JP3456217B2 - Nickel-based secondary battery - Google Patents
Nickel-based secondary batteryInfo
- Publication number
- JP3456217B2 JP3456217B2 JP35401192A JP35401192A JP3456217B2 JP 3456217 B2 JP3456217 B2 JP 3456217B2 JP 35401192 A JP35401192 A JP 35401192A JP 35401192 A JP35401192 A JP 35401192A JP 3456217 B2 JP3456217 B2 JP 3456217B2
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- battery
- electrode plate
- charging
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、1C以上の急速充電をお
こなうために必要な電池構成を検討した結果、最適な正
極板,負極板および電解液組成を見いだし、信頼性の高
い超急速充電用ニッケル−カドミウム電池などのニッケ
ル系二次電池を提供するものである。これによって、ポ
ータブル機器等の簡便さが一層よくなり、用途の拡大が
期待できる。
【0002】
【従来の技術】近年、電子機器の発展によって新しい高
性能の二次電池の出現が期待されている。現在、電子機
器の電源としては、ニッケル・カドミウム電池、ニッケ
ル・亜鉛電池、ニッケル・水素化物電池のニッケル系電
池および鉛電池が使用されている。これらの二次電池
は、高容量化とならんで急速充電性能の向上が求められ
ている。そのうち、ニッケル系二次電池は、正極板とし
て水酸化ニッケル電極が使用されている。この正極板の
電極反応は H+ イオンの拡散であり、鉛電池の正極の電
極反応のように溶解・析出機構でないことから、長寿命
の高性能電極として使用されている。
【0003】この電極を充電すると水酸化ニッケルはオ
キシ水酸化ニッケル(NiOOH) となる。このオキシ水酸化
ニッケルはβ形とγ形があるが、充電時にγ-NiOOHが生
成すると31% の体積膨張がおこり、さらにγ-NiOOHの放
電生成物であるα-NiOOHになると59% の膨張となる。
【0004】近年、電池の高エネルギ−密度化をはかる
ために、活物質を多く充填すると、電極の残留多孔度が
小さくなり、活物質が膨張すると電極が厚くなり、セパ
レ−タの電解液が電極に移動して内部抵抗が増大するい
わゆる“ドライアップ”現象が生じたり、電極が崩壊し
て短絡が発生することもある。さらに、充電時間の短縮
が要求される用途、すなわち、急速充電をおこなう場合
には、γ-NiOOHの生成がとくにおこりやすくなるため
に、その対策が必要になってきた。
【0005】従来より、水酸化ニッケル活物質の利用率
を向上させる目的で、活物質に水酸化コバルトを添加す
る方法( 例えば電気化学31,47(1936),特許公開公報50-1
32441)、また活物質をニッケル基板に充填したのちCo(O
H)2 を形成させる方法( 例えば特許公報昭和57-005018)
・Cd(OH)2 −Ni(OH)2 の二元系を形成させる方法( 例え
ば特許公報平2-39063,USP4603094(1984),特許公報昭56
-36796) ・Ni(OH)2 −Co(OH)2 −Cd(OH)2 の三元系を形
成させる方法(例えば特許公報平3-20860,USP395686(19
76))等が提案されている。さらに、活物質の保持体であ
る焼結ニッケル基板に金属コバルトを含有させる方法も
提案されている(例えば特許公報昭54-1010)。しかしな
がらγ-NiOOHの生成の抑制の観点からは不充分であっ
た。
【0006】さらに、急速充電用密閉形電池を開発する
ためには、ガス吸収性能を向上させる必要があるが、1C
以上のガス吸収性能を達成することは、原理的にも、ま
た、ガス吸収による発熱による電池の劣化等によって極
めて困難であった。さらに、急速充放電をおこなうと、
温度上昇や過電圧の増大によって、水酸化カドミウムの
マイグレーションやカドミウムのデンドライド成長によ
る内部短絡によって、あるいはガス吸収反応による充電
時の異常発熱がおこる。電池の内部短絡を抑制し、長寿
命化をはかる手段として微孔性セパレータを使用する提
案(例えば特許公開公報,平-1-264167)があるが、正極
ニッケル基体や電解液濃度と関連づけて、さらに最適化
をはかる必要がある。
【0007】
【発明が解決しようとする課題】例えばニッケル・カド
ミウム電池は、高エネルギー密度化と急速充電性能の向
上が求められている。しかしながら、高エネルギー密度
電池や急速充電用電池に使用される水酸化ニッケル正極
板は充放電サイクルが進むと膨潤して厚くなり、セパレ
−タの電解液が電極に移動して内部抵抗が増大する、い
わゆるドライアップ現象が生じて、電池寿命が短くなる
という欠点があった。とくに、活物質保持体であるニッ
ケル基体の多孔度が8O% 、とくに85% 以上のものを使用
すると、基板の強度が弱いために、正極板の膨潤が大き
くなるという課題がある。
【0008】また、1C以上の急速充電をおこなうと、ガ
ス吸収による急激な熱の発生によって、セパレ−タの材
質が劣化して内部抵抗が増大したり、電解液のカドミウ
ムの溶解度が高くなってカドミウムのマイグレーション
による内部短絡が発生しやすくなるという課題があっ
た。さらに、この短絡の程度が微少である場合には、急
速充電すなわち大きな電流を流すと、ジュール熱によっ
て電池が高温になるという新たな課題が発生し、その対
策が望まれている。
【0009】
【課題を解決するための手段】本発明は、金属コバルト
を含有するニッケル基体を用いた正極板とモル濃度が
6.5〜14Mのアルカリ水溶液の電解液とを備えたニ
ッケル系二次電池である。とくにプラスチックボンデッ
ド電極の負極板および微孔性フィルムセパレ−タを使用
することにより急速充電が可能な信頼性の高い密閉形ニ
ッケル−カドミウム電池等のニッケル系二次電池とする
ことができる。とくに、ニッケル基板の多孔度が85〜98
%のものを使用した高エネルギー密度の正極板の長寿命
化がはかれることから、高エネルギー密度の急速充電用
電池とすることができる。また、活物質に金属ニッケル
を含まないプラスチックボンデッド電極の負極とモル濃
度が7M を越え14M 以下のアルカリ水溶液の電解液とを
備えた1C以上の急速充電をおこなうニッケル−カドミ
ウム系二次電池である。
【0010】
【作用】水酸化ニッケル正極板の活物質が充電によって
γ-NiOOHに変化するのを抑制して利用率を向上させるた
めに、水酸化コバルトを活物質に添加して水酸化ニッケ
ルと固溶体を形成させたり、あるいは水酸化カドミウム
を添加して、同様に固溶体を形成させる手段は普遍的な
技術として知られている。
【0011】本発明は、高エネルギー密度電池や急速充
電用電池に使用される水酸化ニッケル正極板は充放電サ
イクルが進むと膨潤して厚くなり、セパレータの電解液
が電極に移動して内部抵抗が増大してドライアップ現象
が生じ、電池寿命が短くなるという欠点の原因が、水酸
化ニッケル活物質の充電生成物としてγ-NiOOHが生成す
ることにあるという従来から公知の現象のほかに、活物
質保持体として使用するニッケル多孔体が充放電によっ
て酸化をうけて、水酸化ニッケルとなり、それがγ-NiO
OHになるために、正極板が膨潤して厚くなり、それによ
ってセパレータの電解液が極板に移動することが大きな
原因であることを見いだしたことに基づくものである。
【0012】そして、その対策として活物質保持体のニ
ッケルにコバルトを含有させ、基板の酸化で生成する水
酸化ニッケルがさらに酸化されてγ-NiOOHになることを
抑制する手段を提供するものである。また、ニッケル多
孔体が充放電によって酸化をうけて、水酸化ニッケルと
なり、それがγ-NiOOHになるために必要な余分の水酸化
カリウムをあらかじめ補償した電解液、すなわち高濃度
の電解液を使用すれば、サイクル経過にともなう内部抵
抗の増大を抑制できる。
【0013】さらに、高濃度の電解液を使用すると、カ
ドミウムの溶解度が増大して、超急速充電した場合にお
こる初期の異常な充電電圧の上昇による負極からの水素
発生およびそれにともなって正極からの酸素ガスの発生
を抑制できる。さらに加えて超急速充電用電池は、充電
時に電流密度が集中するために、微少短絡が生じやす
く、そのために、大きな電流が流れ電池が発熱するとい
う新たな課題があるので、その対策を付与する必要があ
る。その対策として、微孔性フィルムセパレータとくに
多孔度が30% 以上のものを採用するとガス吸収性能を阻
害することなく、微少短絡の発生が抑制でき、電池の異
常な発熱もおこらない。
【0014】また、プラスチックボンデッド電極の負極
を使用すると、焼結式カドミウム負極板を使用した場合
に比較して充電時の終期電圧の変化が大きくおこるため
に、その電圧変化を検出して、酸素ガスが発生する過充
電領域の電流を制限する充電方法すなわち定電圧法や小
さな電流で充電する方法が適用できる。この方法を適用
すると必要以上の過充電をしないので、急速充電にとも
なう上述した種々の問題を軽減できる。
【0015】
【実施例】以下、本発明の好適な実施例を用いて説明す
る。
[実施例1]カーボニルニッケル粉末と2wt%の金属コバ
ルト粉末とを混合したのち、0.1wt%のメチルセルローズ
水溶液と混練してスラリーにする。このスラリーをニッ
ケルメツキした0.1mm の穿孔板に塗布したのち、ヒータ
ーで乾燥してから水素の還元雰囲気中950 ℃で焼結して
多孔度が87% の焼結ニッケル基板を製作した。つぎに、
この焼結式ニッケル基板に硝酸コバルト2mol% を含む5M
の硝酸ニッケル水溶液を80℃で含浸したのち、80 ℃の5
Mの水酸化ナトリウム水溶液に浸漬する。その後、湯洗
・乾燥するという操作を8 回おこなった。その後、湯洗
・乾燥して、理論容量が350 mAh、寸法が0.8 ×14×
52( mm) の正極板を製作した。
【0016】実施例1で金属コバルト粉末の含有率を0,
1,3,5wt%と変えた正極板2 枚と従来から公知の理論容量
が500 mAhで、寸法が0.7 ×15×52(mm)の焼結式カドミ
ウム負極板3 枚を製作した。つぎに、この正極板を0.12
mmのポリアミド不織布セパレータで包んだのち、ヒー
トシールした。つづいて、正極板と負極板とを交互に積
み重ねて極板群とした。
【0017】この極板群と電解液として5 〜14M の濃度
の異なる水酸化カリウム水溶液2.5ml を用いて公称容量
が650mAhのニッケルメッキした鉄電槽を使用した角形ニ
ッケル・カドミウム電池を製作した。外形寸法は67×1
6.5×8(mm) であり、電池には0.5kg/cm2 で作動する
安全弁を付けている。金属コバルトの含有率が0,1,3,5w
t%の電池の符号をA,B,C,D する。
【0018】これらの電池を25℃,5Cという大きな電流
で電圧が1.65V に到るまで充電したのち、その検出電圧
よりも低い設定電圧が1.50V の定電圧をおこない( 合計
時間は15分間とした) 、その後0.5Cの電流で1.0 vまで
放電するというサイクル試験をおこなった。サイクル経
過にともなう放電容量の保持率の変化を図1に示す。同
図より、ニッケル基板に含まれるコバルトの含有率が0w
t%(A) のものは, 充放電サイクル数が400 回を越えると
放電容量が低下するが、1wt%(B),3wt%(C) および5wt%
(D) のものの容量は安定して良好であることがわかる。
【0019】これらの電池の500 サイクル目の内部抵抗
の値と使用した電解液濃度との関係を図2に示す。金属
コバルトの含有率が1wt%(B),3wt%(C) および,5wt%(D)の
ものの内部抵抗の値は、コバルトの含有率が0wt%(A) の
ものよりも低いことがわかる。また、内部抵抗の値は電
解液の濃度によって大きな影響をうけ、濃度が濃くなる
と低くなることがわかる。また、内部抵抗の値が急上昇
すると電池の放電容量も減少するとともに、充電電圧が
高くなり、放電電圧は低くなった。金属コバルトの含有
率が0%の電池A を解体して、電池のエレメントを調査し
たところ、セパレータの電解液は枯渇しており、正極板
は厚く膨れていた。電池の重量減少は、ほとんどなかっ
たことから、金属コバルトの含有率が0%のものはニッケ
ル基板が酸化をうけてγ-NiOOHの生成がおこっているこ
とを意味するものと考えられる。このγ-NiOOHの示性式
は K0.33 NiO2 ・0.67H2 O であり、電解液が正極に吸収
されることを意味する。
【0020】一方、金属コバルトを含有するニッケル基
板を使用した電池を解体して調査したところ、金属コバ
ルトの含有率が0%の電池A の場合に比較して、正極板の
膨潤は少なく、セパレータは電解液で濡れていた。この
ことは、金属コバルトを含有するニッケル基板を使用し
た正極板は、そのニッケル基板のニッケルが酸化をうけ
て生成する水酸化ニッケルにコバルトが含まれるため
に、充電時にγ-NiOOHになりにくく、膨潤が少なくなる
ものと考えられる。
【0021】一般に電極が膨潤すると、セパレータの電
解液は電極に移動して、電池の内部抵抗の値が上昇す
る。この内部抵抗の値が上昇して70m Ωを越えるように
なると、放電容量が著しく低下することが経験的に判明
している。内部抵抗の値を70mΩ以下に設定するために
は、図2から、ニッケル基板の金属コバルトの含有率の
値を1wt%(B) の場合は8.5M,3wt%(C) の場合には7.6M,5
wt%(D)の場合には6.5M以上の電解液濃度が必要となるこ
とがわかる。すなわち、電解液としては、基板に含まれ
る金属コバルトの含有率によって必要なOH- イオン濃度
が決められる。金属コバルトの含有率が3wt%以下の場合
にはOH- イオン濃度が6.5 〜14M のアルカリ水溶液の電
解液が好ましい。なお、電解液として水酸化カリウムと
水酸化ナリウムトとの混合水溶液について検討したが、
性能はほぼ使用するOH- イオン濃度の合計の濃度によっ
て大きな影響を受けることがわかった。
【0022】以上のように、金属コバルトを含有するニ
ッケル基板を使用したし水酸化ニッケル正極板と濃い濃
度の電解液を使用すると、10Cという極めて大きな電流
で充電することができるが、この場合、一定電圧を検出
したあと定電圧法やガス吸収が可能な条件で定電流法で
充電することが必要である。一般的なニッケル・カドミ
ウム電池の充電方法には、定電流で充電し、ガス吸収反
応による温度上昇あるいは電圧降下を検出して充電を制
御する方式(−△V方式)が採用されているが、この方
法では、1Cを越える急速充電は困難であった。例えば、
2C充電をおこなうと、その電流に相当するガス吸収性能
は困難で、6 〜15kg/cm2 に設定されている安全弁から
吸収されない酸素ガスが散逸して、電解液の減少とな
り、内部抵抗が増大して充電不能となつたり、放電容量
が著しく低下する。また、ガス吸収による発熱が大きく
セパレータの劣化による電解液の炭酸根の増大によって
も性能が劣化することになる。
【0023】このような電圧を検出して、充電を制御す
る方法には、特許公開公報,平-309265 やUSP,No5,077,
151 等で提案があるような、鉛電池の場合のように負極
の電位変化を検出して充電を制御する方式が望ましい。
このような機能は、前述したような水素過電圧の小さい
焼結式ニッケル基板を使用した負極板よりも、水素過電
圧が大きいプラスチックボンデッド負極板を適用するこ
とが望ましい。この場合負極活物質中のリザーブにCd(O
H)2 の量を少なくすると、この負極の分極に基づく電位
変化は大きく現れる。
【0024】つぎに、プラスチックボンデッド負極板を
適用した場合の実施例について詳述する。水酸化カドミ
ウム粉末100 部と金属カドミウム粉末20部と長さ1mm の
ポリプロピレンの短繊維0.1 部とを0.1wt%のポリビニル
アルコ−ルを含むエチレングリコ−ルで混合してペ−ス
ト状にする。このペ−ストを0.5μmのニッケルメッキ
した厚さ0.1mm の穿孔鋼板に塗着したのち、150 ℃で乾
燥したのち、加圧して理論容量が500mAhで寸法が0.7×1
5×52(mm)のプラスチックボンデッドカドミウム負極板
を製作した。つぎに、活物質保持体のニッケルに含有さ
せる金属コバルト粉末の含有率を0,1wt%と変えた多孔度
90% の発泡式ニッケル基体に水酸化コバルトを2wt%含む
直径が5μmの球状の水酸化ニッケル粉末100部と金属コ
バルト10部とを混合したのち、0.1wt%のメチルセルロ−
ズ水溶液50mlを加えて、混合してペ−スト状にしたもの
を充填する。その後、100 ℃で熱風乾燥してから、ポリ
テトラフルオロエチレン粉末の40wt%のディスパ−ジョ
ン溶液に浸漬してから同じ温度で再乾燥する。その後、
5Mの水酸化ナトリウム水溶液中で、対極に平滑ニッケル
板を使用し0.1C( 充放電反応が1 電子反応とした場合の
理論容量を基準とした) で15時間充電後、0.2Cで0V(Hg/
HgO)まで放電した。この極板をさらに、100 ℃で熱風乾
燥してから、加圧プレスをおこない、理論容量が350 m
Ah、寸法が0.8×14×52( mm) の正極板を製作し
た。この正極板2 枚を0.12mmのポリアミド不織布セパレ
ータで包んだのち、ヒ−トシ−ルした。つづいて、正極
板と負極板とを交互に積み重ねて極板群とした。この極
板群と電解液として5 〜14M の濃度の異なる水酸化カリ
ウム水溶液2.5ml を用いて公称容量が650mAhのニッケル
メッキした鉄電槽を使用した角形ニッケル・カドミウム
電池を製作した。外形寸法は67×16.5×8(mm)であ
り、電池には0.5kg/cm2 で作動する安全弁を付けてい
る。金属コバルトの含有率が0,1wt%の電池の符号をそれ
ぞれE,F とする。
【0025】これらの電池を25℃,10 Cという極めて大
きな電流で電圧が1.65V に到るまで充電したのち、今度
は設定電圧を変えることなく1.65V の定電圧をおこない
( 合計時間は10分間とした) 、その後0.5Cの電流で1.0
vまで放電するというサイクル試験をおこなった。これ
らの電池の300 サイクル目の内部抵抗の値と電解液濃度
との関係を図3に示す。
【0026】プラスチックボンデッドカドミウム負極板
を使用した電池の場合も、金属コバルトの含有率が1wt%
(F) のものの内部抵抗の値は、コバルトの含有率が0wt%
(E)のものよりも低いことがわかる。また、内部抵抗の
値は電解液の濃度によって大きな影響をうけ、濃度が濃
くなると低くなることがわかる。とくに、プラスチック
ボンデッドカドミウム負極板を使用すると10Cという超
急速充電でも、電解液の濃度が8.5M以上になると電池の
内部抵抗の値を実用的な充放電サイクル数が300 回まで
70m Ω以下に抑制することができる。このように、プラ
スチックボンデッドカドミウム負極板を使用すると良好
なサイクル特性が得られるのは、前述したように、この
負極板の水素過電圧が焼結式ニッケル基板よりも、はる
かに大きいために定電圧領域で局部的な水素の発生が抑
制され、電解液の枯渇の程度が小さいことに起因するも
のと考えらる。
【0027】また、電解液の濃度が8.5M以上になると内
部抵抗の増大が抑制されるのは、前述したニッケル基板
のニッケルが酸化をうけて水酸化ニッケルが生成する際
に、OH- イオンが消費されることに基づくもののほか
に、高濃度の電解液を使用すると、カドミウムの溶解度
が増大して、超急速充電した場合におこる初期の異常な
充電電圧の上昇による負極からの水素発生およびそれに
ともなって正極からの酸素ガスの発生を抑制できる点が
ある。その一例として、電池E すなわち金属コバルトの
含有率が0wt%の正極板で、電解液濃度を7Mおよび10M と
した場合の電池それぞれG,H の5Cおよび10C 充電特性を
図4に示す。
【0028】通常使用される濃度の電解液を使用した電
池G を5Cや10C 充電した場合には、充電初期から1.6V以
上の電圧に達したのち、徐々に低下してから再び上昇す
るという現象が現れる。ガスクロマトグラフィーによっ
て、電池内部のガス組成を分析したところ、充電初期に
は、小量の水素ガスと酸素ガスの発生が検出された。こ
のような現象が認められる濃度8.5M以下であった。ま
た、電解液量を3ml と多くしても、わずかな分極の減少
が観察されるが、同様な現象が認められたので、液量を
多くする手段では効果が少ない。一方、10M とした場合
には、10C 充電した場合にも水素ガスや酸素ガスの発生
は認められなかった。したがって、電解液の濃度が薄い
場合には、電解液に溶解するカドミウムイオンが少なく
なるために溶解・析出反応である負極板の充電反応が進
行しにくくなり、負極の分極が大きくなると共に、正極
の分極も同時に大きくなり、正極から酸素ガスが発生す
るものと考えられる。そして負極から水素ガスが発生す
ると負極上でのガス吸収能力が低下するために、発生し
た酸素ガスが弁を通して逸散し、電解液が減少するよう
になり、セパレータに含まれている電解液の枯渇がおこ
り内部抵抗が増大するものと考えられる。電解液の濃度
が濃い場合には、電解液のカドミウムイオンの溶解度が
高くなるために溶解・析出反応である負極板の充電反応
が容易になり、負極の分極が小さくなるので、正極の分
極も低下して、正極からの酸素ガスの発生も抑制される
ものと考えられる。
【0029】実施例では、ニッケル基体の多孔度が87%
および90% と高い基体を使用したが、これらの傾向は多
孔度80% とくに85% 以上の場合に顕著に現れることがわ
かった。
【0030】電池の寿命モードとしては、電解液の枯渇
による内部抵抗の増大と短絡の発生がある。短絡モード
のうち、微少短絡が発生する場合において急速充電をし
た場合には、電流が大きいために、ジュール熱によって
電池が高温になるという新たな課題が発生するために、
微少短絡の発生を抑制することが必要である。とくに充
電制御方式で定電圧法を適用した場合に、定電圧時に充
電器の最大電流が流れることになる。
【0031】このような、微少短絡を抑制するために
は、セパレータに微孔性フィルムセパレータを使用する
と著しい効果が生ずる。電池F と同様な構成の電池で、
電解液に10M の水酸化カリウム水溶液2.5ml 、セパレー
タとして新たに多孔度が60% のポリプロピレン製の厚さ
20μm の微孔性フィルムセパレータを不織布と併せて適
用した電池 J′、また、微孔性フィルムセパレータを適
用しない電池J をそれぞれ10セル製作し、25℃,10 Cの
電流で電圧が1.65V に到るまで充電したのち、さらに引
き続いて1.65V の定電圧をおこない( 合計時間は10分間
とした) 、その後0.5Cの電流で1.0 vまで放電するとい
うサイクル試験をおこなった。
【0032】500 サイクルを越えると、微孔性フィルム
セパレータを備えない電池の3 セルに、定電圧領域で電
流が一旦、減衰したのち増加するという現象が現れると
ともに電池温度が上昇して100 ℃付近に達するようにな
った。電池を解体して、調査したところセパレータには
電解液量が少なくなり、水酸化カドミウムのマイグレー
ションが生じて微少短絡が認められた。
【0033】一方、また微孔性フィルムセパレータを備
えた電池には、このような温度上昇はなく、1,000 サイ
クルに達しても異常な現象はおこらなかった。代表的な
充電時の電圧、電流および温度変化を図5に示す。この
ように、微孔性フィルムセパレータを備えた電池に定電
圧領域で異常な発熱が生じないのは、この微孔性フィル
ムセパレータによって水酸化カドミウムのマイグレーシ
ョンによる微少短絡の発生が抑制されるとともに、正極
から発生する酸素の透過が抑制されてガス吸収性能によ
る異常な発熱が制限されることによるものと考えられ
る。
【0034】この微孔性フィルムセパレータの機能とし
ては、水酸化カドミウムのマイグレーションによる微少
短絡の発生を抑制することが必要であり、その孔径は0.
1 〜20μm 、多孔度は20〜90% であればよい。
【0035】
【発明の効果】本発明は、金属コバルトを含有するニッ
ケル基体を用いた正極板とOH-イオン濃度が6.5〜14Mの
アルカリ水溶液の電解液とを備えた電池に関するもので
あり、急速充電が可能な密閉形ニッケル−カドミウム電
池等の急速充電が可能なニッケル系二次電池とすること
ができる。
【0036】とくに、プラスチックボンデッド電極の負
極板・微孔性フィルムセパレ−タ等を使用することによ
り信頼性がより向上する。また、ニッケル基体の多孔度
が85〜98% のものを使用した高エネルギー密度の正極板
の長寿命化がはかれることから、高エネルギー密度の急
速充電用電池とすることができる。
【0037】Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention examines a battery configuration necessary for performing rapid charging of 1 C or more. The present invention provides a nickel-based secondary battery such as a highly reliable nickel-cadmium battery for ultra-rapid charging. As a result, the simplicity of a portable device or the like is further improved, and the expansion of applications can be expected. [0002] In recent years, with the development of electronic equipment, the appearance of new high-performance secondary batteries is expected. At present, nickel-cadmium batteries, nickel-zinc batteries, nickel-based batteries such as nickel-hydride batteries, and lead batteries are used as power supplies for electronic devices. These secondary batteries are required to have an improved rapid charging performance as well as a higher capacity. Among them, a nickel-based secondary battery uses a nickel hydroxide electrode as a positive electrode plate. The electrode reaction of the positive electrode plate is diffusion of H + ions, and does not have a dissolution / precipitation mechanism unlike the electrode reaction of the positive electrode of a lead battery. Therefore, it is used as a long-life high-performance electrode. When this electrode is charged, nickel hydroxide becomes nickel oxyhydroxide (NiOOH). Nickel oxyhydroxide has β-form and γ-form.When γ-NiOOH is generated during charging, volume expansion of 31% occurs, and when it becomes α-NiOOH, which is the discharge product of γ-NiOOH, expansion of 59% Becomes In recent years, in order to increase the energy density of a battery, when the active material is filled in a large amount, the residual porosity of the electrode decreases, and when the active material expands, the electrode becomes thicker. A so-called "dry-up" phenomenon in which the internal resistance increases by moving to the electrode may occur, or the electrode may collapse and a short circuit may occur. Furthermore, in applications where the charging time is required to be shortened, that is, in the case of performing quick charging, since γ-NiOOH is particularly easily generated, measures have been required. Conventionally, a method of adding cobalt hydroxide to an active material for the purpose of improving the utilization rate of the nickel hydroxide active material (for example, Electrochemistry 31, 47 (1936), Patent Publication 50-1)
32441) Also, after filling the nickel substrate with the active material, Co (O
H) Method for forming 2 (for example, Patent Publication Showa 57-005018)
A method of forming a binary system of Cd (OH) 2 -Ni (OH) 2 (for example, Japanese Patent Publication No. 2-39063, US Pat.
-36796)-A method of forming a ternary system of Ni (OH) 2 -Co (OH) 2 -Cd (OH) 2 (for example, Patent Publication Hei 3-20860, US Pat.
76)) has been proposed. Furthermore, a method has been proposed in which metallic cobalt is contained in a sintered nickel substrate, which is a holder for an active material (for example, Japanese Patent Publication No. 54-1010). However, it was insufficient from the viewpoint of suppressing the production of γ-NiOOH. Further, in order to develop a sealed battery for quick charging, it is necessary to improve gas absorption performance.
Achieving the above gas absorption performance was extremely difficult in principle and also due to deterioration of the battery due to heat generated by gas absorption. In addition, rapid charging and discharging
Temperature rise and increase in overvoltage cause migration of cadmium hydroxide, internal short circuit due to cadmium dendrite growth, or abnormal heat generation during charging due to a gas absorption reaction. There is a proposal to use a microporous separator as a means for suppressing internal short-circuiting of the battery and extending the life (for example, Japanese Patent Laid-Open Publication No. Hei 1-264167). Further optimization is needed. [0007] For example, nickel cadmium batteries are required to have a high energy density and an improved fast charging performance. However, the nickel hydroxide positive electrode plate used for high energy density batteries and quick charge batteries swells and becomes thicker as the charge / discharge cycle progresses, and the electrolyte of the separator moves to the electrodes to increase the internal resistance. There is a drawback that a so-called dry-up phenomenon occurs and battery life is shortened. In particular, when a nickel substrate serving as an active material holder has a porosity of 80% or more, particularly 85% or more, there is a problem that the swelling of the positive electrode plate becomes large because the strength of the substrate is low. Further, when a rapid charge of 1 C or more is performed, rapid heat generation due to gas absorption deteriorates the material of the separator to increase the internal resistance or increase the solubility of cadmium in the electrolyte. There is a problem that an internal short circuit easily occurs due to migration of cadmium. Further, when the degree of the short circuit is small, a new problem that the battery becomes high temperature due to Joule heat when rapid charging, that is, when a large current flows, occurs, and a countermeasure is desired. According to the present invention, there is provided a battery comprising a positive electrode plate using a nickel substrate containing metallic cobalt and an electrolytic solution of an alkaline aqueous solution having a molar concentration of 6.5 to 14M .
It is a nickel-based secondary battery . Particularly, by using a negative electrode plate of a plastic bonded electrode and a microporous film separator, a highly reliable nickel-based secondary battery such as a sealed nickel-cadmium battery capable of quick charging can be obtained. In particular, the porosity of the nickel substrate is 85-98
% Of the positive electrode plate having a high energy density, the life of the positive electrode plate having a high energy density can be extended. In addition, metallic nickel is used as the active material.
And Molar Concentration of Negative Plastic Bonded Electrode
With an alkaline aqueous electrolyte solution with a degree of more than 7M and 14M or less.
Nickel-cadmium for quick charging of 1C or more
Battery. In order to suppress the change of the active material of the nickel hydroxide positive electrode plate into γ-NiOOH by charging and to improve the utilization factor, cobalt hydroxide is added to the active material to reduce the nickel hydroxide. Means for forming a solid solution or adding cadmium hydroxide to form a solid solution in the same manner are known as universal techniques. According to the present invention, a nickel hydroxide positive electrode plate used in a high energy density battery or a battery for rapid charging swells and becomes thicker as the charge / discharge cycle proceeds, and the electrolyte of the separator moves to the electrode to increase the internal resistance. In addition to the conventionally known phenomenon that γ-NiOOH is generated as a charge product of the nickel hydroxide active material, the cause of the drawback that the dry-up phenomenon occurs and the battery life is shortened is increased, The nickel porous material used as the active material support is oxidized by charging and discharging to become nickel hydroxide, which is γ-NiO
It is based on the finding that the major cause is that the positive electrode plate swells and becomes thicker to become OH, whereby the electrolyte of the separator moves to the electrode plate. As a countermeasure, the present invention provides a means for containing nickel in the nickel of the active material holder to suppress nickel hydroxide generated by oxidation of the substrate from being further oxidized to γ-NiOOH. . In addition, the nickel porous body is oxidized by charge and discharge to become nickel hydroxide, and an electrolytic solution that compensates in advance for excess potassium hydroxide necessary for it to become γ-NiOOH, that is, a high-concentration electrolytic solution is used. By doing so, it is possible to suppress an increase in internal resistance with the passage of cycles. Further, when a high-concentration electrolytic solution is used, the solubility of cadmium is increased, and hydrogen is generated from the negative electrode due to an abnormally high initial charging voltage that occurs in the case of ultra-rapid charging, and consequently from the positive electrode. Generation of oxygen gas can be suppressed. In addition, the battery for ultra-rapid charging has a new problem that the current density is concentrated at the time of charging, so that a minute short-circuit is likely to occur. Therefore, there is a new problem that a large current flows and the battery generates heat. There is a need. As a countermeasure, if a microporous film separator, particularly one having a porosity of 30% or more, is used, the occurrence of micro short circuit can be suppressed without impairing gas absorption performance, and abnormal heat generation of the battery does not occur. Further, when the negative electrode of the plastic bonded electrode is used, a change in the final voltage at the time of charging is larger than when a sintered cadmium negative electrode plate is used. A charging method for limiting a current in an overcharge region where oxygen gas is generated, that is, a constant voltage method or a method of charging with a small current can be applied. By applying this method, overcharging is not performed more than necessary, so that the above-mentioned various problems associated with rapid charging can be reduced. Hereinafter, a preferred embodiment of the present invention will be described. [Example 1] Carbonyl nickel powder and 2 wt% metal cobalt powder are mixed, and then kneaded with a 0.1 wt% aqueous methylcellulose solution to form a slurry. This slurry was applied to a nickel-plated 0.1 mm perforated plate, dried with a heater, and then sintered at 950 ° C. in a reducing atmosphere of hydrogen to produce a sintered nickel substrate having a porosity of 87%. Next,
5M containing 2mol% of cobalt nitrate on this sintered nickel substrate
Of nickel nitrate aqueous solution at 80 ° C
M sodium hydroxide aqueous solution. After that, the operation of washing with hot water and drying was performed eight times. After that, it is washed with hot water and dried, the theoretical capacity is 350 mAh, and the dimensions are 0.8 × 14 ×
A 52 (mm) positive electrode plate was manufactured. In Example 1, the content of metallic cobalt powder was reduced to 0,
Two positive electrode plates of 1,3,5 wt% were changed and three sintered cadmium negative electrode plates of conventionally known theoretical capacity of 500 mAh and dimensions of 0.7 × 15 × 52 (mm) were produced. Next, this positive electrode plate was
After wrapping with a non-woven polyamide nonwoven fabric separator, heat sealing was performed. Subsequently, a positive electrode plate and a negative electrode plate were alternately stacked to form an electrode plate group. A prismatic nickel-cadmium battery using a nickel-plated iron battery container having a nominal capacity of 650 mAh was manufactured using the electrode group and 2.5 ml of an aqueous solution of potassium hydroxide having a different concentration of 5 to 14 M as an electrolytic solution. External dimensions are 67 x 1
A 6.5 × 8 (mm), and with a safety valve operating at 0.5 kg / cm 2 in the battery. Metal cobalt content of 0,1,3,5w
A, B, C, D are used for the sign of the battery of t% After charging these batteries with a large current of 25 ° C. and 5 C until the voltage reaches 1.65 V, a set voltage lower than the detection voltage is set to 1.50 V (the total time is 15 minutes). Then, a cycle test of discharging to 1.0 V at a current of 0.5 C was performed. FIG. 1 shows the change in the retention rate of the discharge capacity with the passage of the cycle. From the figure, the content of cobalt contained in the nickel substrate was 0 w
In the case of t% (A), the discharge capacity decreases when the number of charge / discharge cycles exceeds 400, but 1wt% (B), 3wt% (C) and 5wt%
It can be seen that the capacity of (D) is stable and good. FIG. 2 shows the relationship between the internal resistance at the 500th cycle of these batteries and the concentration of the used electrolyte. It can be seen that the values of the internal resistance of the metallic cobalt content of 1 wt% (B), 3 wt% (C) and 5 wt% (D) are lower than those of the cobalt content of 0 wt% (A). . It can also be seen that the value of the internal resistance is greatly affected by the concentration of the electrolytic solution, and decreases as the concentration increases. Also, when the value of the internal resistance sharply increased, the discharge capacity of the battery decreased, and the charge voltage increased and the discharge voltage decreased. Battery A having a metal cobalt content of 0% was disassembled, and the elements of the battery were examined. As a result, the electrolyte in the separator was depleted, and the positive electrode plate was thick and swollen. Since the weight of the battery hardly decreased, it is considered that the case where the content of metallic cobalt is 0% means that the nickel substrate is oxidized and γ-NiOOH is generated. The characteristic formula of this γ-NiOOH is K 0.33 NiO 2 · 0.67H 2 O, which means that the electrolyte is absorbed by the positive electrode. On the other hand, when a battery using a nickel substrate containing metallic cobalt was disassembled and examined, the swelling of the positive electrode plate was smaller than that of battery A in which the content of metallic cobalt was 0%, and a separator was used. Was wet with electrolyte. This means that the positive electrode plate using a nickel substrate containing metallic cobalt is less likely to become γ-NiOOH during charging because nickel contained in the nickel substrate is oxidized and nickel hydroxide contains cobalt. It is considered that swelling is reduced. Generally, when the electrode swells, the electrolyte of the separator moves to the electrode, and the value of the internal resistance of the battery increases. It has been empirically found that when the value of the internal resistance is increased to exceed 70 mΩ, the discharge capacity is significantly reduced. In order to set the value of the internal resistance to 70 mΩ or less, it can be seen from FIG. 2 that the value of the metal cobalt content of the nickel substrate is 8.5 M for 1 wt% (B) and 7.6 for 3 wt% (C). M, 5
It can be seen that in the case of wt% (D), an electrolyte concentration of 6.5 M or more is required. That is, the required OH - ion concentration of the electrolytic solution is determined by the content of metallic cobalt contained in the substrate. When the content of metallic cobalt is 3 wt% or less, an alkaline aqueous electrolyte having an OH - ion concentration of 6.5 to 14M is preferable. As an electrolytic solution, a mixed aqueous solution of potassium hydroxide and sodium hydroxide was examined.
It was found that the performance was largely influenced by the total concentration of the used OH - ions. As described above, when a nickel substrate containing metallic cobalt is used and a nickel hydroxide positive electrode plate and a high concentration electrolytic solution are used, the battery can be charged with an extremely large current of 10 C. After detecting a constant voltage, it is necessary to charge by a constant voltage method or a constant current method under conditions that allow gas absorption. A general nickel-cadmium battery charging method employs a method of charging at a constant current and controlling charging by detecting a temperature rise or a voltage drop due to a gas absorption reaction (−ΔV method). With this method, rapid charging over 1C was difficult. For example,
When performing 2C charging, the gas absorption performance corresponding to the current is difficult, and the unabsorbed oxygen gas is dissipated from the safety valve set at 6 to 15 kg / cm 2 , causing the electrolyte to decrease and the internal resistance to increase. As a result, charging becomes impossible, and the discharge capacity is significantly reduced. In addition, heat generation due to gas absorption is large, and performance is also deteriorated due to an increase in carbonate groups of the electrolytic solution due to deterioration of the separator. A method for detecting such a voltage and controlling charging is disclosed in Japanese Patent Laid-Open Publication No. Hei 309265, US Pat. No. 5,077,
As in the case of a lead-acid battery, a method of detecting the potential change of the negative electrode and controlling the charging is desirable, as proposed in 151 etc.
For such a function, it is desirable to apply a plastic bonded negative electrode plate having a larger hydrogen overvoltage than a negative electrode plate using a sintered nickel substrate having a small hydrogen overvoltage as described above. In this case, the reserve in the negative electrode active material is Cd (O
When the amount of H) 2 is reduced, the potential change based on the polarization of the negative electrode appears significantly. Next, an embodiment in which a plastic bonded negative electrode plate is applied will be described in detail. 100 parts of cadmium hydroxide powder, 20 parts of metal cadmium powder, and 0.1 part of short polypropylene fiber having a length of 1 mm are mixed with ethylene glycol containing 0.1% by weight of polyvinyl alcohol to form a paste. The paste is applied to a 0.5 μm nickel-plated perforated steel sheet having a thickness of 0.1 mm, dried at 150 ° C., and then pressed to obtain a theoretical capacity of 500 mAh and a size of 0.7 × 1.
A 5 × 52 (mm) plastic bonded cadmium negative electrode plate was manufactured. Next, nickel contained in the active material holder
0,1Wt% and changing porosity of the content of the metallic cobalt powder to
After mixing 100 parts of spherical nickel hydroxide powder having a diameter of 5 μm containing 2 wt% of cobalt hydroxide and 10 parts of metallic cobalt in a 90% foamed nickel substrate, 0.1 wt% of methylcellulose is mixed.
Then, 50 ml of an aqueous solution is added, and the mixture is mixed and pasted. Thereafter, it is dried with hot air at 100 ° C., immersed in a 40 wt% dispersion solution of polytetrafluoroethylene powder, and dried again at the same temperature. afterwards,
In a 5M aqueous sodium hydroxide solution, use a smooth nickel plate as the counter electrode, charge at 0.1C (based on the theoretical capacity when the charge and discharge reaction is a one-electron reaction) for 15 hours, and then at 0C (Hg /
HgO). The electrode plate is further dried with hot air at 100 ° C., and then pressed under pressure to obtain a theoretical capacity of 350 m.
Ah, a positive electrode plate having dimensions of 0.8 × 14 × 52 (mm) was manufactured. The two positive plates were wrapped with a 0.12 mm polyamide nonwoven fabric separator, and then heat sealed. Subsequently, a positive electrode plate and a negative electrode plate were alternately stacked to form an electrode plate group. A square nickel-cadmium battery using a nickel-plated iron battery case with a nominal capacity of 650 mAh was manufactured using the electrode group and 2.5 ml of a potassium hydroxide aqueous solution having different concentrations of 5 to 14 M as an electrolyte. The external dimensions are 67 × 16.5 × 8 (mm), and the battery is equipped with a safety valve that operates at 0.5 kg / cm 2 . The symbols of the batteries having a metal cobalt content of 0.1 wt% are E and F, respectively. After charging these batteries with an extremely large current of 25 ° C. and 10 C until the voltage reaches 1.65 V, a constant voltage of 1.65 V is applied without changing the set voltage.
(Total time was 10 minutes), then 1.0 at 0.5C current
A cycle test of discharging to v was performed. FIG. 3 shows the relationship between the internal resistance value at the 300th cycle of these batteries and the electrolyte concentration. Also in the case of a battery using a plastic bonded cadmium negative electrode plate, the content of metallic cobalt is 1 wt%.
The value of the internal resistance of (F) is that the cobalt content is 0 wt%.
It turns out that it is lower than that of (E). It can also be seen that the value of the internal resistance is greatly affected by the concentration of the electrolytic solution, and decreases as the concentration increases. In particular, when a plastic-bonded cadmium negative electrode plate is used, the battery's internal resistance can be reduced to a practical number of charge / discharge cycles up to 300 times when the concentration of the electrolyte exceeds 8.5 M, even at an ultra-rapid charge of 10 C.
It can be suppressed to 70 mΩ or less. As described above, good cycle characteristics can be obtained by using a plastic bonded cadmium negative electrode plate because, as described above, the hydrogen overvoltage of this negative electrode plate is much larger than that of a sintered nickel substrate, so that a constant voltage is obtained. This is considered to be due to the fact that the local generation of hydrogen is suppressed in the region and the degree of depletion of the electrolyte is small. Further, the increase in internal resistance is suppressed when the concentration of the electrolytic solution is more than 8.5M, when nickel nickel substrate as described above to produce nickel hydroxide undergo oxidation, OH - ions In addition to being based on consumption, the use of high-concentration electrolytes increases the solubility of cadmium, which results in the formation of hydrogen from the negative electrode due to an abnormally high initial charging voltage that occurs during ultra-rapid charging, and Accordingly, there is a point that generation of oxygen gas from the positive electrode can be suppressed. As an example, FIG. 4 shows the 5C and 10C charging characteristics of batteries E, that is, the batteries G and H when the electrolyte concentration is 7 M and 10 M, respectively, for a positive electrode plate having a metal cobalt content of 0 wt%. When a battery G using an electrolyte having a commonly used concentration is charged at 5C or 10C, the voltage reaches 1.6V or more from the beginning of charging, then gradually decreases and then increases again. Appears. When the gas composition inside the battery was analyzed by gas chromatography, generation of small amounts of hydrogen gas and oxygen gas was detected in the initial stage of charging. The concentration at which such a phenomenon was observed was 8.5 M or less. Even when the amount of the electrolytic solution was increased to 3 ml, a slight decrease in polarization was observed, but the same phenomenon was observed. On the other hand, at 10 M, no generation of hydrogen gas or oxygen gas was observed even when charged at 10 C. Therefore, when the concentration of the electrolyte is low, the amount of cadmium ions dissolved in the electrolyte decreases, so that the charging reaction of the negative electrode plate, which is a dissolution / precipitation reaction, hardly progresses. It is considered that the polarization also increases at the same time, and oxygen gas is generated from the positive electrode. Then, when hydrogen gas is generated from the negative electrode, the gas absorption capacity on the negative electrode decreases, so the generated oxygen gas escapes through the valve, so that the electrolyte decreases, and the electrolyte contained in the separator is reduced. It is considered that the exhaustion occurs and the internal resistance increases. When the concentration of the electrolytic solution is high, the solubility of cadmium ions in the electrolytic solution is increased, so that the charging reaction of the negative electrode plate, which is a dissolution / precipitation reaction, is facilitated, and the polarization of the negative electrode is reduced. It is conceivable that the generation of oxygen gas from the positive electrode was reduced, and the generation of oxygen gas from the positive electrode was also suppressed. In the example, the porosity of the nickel substrate was 87%.
And a substrate as high as 90% was used, but it was found that these tendencies were remarkable when the porosity was above 80%, especially above 85%. As the life mode of the battery, there is an increase in internal resistance due to depletion of the electrolyte and a short circuit. In the short-circuit mode, when quick charging is performed in the case where a micro short-circuit occurs, the current is large, so a new problem that the battery becomes high temperature due to Joule heat occurs,
It is necessary to suppress the occurrence of a micro short circuit. In particular, when the constant voltage method is applied in the charge control method, the maximum current of the charger flows at the constant voltage. In order to suppress such a minute short circuit, the use of a microporous film separator as a separator has a remarkable effect. A battery with the same configuration as Battery F,
2.5 ml of 10 M potassium hydroxide aqueous solution as electrolyte and 60% porosity polypropylene as separator
Battery J ', in which a 20 μm microporous film separator was applied in combination with a nonwoven fabric, and battery J, in which a microporous film separator was not applied, were manufactured in 10 cells each, and the voltage was increased to 1.65 V at 25 ° C and 10 C current. After the battery was charged until it reached, a cycle test was performed in which a constant voltage of 1.65 V was further applied (total time was 10 minutes), and then the battery was discharged to 1.0 V with a current of 0.5 C. When the number of cycles exceeds 500, a phenomenon in which the current once attenuates in the constant voltage region and then increases in three cells of the battery without the microporous film separator, and the battery temperature rises to around 100 ° C. Came to reach. When the battery was disassembled and inspected, the amount of electrolyte solution in the separator was reduced, and migration of cadmium hydroxide occurred, and a slight short circuit was observed. On the other hand, the battery provided with the microporous film separator did not have such a rise in temperature, and did not cause any abnormal phenomenon even after reaching 1,000 cycles. FIG. 5 shows typical changes in voltage, current, and temperature during charging. As described above, the battery provided with the microporous film separator does not generate abnormal heat in the constant voltage region because the microporous film separator suppresses the occurrence of micro short circuit due to migration of cadmium hydroxide, It is considered that transmission of oxygen generated from the positive electrode is suppressed and abnormal heat generation due to gas absorption performance is restricted. As a function of the microporous film separator, it is necessary to suppress the occurrence of a micro short circuit due to the migration of cadmium hydroxide, and the pore size is set to be 0.1 μm.
It is sufficient that the porosity is 1 to 20 μm and the porosity is 20 to 90%. The present invention relates to a battery provided with a positive electrode plate using a nickel substrate containing metallic cobalt and an electrolytic solution of an alkaline aqueous solution having an OH - ion concentration of 6.5 to 14M. A nickel-based secondary battery that can be charged quickly, such as a sealed nickel-cadmium battery that can be charged. Particularly, the reliability is further improved by using a negative electrode plate of a plastic bonded electrode, a microporous film separator, or the like. In addition, since a high-energy-density positive electrode plate using a nickel substrate having a porosity of 85 to 98% can be extended, a high-energy-density rapid charging battery can be obtained. [0037]
【図面の簡単な説明】
【図1】本発明による構成の密閉形ニッケル・カドミウ
ム電池と従来の電池の充放電サイクル経過にともなう電
池の容量保持率を比較した図。
【図2】コバルトの含有率の異なる基板を使用した正極
板と濃度の異なる電解液を使用した電池の内部抵抗の変
化を比較した図。
【図3】プラスチックボンデッドカドミウム負極板を使
用した電池で、金属コバルトの含有する基板と含まない
正極板を使用し、さらに濃度の異なる電解液を使用した
電池の内部抵抗の変化を比較した図。
【図4】金属コバルトを含まない基板を使用した正極板
で、電解液濃度が異なる電池の5Cおよび10C 充電特性を
示した図。
【図5】微孔性フィルムセパレ−タを備えた電池と備え
ない電池の500 サイクルを越えた場合の代表的な充電時
の電圧、電流および温度変化を示した図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram comparing the capacity retention of a sealed nickel-cadmium battery with a configuration according to the present invention and a conventional battery with the progress of charge / discharge cycles. FIG. 2 is a diagram comparing a change in internal resistance between a positive electrode plate using substrates having different cobalt contents and a battery using electrolyte solutions having different concentrations. FIG. 3 is a diagram comparing a change in internal resistance of a battery using a plastic-bonded cadmium negative electrode plate, using a metal-cobalt-containing substrate and a metal-cobalt-containing positive electrode plate, and further using an electrolyte having a different concentration. . FIG. 4 is a diagram showing 5C and 10C charging characteristics of batteries having different electrolyte concentrations on a positive electrode plate using a substrate containing no metallic cobalt. FIG. 5 is a diagram showing typical changes in voltage, current and temperature during charging when a battery having a microporous film separator and a battery having no microporous film separator exceed 500 cycles.
Claims (1)
いた正極板とモル濃度が6.5 〜14M のアルカリ水溶液の
電解液とを備えたニッケル系二次電池。(57) [Claim 1] A nickel secondary battery comprising a positive electrode plate using a nickel substrate containing metallic cobalt and an electrolytic solution of an alkaline aqueous solution having a molar concentration of 6.5 to 14M.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35401192A JP3456217B2 (en) | 1992-12-14 | 1992-12-14 | Nickel-based secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35401192A JP3456217B2 (en) | 1992-12-14 | 1992-12-14 | Nickel-based secondary battery |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003113424A Division JP3558082B2 (en) | 2003-04-17 | 2003-04-17 | Nickel-cadmium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06181067A JPH06181067A (en) | 1994-06-28 |
JP3456217B2 true JP3456217B2 (en) | 2003-10-14 |
Family
ID=18434713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35401192A Expired - Fee Related JP3456217B2 (en) | 1992-12-14 | 1992-12-14 | Nickel-based secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3456217B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4999309B2 (en) * | 2005-10-13 | 2012-08-15 | 古河電池株式会社 | Alkaline storage battery |
-
1992
- 1992-12-14 JP JP35401192A patent/JP3456217B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06181067A (en) | 1994-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0354966B1 (en) | Alkaline secondary battery and process for its production | |
JP3097347B2 (en) | Nickel-metal hydride battery | |
JPS62139255A (en) | Manufacture of hydrogen absorbing electrode | |
US5131920A (en) | Method of manufacturing sealed rechargeable batteries | |
JP3456217B2 (en) | Nickel-based secondary battery | |
JP3558082B2 (en) | Nickel-cadmium secondary battery | |
JP2926732B2 (en) | Alkaline secondary battery | |
JP2926288B2 (en) | Nickel-cadmium battery | |
JP2923946B2 (en) | Sealed alkaline secondary battery and method of manufacturing the same | |
JPH05159779A (en) | Nickel hydroxide electrode and alkaline secondary battery with this electrode serving as positive pole | |
JP2004079242A (en) | Alkali storage battery | |
JP3182790B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JP3225608B2 (en) | Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same | |
JP2007026686A (en) | Battery pack and charge control method for it | |
JP3458899B2 (en) | Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof | |
JP3498727B2 (en) | Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery | |
JP4400113B2 (en) | Nickel-hydrogen battery manufacturing method | |
JP2577964B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP3101622B2 (en) | Nickel-hydrogen alkaline storage battery | |
JP2591982B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP2796674B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP2591985B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP3070081B2 (en) | Sealed alkaline storage battery | |
JP2591987B2 (en) | Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate | |
JP2553902B2 (en) | Alkaline secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080801 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080801 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090801 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090801 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100801 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 8 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 8 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 8 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 8 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110801 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |