JP3458590B2 - Insulated gate bipolar transistor - Google Patents

Insulated gate bipolar transistor

Info

Publication number
JP3458590B2
JP3458590B2 JP07160596A JP7160596A JP3458590B2 JP 3458590 B2 JP3458590 B2 JP 3458590B2 JP 07160596 A JP07160596 A JP 07160596A JP 7160596 A JP7160596 A JP 7160596A JP 3458590 B2 JP3458590 B2 JP 3458590B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
voltage
semiconductor layer
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07160596A
Other languages
Japanese (ja)
Other versions
JPH09260662A (en
Inventor
功 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP07160596A priority Critical patent/JP3458590B2/en
Publication of JPH09260662A publication Critical patent/JPH09260662A/en
Application granted granted Critical
Publication of JP3458590B2 publication Critical patent/JP3458590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、産業用あるいは
車両電鉄用スイッチング素子として用いられる大容量・
高耐圧用の絶縁ゲートバイポーラトランジスタに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-capacity capacitor used as a switching element for industrial or vehicle electric railway
The present invention relates to an insulated gate bipolar transistor for high breakdown voltage.

【0002】[0002]

【従来の技術】従来、産業用・車両電鉄用のスイッチン
グ素子としてGTOサイリスタが使用されてきたが、近
年、GTOサイリスタよりスイッチング特性の優れた半
導体素子として、大容量・高耐圧の絶縁ゲートバイポー
ラトランジスタ(以下IGBTと記す)の適用が始まっ
ている。中でもノンパンチスルー(NPT)型のIGB
Tは高耐圧素子に好適と考えられており、盛んに研究と
開発が行われている。
2. Description of the Related Art Conventionally, GTO thyristors have been used as switching elements for industrial and vehicle electric railways, but in recent years, large capacity, high breakdown voltage insulated gate bipolar transistors have been used as semiconductor elements having superior switching characteristics to GTO thyristors. Application of (hereinafter referred to as IGBT) has started. Above all, non-punch through (NPT) type IGB
T is considered to be suitable for a high breakdown voltage element, and is actively researched and developed.

【0003】図4は、従来の縦型IGBTの部分断面図
である。以下において、n、pを冠した層、領域等はそ
れぞれ電子、正孔を多数キャリアとする層、領域等を意
味するものとする。図において、シリコン基板からなる
nベース層1の一方の側の表面層に、選択的にpベース
領域2が形成されており、さらに、そのpベース領域2
の表面層に選択的にnエミッタ領域3が形成されてい
る。そして、nベース層1の表面露出部とnエミッタ領
域3とで挟まれたpベース領域2の表面上にゲート絶縁
膜4を介して、例えば多結晶シリコンからなるゲート電
極5が設けられている。pベース領域2およびnエミッ
タ領域3の表面に共通に接触してAl合金のエミッタ電
極10が設けられている。また、nベース層1の反対側
の表面層には、pコレクタ層8が形成され、その表面に
接触してコレクタ電極11が設けられている。
FIG. 4 is a partial cross-sectional view of a conventional vertical IGBT. In the following, layers, regions and the like bearing n and p mean layers and regions in which electrons and holes are the majority carriers, respectively. In the figure, a p base region 2 is selectively formed in a surface layer on one side of an n base layer 1 made of a silicon substrate.
An n emitter region 3 is selectively formed on the surface layer of the. A gate electrode 5 made of, for example, polycrystalline silicon is provided on the surface of the p base region 2 sandwiched between the exposed surface of the n base layer 1 and the n emitter region 3 with a gate insulating film 4 interposed therebetween. . An emitter electrode 10 of Al alloy is provided in common contact with the surfaces of p base region 2 and n emitter region 3. A p collector layer 8 is formed on the surface layer opposite to the n base layer 1, and a collector electrode 11 is provided in contact with the surface of the p collector layer 8.

【0004】図4のようなIGBTがスイッチング素子
として使用される場合、エミッタ電極10が接地され、
コレクタ電極11に正の電圧が印加される。そして、ゲ
ート電極5に印加する電圧を制御し、コレクタ電極1
1、エミッタ電極10間に電流が流れる状態(オン状
態)および流れない状態(オフ状態)をつくり出す。I
GBTはオフ状態でコレクタ電極11・エミッタ電極1
0間に電圧が印加されると、nベース層1とpベース領
域2との境界から空間電荷領域20が広がる。空間電荷
領域の端を点線で示した。nベース層1の厚さが厚く、
印加電圧が最大定格電圧のとき、空間電荷領域20がn
ベース層1全体に広がらないものをノンパンチスルー
(NPT)型と呼ぶ。
When the IGBT as shown in FIG. 4 is used as a switching element, the emitter electrode 10 is grounded,
A positive voltage is applied to collector electrode 11. Then, by controlling the voltage applied to the gate electrode 5, the collector electrode 1
1. A state in which a current flows between the emitter electrode 10 (on state) and a state in which no current flows (off state) are created. I
In the off state of the GBT, the collector electrode 11 and the emitter electrode 1
When a voltage is applied between 0, the space charge region 20 expands from the boundary between the n base layer 1 and the p base region 2. The edge of the space charge region is indicated by a dotted line. n base layer 1 is thick,
When the applied voltage is the maximum rated voltage, the space charge region 20 is n
Those that do not spread over the entire base layer 1 are called non-punch through (NPT) type.

【0005】IGBTには、上記ノンパンチスルー(N
PT)型の他に、パンチスルー(PT)型と呼ばれるも
のがある。ノンパンチスルー(NPT)型との相違点
は、nベース層1とpコレクタ層8との間に、nベース
層1と同じ導電型で不純物量の多いバッファ領域を持
ち、オフ状態でコレクタ・エミッタ間に最大定格電圧を
印加した場合(多くの場合は最大定格電圧の半分程度
で)、空間電荷領域がnベース層の全体に広がるように
設計される。この構造では、バッファ領域が空間電荷領
域が広がるのを抑える働きをするので、nベース層の厚
さを薄くできるが、特に高耐圧のものは製造が難しい等
の難点がある。
The non-punch through (N
In addition to the PT) type, there is a so-called punch through (PT) type. The difference from the non-punch through (NPT) type is that a buffer region having the same conductivity type as that of the n base layer 1 and a large amount of impurities is provided between the n base layer 1 and the p collector layer 8. When the maximum rated voltage is applied between the emitters (often about half the maximum rated voltage), the space charge region is designed to extend over the entire n base layer. In this structure, the buffer region functions to prevent the space charge region from expanding, so that the thickness of the n-base layer can be reduced, but there is a drawback that it is particularly difficult to manufacture a high withstand voltage.

【0006】本発明は、バッファ領域を持たず、オフ状
態のときにベース層中に広がる空間電荷領域が、コレク
タ・エミッタ間に最大定格電圧を印加した場合でも、ベ
ース層中全体に広がらないように設計されるNPT型I
GBTに関するものである。一般的な高耐圧IGBTの
場合、nベース層1の不純物量はpベース領域2のそれ
に比してきわめて少ない。そのため、NPT型IGBT
がオフ状態で、コレクタ・エミッタ間に電圧が印加され
たとき、nベース領域1とpベース領域2との境界部分
から広がる空間電荷領域20は、ほとんどnベース層1
の側に広がり、その深さ方向の広がりxは、次式で表さ
れる。
According to the present invention, the space charge region which has no buffer region and spreads in the base layer in the off state does not spread in the entire base layer even when the maximum rated voltage is applied between the collector and the emitter. NPT type I designed for
It is related to GBT. In the case of a general high breakdown voltage IGBT, the amount of impurities in the n base layer 1 is extremely smaller than that in the p base region 2. Therefore, NPT type IGBT
When a voltage is applied between the collector and the emitter in the off state, the space charge region 20 extending from the boundary portion between the n base region 1 and the p base region 2 is almost always the n base layer 1.
The spread x in the depth direction is expressed by the following equation.

【0007】[0007]

【数1】 ここで、xは空間電荷領域20の深さ方向の広がり、ε
Siはシリコンの比誘電率、εO は真空の誘電率、Vはコ
レクタ・エミッタ間電圧、qは電子の電荷、NDはnベ
ース層1の不純物濃度である。
[Equation 1] Here, x is the spread of the space charge region 20 in the depth direction, ε
Si is the relative permittivity of silicon, ε O is the vacuum permittivity, V is the collector-emitter voltage, q is the electron charge, and N D is the impurity concentration of the n base layer 1.

【0008】また、空間電荷領域20中で熱的に生成さ
れた電子、正孔対は、空間電荷領域20の形成する電界
のため、再結合することなく正孔はエミッタ電極10側
の端部に、電子はコレクタ電極11側の端部にへドリフ
トにより移動し、それぞれpベース領域2およびnベー
ス層1中を拡散によって移動する。このときnベース層
1を流れる電子は、IGBTのベース電流として働くた
め、オフ状態であるにもかかわらず、IGBTはトラン
ジスタ動作しており、僅かな電流(漏れ電流)が流れ
る。
The electron-hole pairs thermally generated in the space charge region 20 are not recombined due to the electric field formed by the space charge region 20, and the holes are not recombined with each other. Then, the electrons move to the end portion on the collector electrode 11 side by drift, and move in the p base region 2 and the n base layer 1 by diffusion, respectively. At this time, the electrons flowing through the n-base layer 1 work as a base current of the IGBT, so that the IGBT operates as a transistor even though it is in an off state, and a slight current (leakage current) flows.

【0009】この時のIGBTの電流増幅率は、次式に
よって表される。
The current amplification factor of the IGBT at this time is expressed by the following equation.

【0010】[0010]

【数2】 ここでhFEはエミッタ接地時の電流増幅率、αPNP はベ
ース接地時の電流増幅率αT は輸送効率、Wはベース領
域の厚さ、Lは少数キャリアのライフタイムである。こ
れらの式は、コレクタ・エミッタ間電圧Vが増大する
と、hFEが飛躍的に増大することを示唆しており、実素
子もそのように振る舞う。
[Equation 2] Here, h FE is the current amplification factor when the emitter is grounded, α PNP is the current amplification factor α T when the base is grounded, T is the transport efficiency, W is the thickness of the base region, and L is the minority carrier lifetime. These equations suggest that h FE dramatically increases as the collector-emitter voltage V increases, and the actual device behaves in this way.

【0011】[0011]

【発明が解決しようとする課題】上に記載の従来のNP
T型IGBTは、オフ状態においてコレクタ・エミッタ
間を流れる電流(もれ電流)が、コレクタ・エミッタ間
に印加される電圧が高くなると飛躍的に増大し、(電
圧)×(電流)で決定される損失が無視できなくなる
(特に素子が高温の場合)。そのため、従来はnベース
層1の厚さWを大きくし、空間電荷領域が広がらずに残
る部分を少数キャリアの拡散長以上に厚くしていた。し
かしそれでは、オン電圧が大きくなり、IGBTのオン
電圧−ターンオフ損失間のトレードオフの悪化を生じ、
スイッチング素子全体としての発生損失が大きくなる。
DISCLOSURE OF THE INVENTION The conventional NP described above
In the T-type IGBT, the current (leakage current) flowing between the collector and the emitter in the off state increases dramatically when the voltage applied between the collector and the emitter increases, and is determined by (voltage) × (current). Loss cannot be ignored (especially when the element is hot). Therefore, conventionally, the thickness W of the n base layer 1 is increased, and the portion where the space charge region remains unexpanded is made thicker than the diffusion length of minority carriers. However, in that case, the on-voltage increases, and the trade-off between the on-voltage and turn-off loss of the IGBT deteriorates.
The loss generated in the switching element as a whole becomes large.

【0012】以上の問題に鑑みて本発明の目的は、オン
電圧の低減のため、NPT型IGBTの第一導電型半導
体層の厚さを薄くし、しかもオフ状態における漏れ電流
を大幅に低減したNPT型IGBTを提供することを目
的とする。
In view of the above problems, the object of the present invention is to reduce the on-voltage and to reduce the thickness of the first conductivity type semiconductor layer of the NPT type IGBT, and to greatly reduce the leakage current in the off state. It is intended to provide an NPT type IGBT.

【0013】[0013]

【課題を解決するための手段】上記課題解決のため本発
明は、定格電圧の印加時に、第一導電型半導体層と第二
導電型ベース領域間のpn接合から第二導電型コレクタ
領域に向かって前記第一導電型半導体層中に広がる空間
電荷領域が該第一導電型半導体層全体を充たさないノン
パンチスルー(NPT)型絶縁ゲートバイポーラトラン
ジスタにおいて、前記第一導電型半導体層内の前記第二
導電型コレクタ領域に近い部分であって、前記空間電荷
領域が達しない部分に、少数キャリアの寿命が前記第一
導電型半導体層のそれよりも短く、前記第一導電型半導
体層よりも高濃度にドープされた第一導電型半導体領域
からなる短寿命領域を形成するものとする。
To solve the above problems, the present invention is directed to a second conductivity type collector region from a pn junction between a first conductivity type semiconductor layer and a second conductivity type base region when a rated voltage is applied. In a non-punch through (NPT) type insulated gate bipolar transistor in which a space charge region extending into the first conductivity type semiconductor layer does not fill the entire first conductivity type semiconductor layer, The minority carrier lifetime is shorter than that of the first-conductivity-type semiconductor layer and higher than that of the first-conductivity-type semiconductor layer in a portion near the second-conductivity-type collector region and not reached by the space charge region. A short-life region composed of a heavily doped semiconductor region of the first conductivity type is formed.

【0014】少数キャリアのライフタイムの短い領域
(短寿命領域)を設けることによって、前記の式は次の
ように変形できる。
By providing a region where the minority carrier has a short lifetime (short lifetime region), the above equation can be modified as follows.

【0015】[0015]

【数3】 但し x7 >>Lm7 また Lm >Lm7 ここで、αT ’は短寿命領域を除くnベース層の輸送効
率、αT7は短寿命領域の輸送効率、x7 は短寿命領域の
幅、Lm7は短寿命領域の少数キャリアの寿命である。
[Equation 3] Where x 7 >> L m7 or L m > L m7 where α T 'is the transport efficiency of the n base layer excluding the short life region, α T7 is the transport efficiency in the short life region, x 7 is the width of the short life region , L m7 is the life of minority carriers in the short life region.

【0016】短寿命領域の少数キャリアの寿命Lm を小
さくすることによって、αPNP のx依存性を小さくする
ことができ、電流(漏れ電流)はコレクタ・エミッタ間
に印加される電圧が高くなっても飛躍的に増大すること
はない。この効果によって、NPT型IGBTのオフ状
態における漏れ電流を大幅に低減できる。特に、短寿命
領域が、第一導電型で第一導電型半導体層よりも高濃度
にドープされているものとする。
By reducing the minority carrier lifetime L m in the short lifetime region, the x dependency of α PNP can be reduced, and the current (leakage current) is increased in voltage applied between the collector and the emitter. However, it does not increase dramatically. Due to this effect, the leakage current in the off state of the NPT type IGBT can be significantly reduced. Especially short life
The region is of the first conductivity type and has a higher concentration than the semiconductor layer of the first conductivity type.
Shall be doped.

【0017】また、前記第二導電型コレクタ領域は、前
記第一導電型半導体層の前記第二導電型ベース領域の形
成された面と対向する面側に形成され、前記短寿命領域
は、その面側の全面に広がっているものとする。そのよ
うにすれば、いわゆる縦型の素子となり、半導体基板の
面積の利用効率の高い、大容量の素子ができる。
The second conductivity type collector region is
Form of the second conductivity type base region of the first conductivity type semiconductor layer
Is formed on the surface opposite to the formed surface, and has the short life region.
Shall extend over the entire surface . By doing so, a so-called vertical element can be obtained, and a large-capacity element with high utilization efficiency of the area of the semiconductor substrate can be obtained.

【0018】[0018]

【発明の実施の形態】本発明の絶縁ゲートバイポーラト
ランジスタは、いわゆるNPT型のIGBTに適用され
るものであり、ベース領域中でコレクタ領域側に近い領
域に、ベース領域では少数キャリアと位置づけられるキ
ャリアの寿命が、ベース領域のそれよりも短い領域、第
七領域をもつという特徴を有するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The insulated gate bipolar transistor of the present invention is applied to a so-called NPT type IGBT, and carriers positioned in the region near the collector region side in the base region and minor carriers in the base region. Is characterized by having a seventh region, which is a region having a shorter life than that of the base region.

【0019】以下に、本発明の適用結果を実施例ととも
に示す。実施した素子は全て、定格電圧2500VのN
PT型IGBTである。 [実施例1]図1は、本発明の第一の実施例の縦型IG
BTの部分断面図である。図1に示したのは、電流のオ
ン・オフを行う活性部分である。その他に主に周辺部分
に耐圧を担うガードリング構造等の部分があるが、本発
明の本質に係わる部分でないので省略する。図におい
て、シリコン基板からなるnベース層1の一方の側の表
面層に、選択的にpチャネル領域2が形成されており、
さらに、そのpチャネル領域2の表面層に選択的にnエ
ミッタ領域3が形成されている。そして、nベース層1
の表面露出部とnエミッタ領域3とで挟まれたpベース
領域2の表面上にゲート酸化膜4を介して、例えば多結
晶シリコンからなるゲート電極5が設けられている。p
ベース領域2およびnエミッタ領域3の表面に共通に接
触してAl合金のエミッタ電極10が設けられている。
また、nベース層1の反対側の表面層には、pコレクタ
層8が形成され、その表面に接触してコレクタ電極11
が設けられている。図4の従来のIGBTとの違いは、
nベース層1のpコレクタ層8に近い部分に、短寿命領
域7が形成されている点である。
The results of applying the present invention will be shown below together with examples. All the implemented devices were N with rated voltage 2500V.
It is a PT type IGBT. [Embodiment 1] FIG. 1 is a vertical IG according to a first embodiment of the present invention.
It is a fragmentary sectional view of BT. Shown in FIG. 1 is the active portion that turns the current on and off. There are other parts such as a guard ring structure that bears the breakdown voltage mainly in the peripheral part, but they are omitted because they are not related to the essence of the present invention. In the figure, a p-channel region 2 is selectively formed in a surface layer on one side of an n base layer 1 made of a silicon substrate,
Further, an n emitter region 3 is selectively formed on the surface layer of the p channel region 2. And the n base layer 1
A gate electrode 5 made of, for example, polycrystalline silicon is provided on the surface of p base region 2 sandwiched between the exposed surface portion of n and n emitter region 3 with gate oxide film 4 interposed. p
An emitter electrode 10 of Al alloy is provided in common contact with the surfaces of base region 2 and n emitter region 3.
Further, a p collector layer 8 is formed on the surface layer on the opposite side of the n base layer 1, and the collector electrode 11 is brought into contact with the surface of the p collector layer 8.
Is provided. The difference from the conventional IGBT of FIG. 4 is that
The point is that the short life region 7 is formed in a portion of the n base layer 1 near the p collector layer 8.

【0020】シリコン基板は比抵抗、約150Ω・c
m、厚さ400μmのものを使用し、短寿命領域7は、
pコレクタ層8の形成前に、燐のイオン注入およびその
後の高温(1100℃)熱処理により形成した。燐イオ
ンの加速電圧は150keV、ドーズ量は5〜8×10
14cm-2とした。このとき表面不純物濃度は1×1019
cm-3、拡散深さは約1.5μmである。pコレクタ層
8は、ホウ素のイオン注入およびその後の高温(100
0℃)熱処理により形成した。ホウ素イオンの加速電圧
は45keV、ドーズ量は1×1015cm-2とした。p
コレクタ層8の拡散深さは約0.5μmである。このよ
うにして接合構造を形成後、従来のIGBTと同様に電
極形成のための窓開けを行い、金属膜を蒸着し電極を形
成してIGBTとする。ただし通常行われるキャリアラ
イフタイム制御のための電子線照射等はおこなっていな
い。
The silicon substrate has a specific resistance of about 150 Ω · c.
m, thickness 400 μm, short life region 7 is
Before the p collector layer 8 was formed, it was formed by ion implantation of phosphorus and subsequent high temperature (1100 ° C.) heat treatment. Phosphorus ion acceleration voltage is 150 keV and dose is 5 to 8 × 10.
It was 14 cm -2 . At this time, the surface impurity concentration is 1 × 10 19
cm −3 , the diffusion depth is about 1.5 μm. The p collector layer 8 is formed by ion implantation of boron and subsequent high temperature (100
It was formed by heat treatment (0 ° C.). The acceleration voltage of boron ions was 45 keV, and the dose amount was 1 × 10 15 cm -2 . p
The diffusion depth of the collector layer 8 is about 0.5 μm. After the junction structure is formed in this way, a window is opened for electrode formation in the same manner as in a conventional IGBT, and a metal film is vapor-deposited to form an electrode to form an IGBT. However, electron beam irradiation for carrier lifetime control that is usually performed is not performed.

【0021】なお、PT型IGBTのバッファ領域は、
通常不純物濃度が1017cm-3、厚さが5〜10μmで
ある。目的が異なるので、本実施例の短寿命領域7は濃
度が高く、厚さが薄い。この短寿命領域7でのキャリア
のライフタイムは、nベース層1でのライフタイムが約
10μsであったのに対し、0.1μs以下になってい
ると考えられる。
The buffer area of the PT type IGBT is
Usually, the impurity concentration is 10 17 cm −3 and the thickness is 5 to 10 μm. Since the purpose is different, the short life region 7 of this embodiment has a high concentration and a thin thickness. It is considered that the carrier lifetime in the short lifetime region 7 is 0.1 μs or less, whereas the lifetime in the n base layer 1 is about 10 μs.

【0022】図2(a)にnベース層1より高濃度の短
寿命領域7を形成したIGBTの高温度(125℃)で
の耐圧波形を、比較例として短寿命領域7を形成してい
ない従来型の素子のそれとともに示す。横軸はエミッタ
−コレクタ間電圧、縦軸は規格化された漏れ電流値であ
る。オン電圧(電流密度50A・cm-2)が約4Vの素
子で比較した。素子のベース領域の厚さ(W)は、実施
例の素子、比較例の素子ともに同一であるにもかかわら
ず、実施例の素子の方が、定格電圧2500Vにおける
高温漏れ電流の値は低く、特性が改善されたことがわか
る。
FIG. 2A shows a withstand voltage waveform at a high temperature (125 ° C.) of an IGBT in which the short-life region 7 having a higher concentration than the n-base layer 1 is formed. The short-life region 7 is not formed as a comparative example. It is shown with that of a conventional device. The horizontal axis represents the emitter-collector voltage, and the vertical axis represents the standardized leakage current value. Comparison was made for devices having an on-voltage (current density 50 A · cm −2 ) of about 4V. Although the thickness (W) of the base region of the element is the same in both the element of the example and the element of the comparative example, the value of the high temperature leakage current at the rated voltage of 2500 V is lower in the element of the example, It can be seen that the characteristics are improved.

【0023】これは、先に述べたように短寿命領域の少
数キャリアの寿命を小さくすることによって、αPNP
x(空間電荷領域の厚さ)依存性を小さくすることがで
き、それにより、漏れ電流を大幅に低減できたものであ
る。図2(b)に、実施例1のIGBTの高温(125
℃)におけるオン電圧−ターンオフ損失曲線を、比較例
の素子のそれとともに示す。横軸はオン電圧、縦軸は規
格化されたターンオフ損失である。比較例の素子はpコ
レクタ領域形成時の熱処理温度を600〜700℃の範
囲で変え、オン電圧を変化させた。ただし、図2(b)
の実施例1の素子では、125℃での漏れ電流が同一に
なるように素子のnベース層1の厚さを調整した。その
ため、実施例1の素子の方が15%程度、比較例の素子
よりもnベース層1の厚さが薄くなっている。
This is because, as described above, the lifespan of minority carriers in the short-lived region can be shortened to reduce the x (space charge region thickness) dependence of α PNP . The leakage current can be greatly reduced. In FIG. 2B, the high temperature of the IGBT of Example 1 (125
The on-voltage-turn-off loss curve at (C) is shown together with that of the device of the comparative example. The horizontal axis represents the on-voltage and the vertical axis represents the standardized turn-off loss. In the device of the comparative example, the heat treatment temperature at the time of forming the p collector region was changed in the range of 600 to 700 ° C. to change the ON voltage. However, FIG. 2 (b)
In the device of Example 1, the thickness of the n base layer 1 of the device was adjusted so that the leakage current at 125 ° C. was the same. Therefore, the element of Example 1 has a thickness of about 15%, which is smaller than that of the element of Comparative Example.

【0024】実施例1の素子の方が全体にオン電圧が小
さいのは、pコレクタ層8内のホウが十分にイオン化
しているためと考えられる。また実施例1の素子の中で
は燐イオンのドーズ量が多いほどオン電圧が大きく、タ
ーンオフ損失が小さかった。図から実施例1の素子はオ
ン電圧−ターンオフ損失のトレードオフ特性が改善され
ていることがわかる。
[0024] The on-voltage across the direction of the device of Example 1 is small, presumably because boron in p-type collector layer 8 is sufficiently ionized. In the device of Example 1, the larger the phosphorus ion dose, the larger the on-voltage and the smaller the turn-off loss. From the figure, it can be seen that the device of Example 1 has improved on-voltage-turn-off loss trade-off characteristics.

【0025】[実施例2]この実施例2では短寿命領域
として、結晶欠陥の導入によって再結合中心が形成され
ているものである。ホウ素イオンの注入および熱処理
(700℃)によりpコレクタ層8を形成したのち、結
晶欠陥の導入のために、pコレクタ層8側からヘリウム
イオンの注入をおこない、約320〜380℃のアニー
ルをした。加速電圧は10MeV、ドーズ量は1×10
12cm-2とした。このときAlマスクを使用し、結晶欠
陥が、表面から約50μmの深さまでの層に生起するよ
うにした。結晶欠陥の生起範囲は広がり抵抗法により判
定した。短寿命領域の無い比較例の素子は実施例1の場
合と同様にして作製した。
[Embodiment 2] In Embodiment 2, a recombination center is formed as a short-lived region by the introduction of crystal defects. After the p collector layer 8 was formed by implanting boron ions and heat treatment (700 ° C.), helium ions were implanted from the p collector layer 8 side to introduce crystal defects, and annealing was performed at about 320 to 380 ° C. . Accelerating voltage is 10 MeV and dose is 1 × 10
It was set to 12 cm -2 . At this time, an Al mask was used to cause crystal defects to occur in the layer from the surface to a depth of about 50 μm. The range of occurrence of crystal defects was determined by the spread resistance method. The element of the comparative example having no short life region was manufactured in the same manner as in Example 1.

【0026】図3(a)は、本発明第二の実施例のIG
BTの、高温(125℃)での耐圧波形を、比較例の素
子のそれとともに示す。縦軸、横軸は上記と同じであ
る。この場合も、オン電圧がほぼ同じ素子での測定値で
あるが、実施例2の素子の方が、定格電圧2500Vに
おける高温漏れ電流の値は低く、耐圧特性が改善される
ことがわかる。
FIG. 3A shows an IG according to the second embodiment of the present invention.
A breakdown voltage waveform of BT at high temperature (125 ° C.) is shown together with that of the element of the comparative example. The vertical axis and the horizontal axis are the same as above. In this case as well, the measured values were obtained with the elements having substantially the same on-voltage, but it can be seen that the element of Example 2 has a lower high-temperature leakage current value at the rated voltage of 2500 V and the withstand voltage characteristic is improved.

【0027】図3(b)に、実施例2のIGBTの高温
度(125℃)でのオン電圧−ターンオフ損失曲線を、
比較例の素子のそれとともに示す。縦軸、横軸は上記と
同じである。ただし、図3(b)の実施例2の素子で
は、実施例1の場合と同様な考慮をしたため、比較例の
素子よりもnベース層1の厚さが約5%薄くなってい
る。実施例2の素子の中では欠陥導入後のアニール温度
が低いほどオン電圧が大きく、ターンオフ損失が小さか
った。この図でも実施例の素子の方のオン電圧−ターン
オフ損失のトレードオフ特性が改善されていることがわ
かる。
FIG. 3B shows an on-voltage-turn-off loss curve at high temperature (125 ° C.) of the IGBT of Example 2.
It is shown together with that of the device of the comparative example. The vertical axis and the horizontal axis are the same as above. However, in the element of Example 2 in FIG. 3B, the n base layer 1 is about 5% thinner than the element of Comparative Example because the same consideration as in Example 1 was taken into consideration. In the device of Example 2, the lower the annealing temperature after the defects were introduced, the higher the on-voltage and the smaller the turn-off loss. Also in this figure, it can be seen that the trade-off characteristics of the on-voltage and turn-off loss of the device of the example are improved.

【0028】これまでの実施例は、pベース領域2とp
コレクタ層8とがnベース層1の両面に形成されたいわ
ゆる縦型のIGBTを上げたが、本発明は縦型にかぎら
ず、横型のIGBTにも適用できる。
In the above-described embodiments, the p base region 2 and p
Although a so-called vertical type IGBT in which the collector layer 8 and the n-base layer 1 are formed on both surfaces has been mentioned, the present invention is not limited to the vertical type and can be applied to a horizontal type IGBT.

【0029】[0029]

【発明の効果】以上説明したように本発明では、NPT
型IGBTにおいて、第一導電型ベース層の第二導電型
コレクタ領域に近い部分に、高濃度領域、結晶欠陥領域
等の少数キャリアの寿命が短い領域を設けることによっ
て、漏れ電流を低減し、オン電圧−ターンオフ損失のト
レードオフ特性を改善することができる。
As described above, according to the present invention, the NPT
In the IGBT of the first type, by providing a region having a short life of minority carriers such as a high concentration region and a crystal defect region in a portion of the first conductivity type base layer close to the second conductivity type collector region, leakage current is reduced, The voltage-turn-off loss trade-off characteristic can be improved.

【0030】その結果、スイッチング素子としてのIG
BTの損失の低減および、IGBTを用いた電力変換装
置の効率向上のために大きな寄与をなすものである。
As a result, the IG as a switching element
It greatly contributes to the reduction of the BT loss and the improvement of the efficiency of the power conversion device using the IGBT.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のIGBTの部分断面図FIG. 1 is a partial sectional view of an IGBT according to an embodiment of the present invention.

【図2】(a)は本発明実施例1および比較例の耐圧特
性の比較図、(b)はオン電圧−ターンオフ損失のトレ
ードオフ特性の比較図
FIG. 2A is a comparison diagram of breakdown voltage characteristics of Example 1 of the present invention and a comparative example, and FIG. 2B is a comparison chart of trade-off characteristics of ON voltage-turn-off loss.

【図3】(a)は本発明実施例2および比較例の耐圧特
性の比較図、(b)はオン電圧−ターンオフ損失のトレ
ードオフ特性の比較図
3A is a comparison diagram of breakdown voltage characteristics of Example 2 of the present invention and a comparative example, and FIG. 3B is a comparison diagram of trade-off characteristics of ON voltage-turn-off loss.

【図4】従来のIGBTの部分断面図FIG. 4 is a partial sectional view of a conventional IGBT.

【符号の説明】[Explanation of symbols]

1 nベース層 2 pベース領域 3 nエミッタ領域 4 ゲート酸化膜 5 ゲート電極 6 絶縁膜 7 短寿命領域 8 pコレクタ層 10 エミッタ電極 11 コレクタ電極 20 空間電荷領域 1 n base layer 2p base region 3 n emitter region 4 Gate oxide film 5 Gate electrode 6 insulating film 7 Short life span 8p collector layer 10 Emitter electrode 11 Collector electrode 20 Space charge region

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】定格電圧の印加時に、高比抵抗の第一導電
型半導体層と第二導電型ベース領域間のpn接合から第
二導電型コレクタ領域に向かって前記第一導電型半導体
層中に広がる空間電荷領域が第一導電型半導体層全体
を充たさないノンパンチスルー(NPT)型絶縁ゲート
バイポーラトランジスタにおいて、 前記第一導電型半導体層内の前記第二導電型コレクタ領
域に近い部分であって、前記空間電荷領域が達しない部
分に、少数キャリアの寿命が前記第一導電型半導体層の
それよりも短く、前記第一導電型半導体層よりも高濃度
にドープされた第一導電型半導体領域からなる短寿命領
域が形成されていることを特徴とする絶縁ゲートバイポ
ーラトランジスタ。
1. A first conductivity type semiconductor layer in a pn junction between a first conductivity type semiconductor layer having a high specific resistance and a second conductivity type base region toward a second conductivity type collector region when a rated voltage is applied. in the space in non-punch-through (NPT) insulated gate bipolar transistor charge region does not meet the entire said first conductivity type semiconductor layer, a portion close to the second conductive type collector region of the first conductivity type semiconductor layer extending In the portion where the space charge region does not reach, the minority carrier lifetime is shorter than that of the first conductivity type semiconductor layer, and the first conductivity type doped at a higher concentration than the first conductivity type semiconductor layer. An insulated gate bipolar transistor, characterized in that a short-life region composed of a semiconductor region is formed.
【請求項2】前記第二導電型コレクタ領域は、前記第一
導電型半導体層の前記第二導電型ベース領域の形成され
た面と対向する面側に形成され、前記短寿命領域は、そ
の面側の全面に広がっていることを特徴とする請求項1
に記載の絶縁ゲートバイポーラトランジスタ。
2. The second conductivity type collector region is the first conductivity type collector region.
Forming the second conductivity type base region of the conductivity type semiconductor layer;
Is formed on the side of the surface opposite to the surface where the short life region is formed.
2. It spreads over the entire surface of the surface side of the.
Insulated gate bipolar transistor according to.
JP07160596A 1996-03-27 1996-03-27 Insulated gate bipolar transistor Expired - Fee Related JP3458590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07160596A JP3458590B2 (en) 1996-03-27 1996-03-27 Insulated gate bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07160596A JP3458590B2 (en) 1996-03-27 1996-03-27 Insulated gate bipolar transistor

Publications (2)

Publication Number Publication Date
JPH09260662A JPH09260662A (en) 1997-10-03
JP3458590B2 true JP3458590B2 (en) 2003-10-20

Family

ID=13465463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07160596A Expired - Fee Related JP3458590B2 (en) 1996-03-27 1996-03-27 Insulated gate bipolar transistor

Country Status (1)

Country Link
JP (1) JP3458590B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8334581B2 (en) 2009-12-28 2012-12-18 Fuji Electric Co., Ltd. Semiconductor device exhibiting withstand voltages in the forward and reverse directions

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031800A1 (en) * 1998-11-26 2000-06-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and fabrication method therefor
JP4751340B2 (en) * 2007-01-09 2011-08-17 株式会社東芝 Semiconductor device and manufacturing method thereof
JP5320679B2 (en) * 2007-02-28 2013-10-23 富士電機株式会社 Semiconductor device and manufacturing method thereof
JP5596278B2 (en) * 2007-07-10 2014-09-24 富士電機株式会社 Trench type insulated gate MOS semiconductor device
WO2009122486A1 (en) 2008-03-31 2009-10-08 三菱電機株式会社 Semiconductor device
WO2013136898A1 (en) 2012-03-16 2013-09-19 富士電機株式会社 Semiconductor device
KR102023175B1 (en) * 2012-03-30 2019-09-19 후지 덴키 가부시키가이샤 Method for manufacturing semiconductor device
WO2015008458A1 (en) 2013-07-17 2015-01-22 富士電機株式会社 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8334581B2 (en) 2009-12-28 2012-12-18 Fuji Electric Co., Ltd. Semiconductor device exhibiting withstand voltages in the forward and reverse directions

Also Published As

Publication number Publication date
JPH09260662A (en) 1997-10-03

Similar Documents

Publication Publication Date Title
US11569092B2 (en) Semiconductor device
JP5150953B2 (en) Semiconductor device
JP3395520B2 (en) Insulated gate bipolar transistor
US20130075783A1 (en) Semiconductor device and method for manufacturing the same
JP3471823B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JP2002305305A (en) Semiconductor device
US7569431B2 (en) Semiconductor device and manufacturing method thereof
US9991336B2 (en) Semiconductor device, method for manufacturing the same, and power conversion system
JP3413021B2 (en) Semiconductor device
JPH0669509A (en) Conductivity-modulation semiconductor device and its manufacture
JP2001326353A (en) Semiconductor device
JP3458590B2 (en) Insulated gate bipolar transistor
JP4123913B2 (en) Manufacturing method of semiconductor device
JP4685206B2 (en) Manufacturing method of semiconductor device
KR0163875B1 (en) A semiconductor device and method for fabricating thereof
JP3975844B2 (en) IGBT and its manufacturing method
JP2002299623A (en) High breakdown voltage semiconductor device
JPWO2021009801A1 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP2004186620A (en) Manufacturing method for semiconductor device
JP3885616B2 (en) Semiconductor device
KR20010034362A (en) Semiconductor device and fabrication method therefor
JP2002353454A (en) Semiconductor device and manufacturing method
JPH0982955A (en) Manufacture of semiconductor device
JPH07321304A (en) Insulated gate bipolar transistor and its manufacture
JPH06216400A (en) Semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees