitting coil 45 and the receiving coil 46 outside the recess 41d,
When it is desired to adjust the positions and postures of the transmission coil 45 and the reception coil 46 according to the subject, they can be seen from the outside and can be handled outside the recess 41d, so that the adjustment work is easy.

【0029】以上のように、この発明の各実施の形態に
よれば、コイル集合体12,32,42、特に一番外周
側にあるサイドコイル12a,32a,42aの対向間
隔を小さくできるため、コイル集合体の所要起磁力を小
さくすることができる。図7のグラフによれば、例え
ば、アクティブシールド型A/Sの磁場発生装置におい
て、コイル間隔Hを375×2=750[mm]から3
35×2=670[mm]に80[mm]、すなわち約
10.7[%]小さくしたとすれば、所用起磁力は約
(5/9)×100=56[%]となり、これに応じて
コイル集合体を小さくすることができる。従って、磁場
発生装置を小型、軽量化できる。
As described above, according to each of the embodiments of the present invention, the facing distance between the coil assemblies 12, 32, 42, particularly the outermost side coils 12a, 32a, 42a, can be reduced. The required magnetomotive force of the coil assembly can be reduced. According to the graph of FIG. 7, for example, in the magnetic field generator of the active shield type A / S, the coil interval H is set from 375 × 2 = 750 [mm] to 3
If 80 [mm] is reduced to 35 × 2 = 670 [mm], that is, approximately 10.7 [%], the required magnetomotive force is approximately (5/9) × 100 = 56 [%], and accordingly The coil assembly can be made smaller. Therefore, the magnetic field generator can be reduced in size and weight.

【0030】もちろん、環状の凸部にサイドコイル以外
のコイルも含めて複数のコイルを収容してもよい。さら
に、環状の凸部を複数同心円状に設け、それぞれにサイ
ドコイルや他のコイルを収容してもよい。また、低温容
器は円環状のものであってもよい。
Of course, a plurality of coils may be housed in the annular convex portion, including coils other than the side coils. Further, a plurality of annular convex portions may be provided in a concentric shape, and a side coil or another coil may be accommodated in each. Further, the cryogenic container may have an annular shape.

【0031】さらに、環状のコイルは円環状のものに限
られるものではなく、矩形状やフィールドトラック状な
どの環状、すなわちループ状のものであってもよい。ま
た、これらのコイル形状に応じて、この発明の目的を損
わない範囲で低温容器の形状を変更してもよい。
Further, the annular coil is not limited to the annular one, but may be an annular one such as a rectangular one or a field track one, that is, a loop one. Further, the shape of the cryogenic container may be changed according to the shape of these coils within a range that does not impair the object of the present invention.

【0032】また、傾斜磁場発生装置、送信コイル、受
信コイルの配置の順は、上記各実施の形態に限られるも
のではない。そして、送信コイルと受信コイルを兼ねる
もの、例えばタイムシアリングにより、一つのコイルで
両者の機能を使い分けるものであってもよい。送信コイ
ルや受信コイルの形状は矩形板状のものに限らず、他の
形状であっても、同様の効果を奏する。
Further, the order of arrangement of the gradient magnetic field generator, the transmitting coil and the receiving coil is not limited to the above-mentioned respective embodiments. Then, the function of both the transmitting coil and the receiving coil may be used, for example, one function may be selectively used by one coil by time shearing. The shape of the transmitting coil and the receiving coil is not limited to the rectangular plate shape, and the same effect can be obtained even if it has another shape.

【0033】なお、コイル集合体の中心軸Zが鉛直方向
のものについて説明したが、中心軸Zが水平あるいは傾
斜した磁場発生装置に適用してもよい。
Although the central axis Z of the coil assembly has been described in the vertical direction, it may be applied to a magnetic field generator in which the central axis Z is horizontal or inclined.

【0034】以上の実施の形態においては、コイル集合
体が超電導コイルである磁場発生装置について示した
が、コイル集合体が常電導コイルを用いるもので低温容
器のない磁場発生装置にも適用できることはいうまでも
ない。もちろん、ノンシールド型、アクティブシールド
型のいずれにも適用しても同様の効果を奏する。
In the above embodiments, the magnetic field generator in which the coil assembly is the superconducting coil has been described, but the coil assembly uses the normal conducting coil and is not applicable to the magnetic field generator without the cryogenic container. Needless to say. Of course, the same effect can be obtained by applying it to both the non-shield type and the active shield type.

【0035】[0035]

【発明の効果】この発明は、以上説明したように構成さ
れているので、次に記載するような効果を奏する。コイ
ル集合体を収容しこのコイル集合体の軸方向に所定の空
間間隔をもって対向して配設された低温用のコイル収容
容器の相互の対向部にそれぞれ平板状の傾斜磁場発生用
コイルの収容用の凹状配置スペースを形成したので、凹
状配置スペースに平板状の傾斜磁場発生用コイルを収容
することができ、その分コイル収容容器同士の対向間隔
を狭くして所定の磁界を発生するための所要起磁力を小
さくすることが可能である。従って、コイル集合体が小
さくなり、磁場発生装置を小型軽量化できる。
Since the present invention is constructed as described above, it has the following effects. For accommodating the coil assembly for accommodating the coil assembly, and for accommodating the flat coil- shaped gradient magnetic field generation coils in the mutually opposing portions of the coil accommodating container for low temperature, which are arranged to face each other in the axial direction of the coil assembly at a predetermined space interval. Since the concave arrangement space is formed, it is possible to accommodate the flat-plate-shaped gradient magnetic field generating coil in the concave arrangement space, and to reduce the facing distance between the coil accommodating containers by that amount, it is necessary to generate the predetermined magnetic field. It is possible to reduce the magnetomotive force. Therefore, the coil assembly becomes smaller, and the magnetic field generator can be made smaller and lighter.

【0036】そして、コイル収容容器の凹状配置スペー
スを取り卷く部分の内部にコイル集合体中の平板状の
定のコイルを収容し、この平板状の所定のコイルが凹状
配置スペースに収容される平板状の傾斜磁場コイルを取
り囲むように配置され平板状の傾斜磁場コイルとともに
全体として平板状にされているので、所定のコイル同士
の対向間隔が小さくなって所要起磁力が減少することに
より、コイル集合体が小型になり、磁場発生装置を小型
軽量化できる。
Then, a flat plate-shaped predetermined coil in the coil assembly is housed inside a portion of the coil accommodating container that surrounds the concave layout space, and the predetermined flat plate-shaped coil is arranged in a concave shape. Along with the plate-shaped gradient magnetic field coil, it is arranged so as to surround the plate-shaped gradient magnetic field coil housed in the space.
Since it is formed in a flat plate shape as a whole, the gap between the predetermined coils facing each other is reduced and the required magnetomotive force is reduced, so that the coil assembly can be downsized and the magnetic field generator can be downsized and lightweight.

【0037】さらに、凹状配置スペースに平板状の傾斜
磁場発生用コイルを収容したので、その分コイル収容容
器同士の対向間隔が小さくなって所要起磁力が減少する
ことにより、コイル集合体が小型になり、磁場発生装置
を小型軽量化できる。
Further, since the flat-plate-shaped gradient magnetic field generating coil is housed in the concave arrangement space, the facing space between the coil housing containers is reduced by that much, and the required magnetomotive force is reduced, thereby reducing the size of the coil assembly. Therefore, the magnetic field generator can be reduced in size and weight.

【0038】また、凹状配置スペースに平板状の傾斜磁
場発生用コイルに加え平板状の高周波送信コイルと平板
状の高周波受信コイルとのうちの少なくとも一つを収容
し平板状の傾斜磁場コイルとともに全体として平板状に
したので、さらにコイル収容容器同士の対向間隔を小さ
くでき所要起磁力が減少することにより、コイル集合体
が小型になり、磁場発生装置を小型軽量化できる。
In addition to the flat-plate-shaped gradient magnetic field generating coil, the flat-plate-shaped high-frequency transmission coil and the flat- plate are provided in the concave arrangement space.
Accommodating at least one of the Jo high frequency reception coil
Together with a flat plate gradient magnetic field coil
Since the further by the required magnetomotive force can be reduced opposing distance between the coil container is reduced, the coil assembly becomes small, the magnetic field generator can size and weight.

【0039】そして、凹状配置スペースに平板状の傾斜
磁場発生用コイルを収容し、凹状配置スペースの外に高
周波送信コイルと高周波受信コイルとを配置したので、
磁場発生装置が小型軽量になるとともに、高周波送信コ
イル及び高周波受信コイルを容易に視認でき、また凹状
配置スペースの外にあるので、その位置や姿勢の調整作
業が容易になる。
Since the plate-shaped gradient magnetic field generating coil is housed in the concave arrangement space and the high frequency transmitting coil and the high frequency receiving coil are arranged outside the concave arranging space,
The magnetic field generator is small and lightweight, and the high-frequency transmitting coil and the high-frequency receiving coil can be easily visually recognized, and since the magnetic field generating device is located outside the concave arrangement space, the position and posture adjustment work becomes easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の一形態である磁場発生装置
の要部を示す断面図である。
FIG. 1 is a sectional view showing a main part of a magnetic field generator according to an embodiment of the present invention.

【図2】 この発明の他の実施の形態である磁場発生装
置の要部を示す断面図である。
FIG. 2 is a sectional view showing a main part of a magnetic field generator according to another embodiment of the present invention.

【図3】 さらに、この発明の他の実施の形態である磁
場発生装置の要部を示す断面図である。
FIG. 3 is a sectional view showing a main part of a magnetic field generator according to another embodiment of the present invention.

【図4】 さらに、この発明の他の実施の形態である磁
場発生装置の要部を示す断面図である。
FIG. 4 is a sectional view showing a main part of a magnetic field generating apparatus according to another embodiment of the present invention.

【図5】 従来の磁場発生装置の外観図である。FIG. 5 is an external view of a conventional magnetic field generator.

【図6】 他の従来の磁場発生装置の要部を示す断面図
である。
FIG. 6 is a cross-sectional view showing a main part of another conventional magnetic field generator.

【図7】 図6の磁場発生装置におけるコイル間隔と起
磁力との関係を示すグラフである。
7 is a graph showing the relationship between the coil spacing and the magnetomotive force in the magnetic field generator of FIG.

【符号の説明】[Explanation of symbols]

10,20,30,40 磁極装置、11,31,41
低温容器、11a,31a,41a 環状の凸部、1
1c,31c,41c 収容部、11d,31d,41
d 凹部、12,32,42 コイル集合体、12a,
32a,42a サイドコイル、14,34,44 傾
斜磁場装置、15,35,45 送信コイル、16,3
6,46 受信コイル。
10, 20, 30, 40 Magnetic pole device, 11, 31, 41
Cryogenic container, 11a, 31a, 41a Ring-shaped convex portion, 1
1c, 31c, 41c accommodation part, 11d, 31d, 41
d recess, 12, 32, 42 coil assembly, 12a,
32a, 42a side coil, 14, 34, 44 gradient magnetic field device, 15, 35, 45 transmitter coil, 16, 3
6,46 Receive coil.

フロントページの続き (72)発明者 竹島 弘隆 千葉県柏市新十余二2番1号 株式会社 日立メディコ内 (56)参考文献 特開 平1−165106(JP,A) 特開 昭61−172040(JP,A) 特開 昭63−65848(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61B 5/055 Front page continuation (72) Inventor Hirotaka Takeshima 2-12 Shinjuyo, Kashiwa-shi, Chiba Hitachi Medical Co., Ltd. (56) Reference JP-A-1-165106 (JP, A) JP-A-61-172040 (JP) , A) JP 63-65848 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) A61B 5/055

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の環状のコイルを有するコイル集合
体とこのコイル集合体を収容する低温用のコイル収容容
器とを有する磁極装置を、対向して上記コイル集合体の
軸方向に所定の空間間隔をもって配設した分割型MRI
用磁場発生装置において、上記各コイル収容容器相互の
対向部にそれぞれ平板状の傾斜磁場発生用コイルの収容
用の凹状配置スペースを形成したことを特徴とする分割
型MRI用磁場発生装置。
1. A magnetic pole device having a coil assembly having a plurality of annular coils and a low-temperature coil housing container for housing the coil assembly, facing each other in a predetermined space in the axial direction of the coil assembly. Divided MRI with intervals
A magnetic field generator for use in split magnetic field generator for split MRI, characterized in that a recessed arrangement space for accommodating a coil for generating a gradient magnetic field in a flat plate shape is formed at a portion facing each other of the coil accommodating containers.
【請求項2】 コイル収容容器の凹状配置スペースを取
り卷く部分の内部にコイル集合体中の平板状の所定のコ
イルが収容され、この平板状の所定のコイルは凹状配置
スペースに収容される平板状の傾斜磁場コイルを取り囲
むように配置され平板状の傾斜磁場コイルとともに全体
として平板状にされているものであることを特徴とする
請求項1記載の分割型MRI用磁場発生装置。
2. A plate-shaped predetermined coil in the coil assembly within the portion sow takes a concave space for the coil container is housed, the flat plate shape having a predetermined coil is accommodated in a concave arrangement space It is arranged so as to surround the flat-plate gradient magnetic field coil, and together with the flat-plate gradient magnetic field coil
The split type MRI magnetic field generator according to claim 1, wherein the split type MRI magnetic field generator is a flat plate .
【請求項3】 凹状配置スペースに、平板状の傾斜磁場
発生用コイルを収容したことを特徴とする請求項1記載
の分割型MRI用磁場発生装置。
3. The split-type magnetic field generator for MRI according to claim 1, wherein a flat-shaped gradient magnetic field generating coil is housed in the concave arrangement space.
【請求項4】 凹状配置スペースに、平板状の傾斜磁場
発生用コイルに加え、平板状の高周波送信コイルと平板
状の高周波受信コイルとのうちの少なくとも一つを収容
し平板状の傾斜磁場コイルとともに全体として平板状に
したことを特徴とする請求項3記載の分割型MRI用磁
場発生装置。
4. A flat- plate high-frequency transmission coil and a flat plate in addition to the flat-plate gradient magnetic field generating coil in the concave arrangement space.
Accommodating at least one of the Jo high frequency reception coil
Together with a flat plate gradient magnetic field coil
The magnetic field generator for split MRI according to claim 3, wherein
【請求項5】 凹状配置スペースに平板状の傾斜磁場発
生用コイルを収容し、凹状配置スペースの外に高周波送
信コイルと高周波受信コイルとを配置したことを特徴と
する請求項3記載の分割型MRI用磁場発生装置。
5. The split mold according to claim 3, wherein a flat-plate-shaped gradient magnetic field generating coil is housed in the concave arrangement space, and the high-frequency transmitting coil and the high-frequency receiving coil are arranged outside the concave arrangement space. Magnetic field generator for MRI.
JP19825397A 1996-08-07 1997-07-24 Split type magnetic field generator for MRI Expired - Fee Related JP3469436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19825397A JP3469436B2 (en) 1996-08-07 1997-07-24 Split type magnetic field generator for MRI

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-208374 1996-08-07
JP20837496 1996-08-07
JP19825397A JP3469436B2 (en) 1996-08-07 1997-07-24 Split type magnetic field generator for MRI

Publications (2)

Publication Number Publication Date
JPH1099296A JPH1099296A (en) 1998-04-21
JP3469436B2 true JP3469436B2 (en) 2003-11-25

Family

ID=26510866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19825397A Expired - Fee Related JP3469436B2 (en) 1996-08-07 1997-07-24 Split type magnetic field generator for MRI

Country Status (1)

Country Link
JP (1) JP3469436B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3624254B1 (en) * 2003-09-30 2005-03-02 株式会社日立製作所 Superconducting magnet device

Also Published As

Publication number Publication date
JPH1099296A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
EP0770881B1 (en) Shielded and open MRI magnet
US6580346B1 (en) Magnetic resonance imaging apparatus
EP0687920B1 (en) MRI magnet
US5410287A (en) Open MRI magnet with uniform magnetic field
WO1997025726A1 (en) Superconducting magnet device and magnetic resonance imaging device using the same
JPH10225447A (en) Plane-type magnetic resonance imaging magnet
JP4247948B2 (en) Magnet apparatus and MRI apparatus
US6965236B2 (en) MRI system utilizing supplemental static field-shaping coils
EP0937994B1 (en) Open and shielded supercondutive magnet
EP0460762B1 (en) Magnet system for magnetic resonance imaging
JP4292261B2 (en) Magnet apparatus and MRI apparatus using the same
US5939962A (en) Split type magnetic field generating apparatus for MRI
EP0609604A1 (en) Magnetic field generation device of use in superconductive type MRI
US4931759A (en) Magnetic resonance imaging magnet having minimally symmetric ferromagnetic shield
US6812702B2 (en) Magnetic resonance imaging apparatus
JP3469436B2 (en) Split type magnetic field generator for MRI
JP3747981B2 (en) Magnetic resonance imaging system
JP2004529692A (en) Open type magnet with embedded magnetic field forming coil
EP1457788A2 (en) MRI pulsed readout magnet
JP3372098B2 (en) Static magnetic field generator for magnetic resonance imaging
JP4651236B2 (en) Magnetic resonance imaging system
JPS62169311A (en) Superconductive magnet device for nmar imaging
EP0655630A1 (en) Magnetic resonance apparatus including elements for homogenizing the magnetic field
CN114504312A (en) Magnetic resonance imaging apparatus
JP2002291717A (en) Magnetic field generator and magnetic resonance imaging apparatus therewith

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees