JP3374814B2 - Polishing body, planarization apparatus, semiconductor device manufacturing method, and semiconductor device - Google Patents

Polishing body, planarization apparatus, semiconductor device manufacturing method, and semiconductor device

Info

Publication number
JP3374814B2
JP3374814B2 JP34505899A JP34505899A JP3374814B2 JP 3374814 B2 JP3374814 B2 JP 3374814B2 JP 34505899 A JP34505899 A JP 34505899A JP 34505899 A JP34505899 A JP 34505899A JP 3374814 B2 JP3374814 B2 JP 3374814B2
Authority
JP
Japan
Prior art keywords
polishing
window
polished
polishing body
transparent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34505899A
Other languages
Japanese (ja)
Other versions
JP2001162520A (en
Inventor
彰 石川
達也 千賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18374013&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3374814(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP34505899A priority Critical patent/JP3374814B2/en
Priority to KR10-2001-7008191A priority patent/KR100435246B1/en
Priority to EP00908067A priority patent/EP1176630B1/en
Priority to DE60035341T priority patent/DE60035341D1/en
Priority to CNB00802085XA priority patent/CN1150601C/en
Priority to PCT/JP2000/001545 priority patent/WO2000060650A1/en
Priority to TW089105309A priority patent/TW484181B/en
Priority to US09/846,339 priority patent/US6458014B1/en
Publication of JP2001162520A publication Critical patent/JP2001162520A/en
Publication of JP3374814B2 publication Critical patent/JP3374814B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/205Lapping pads for working plane surfaces provided with a window for inspecting the surface of the work being lapped

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばULSI等の半
導体デバイスを製造する方法において、半導体デバイス
の平坦化研磨に用いるのに好適な研磨部材、平坦化装
置、および半導体デバイス製造方法、半導体デバイスに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing member suitable for use in flattening and polishing a semiconductor device in a method for producing a semiconductor device such as ULSI, a flattening apparatus, a semiconductor device manufacturing method, and a semiconductor device. It is about.

【0002】[0002]

【従来の技術】半導体集積回路の高集積化、微細化に伴
って、半導体製造プロセスの工程は、増加し複雑になっ
てきている。これに伴い、半導体デバイスの表面は、必
ずしも平坦ではなくなってきている。半導体デバイスの
表面に於ける段差の存在は、配線の段切れ、局所的な抵
抗の増大等を招き、断線や電気容量の低下をもたらす。
また、絶縁膜では耐電圧劣化やリークの発生にもつなが
る。
2. Description of the Related Art As semiconductor integrated circuits become highly integrated and miniaturized, the number of semiconductor manufacturing process steps is increasing and becoming complicated. Along with this, the surface of semiconductor devices is not always flat. The presence of the step on the surface of the semiconductor device causes disconnection of wiring, local increase in resistance, and the like, resulting in disconnection and reduction in electric capacity.
Further, the insulating film also causes deterioration of withstand voltage and leakage.

【0003】一方、半導体集積回路の高集積化、微細化
に伴って、光リソグラフィに用いられる半導体露光装置
の光源波長は、短くなり、半導体露光装置の投影レンズ
の開口数、いわゆるNAは、大きくなってきている。これ
により、半導体露光装置の投影レンズの焦点深度は、実
質的に浅くなってきている。焦点深度が浅くなることに
対応するためには、今まで以上に半導体デバイスの表面
の平坦化が要求されている。
On the other hand, with the high integration and miniaturization of semiconductor integrated circuits, the wavelength of the light source of the semiconductor exposure apparatus used for photolithography is shortened, and the numerical aperture of the projection lens of the semiconductor exposure apparatus, so-called NA, is increased. It has become to. As a result, the depth of focus of the projection lens of the semiconductor exposure apparatus has become substantially shallow. In order to cope with the shallow depth of focus, it is required to flatten the surface of a semiconductor device more than ever.

【0004】具体的に示すと、半導体プロセスにおいて
は図8(a)、(b)に示すような平坦化技術が必須に
なってきている。シリコンウエハ21上に半導体デバイス
24、SiO2からなる層間絶縁膜22、Alからなる金属
膜23が形成されている。図8(a)は半導体デバイスの
表面の層間絶縁膜22を平坦化する例である。図8(b)
は半導体デバイスの表面の金属膜23を研磨し、いわゆる
ダマシン(damascene)を形成する例である。このよう
な半導体デバイス表面を平坦化する方法としては、化学
的機械的研磨(Chemical Mechanical Polishing又はChe
mical Mechanical Planarization、以下ではCMPと称
す)技術が広く行われている。現在、CMP技術はシリコ
ンウエハの全面を平坦化できる唯一の方法である。
Specifically, in the semiconductor process, the planarization technique as shown in FIGS. 8A and 8B is indispensable. Semiconductor device on silicon wafer 21
24, an interlayer insulating film 22 made of SiO 2 and a metal film 23 made of Al are formed. FIG. 8A shows an example in which the interlayer insulating film 22 on the surface of the semiconductor device is flattened. Figure 8 (b)
Is an example of polishing a metal film 23 on the surface of a semiconductor device to form a so-called damascene. As a method of flattening the surface of such a semiconductor device, chemical mechanical polishing (Chemical Mechanical Polishing or Che
mical Mechanical Planarization (hereinafter referred to as CMP) technology is widely used. Currently, CMP technology is the only way to planarize the entire surface of a silicon wafer.

【0005】CMPはシリコンウエハの鏡面研磨法を基に
発展している。図9は、CMPに用いる従来の平坦化装置
の概略構成図である。平坦化装置は研磨部材131、研磨
対象物保持部(以下、研磨ヘッドと称す)132、および
研磨剤供給部134から構成されている。そして、研磨ヘ
ッド132には、研磨対象物であるシリコンウエハ133が取
り付けられ、研磨剤供給部134は、研磨剤(スラリー)1
35を供給する。研磨部材131は、定盤136の上に研磨体13
7を貼り付けたものである。
CMP has been developed based on a mirror polishing method for silicon wafers. FIG. 9 is a schematic configuration diagram of a conventional flattening apparatus used for CMP. The flattening device includes a polishing member 131, an object-to-be-polished holding unit (hereinafter referred to as a polishing head) 132, and an abrasive supply unit 134. Then, the silicon wafer 133, which is an object to be polished, is attached to the polishing head 132, and the polishing agent supply unit 134 controls the polishing agent (slurry) 1
Supply 35. The polishing member 131 includes the polishing body 13 on the surface plate 136.
7 is pasted.

【0006】シリコンウエハ133は研磨ヘッド132により
保持され、回転させながら揺動して、研磨部材131の研
磨体137に所定の圧力で押し付けられる。研磨部材131も
回転させ、シリコンウエハ133との間で相対運動を行わ
せる。この状態で、研磨剤135が研磨剤供給部134から研
磨体137上に供給され、研磨剤135は研磨体137上で拡散
し、研磨部材131とシリコンウエハ133の相対運動に伴っ
て研磨体137とシリコンウエハ133の間に入り込み、シリ
コンウエハ133の研磨面を研磨する。即ち、研磨部材131
とシリコンウエハ133の相対運動による機械的研磨と、
研磨剤135の化学的作用が相乗的に作用して良好な研磨
が行われる。
The silicon wafer 133 is held by the polishing head 132, rocks while being rotated, and is pressed against the polishing body 137 of the polishing member 131 with a predetermined pressure. The polishing member 131 is also rotated so that relative movement with the silicon wafer 133 is performed. In this state, the polishing agent 135 is supplied from the polishing agent supply unit 134 onto the polishing body 137, the polishing agent 135 diffuses on the polishing body 137, and the polishing body 137 is caused by the relative movement of the polishing member 131 and the silicon wafer 133. And the silicon wafer 133, and the polishing surface of the silicon wafer 133 is polished. That is, the polishing member 131
And mechanical polishing by relative movement of the silicon wafer 133,
The chemical action of the abrasive 135 acts synergistically to achieve good polishing.

【0007】シリコンウエハの研磨量と上述した研磨条
件の関係は、(式1)に示されるPreston式と呼ばれる
経験式により与えられる。
The relationship between the polishing amount of a silicon wafer and the above-mentioned polishing conditions is given by an empirical formula called Preston formula shown in (Formula 1).

【0008】 R=k×P×V (式1) ここで、Rはシリコンウエハの研磨量、Pはシリコンウエ
ハを研磨体に押し付ける単位面積当たりの圧力、Vは研
磨部材とシリコンウエハの相対運動による相対線速度、
kは比例定数である。
R = k × P × V (Equation 1) where R is the polishing amount of the silicon wafer, P is the pressure per unit area for pressing the silicon wafer against the polishing body, and V is the relative movement of the polishing member and the silicon wafer. Relative linear velocity,
k is a proportional constant.

【0009】ところで、CMPにおいては、研磨体の温度
分布や、研磨剤の供給状態の場所的な違いにより、研磨
速度にバラツキが生じる。また、研磨体の表面状態の変
化により、処理枚数による研磨速度の低下や、研磨体の
個体差による研磨速度の違い等があるので、所定研磨量
を時間管理で行う終点判定は、困難である。
By the way, in CMP, the polishing rate varies due to the temperature distribution of the polishing body and the spatial difference in the supply state of the polishing agent. Further, there is a decrease in the polishing rate due to the number of processed sheets due to the change in the surface state of the polishing body, and a difference in the polishing rate due to the individual difference in the polishing body. .

【0010】このため、時間管理による終点判定に代わ
り、モータートルク、振動等をその場計測(in-situ計
測)しながら、終点を判定する方法が提案されている。
これらの方法は、研磨の対象となる材料が変化するCMP
(例えば、配線材料のCMP、ストッパー層のあるCMP)で
は、ある程度有効である。しかし、複雑なパターンを有
するシリコンウエハの場合には、研磨対象の材料の変化
が小さいため、終点を判定することが困難な場合があ
る。また、層間絶縁膜のCMPの場合、配線間容量を制御
する必要があるため、研磨終点ではなく、残り膜厚の管
理が要求されている。モータートルク、振動等をその場
計測(in-situ計測)し、終点を判定する方法で膜厚を
測定することは困難である。
Therefore, instead of the end point determination by time management, there has been proposed a method of determining the end point while in-situ measurement of motor torque, vibration and the like.
These methods use CMP that changes the material to be polished.
(For example, CMP of wiring material, CMP with stopper layer) is effective to some extent. However, in the case of a silicon wafer having a complicated pattern, it may be difficult to determine the end point because the material to be polished changes little. Further, in the case of CMP of the interlayer insulating film, since it is necessary to control the capacitance between wirings, it is required to manage the remaining film thickness, not the polishing end point. It is difficult to measure the film thickness by a method of in-situ measurement of motor torque, vibration, etc., and determining the end point.

【0011】上記の問題を解決するため、最近では光学
測定、特に分光反射測定によるin-situ終点検出やin-si
tu膜厚計測が有効とされている。in-situ計測の構成
は、図9に示すように、定盤136および研磨体137に測定
用の開口部138を設け、開口部138を介し研磨状態を測定
する装置139により研磨対象物表面を観察する方法が一
般的である。図9には図示されていないが、一般に開口
部を塞ぐために透明な窓が研磨体137等に設置されてい
る。窓を設けることにより、研磨状態を測定する装置13
9からの測定光は、窓を通過するが、研磨剤135が開口部
138から研磨状態を測定する装置139へ漏れることを防ぐ
ことができる。
In order to solve the above-mentioned problems, recently, in-situ end point detection and in-si detection by optical measurement, particularly spectral reflection measurement, have been performed.
Tu film thickness measurement is effective. As shown in FIG. 9, the constitution of in-situ measurement is such that an opening 138 for measurement is provided in the surface plate 136 and the polishing body 137, and the surface of the object to be polished is measured by the device 139 for measuring the polishing state through the opening 138. The method of observation is common. Although not shown in FIG. 9, a transparent window is generally installed in the polishing body 137 or the like to close the opening. Device 13 for measuring the polishing state by providing a window
The measurement light from 9 passes through the window, but the abrasive 135
It is possible to prevent leakage from 138 to the device 139 for measuring the polishing state.

【0012】研磨体としては、これまで発泡ポリウレタ
ンからなる、いわゆる研磨パッドが用いられてきた。し
かしながら、発泡ポリウレタンの研磨パッドは、研磨剤
が目詰まりを起こし、研磨特性が不安定になる。このた
め、発泡ポリウレタンの研磨パッドでは、安定した研磨
を行うためにはダイヤモンド砥石により研磨パッド表面
のドレッシングを行うのが一般的である。ドレッシング
は目詰まりした研磨剤を排除すると同時に、発泡ポリウ
レタンの研磨パッド表面を削り落とし、フレッシュな研
磨パッド面を作り出す処理である。そして、最近ではド
レッシング不要の無発泡研磨体も用いられてきている。
So-called polishing pads made of foamed polyurethane have been used as polishing bodies. However, the polishing pad made of foamed polyurethane causes the polishing agent to be clogged and the polishing characteristics become unstable. Therefore, in the case of a foamed polyurethane polishing pad, in order to perform stable polishing, it is common to dress the polishing pad surface with a diamond grindstone. Dressing is a process to remove the clogged abrasive and at the same time scrape off the polishing pad surface of polyurethane foam to create a fresh polishing pad surface. Recently, non-foaming abrasives that do not require dressing have been used.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、一般的
な透明材料であるガラスやアクリル等を研磨対象物と接
触する研磨体の表面に対して段差のない状態で研磨体の
開口部に窓として配置すると、研磨の際、窓が研磨対象
物であるシリコンウエハと接触し、シリコンウエハに傷
を生じさせるだけでなく、シリコンウエハの破損を引き
起こす可能性が高いという問題がある。さらに、窓とシ
リコンウエハが接触することにより、研磨が不均一にな
りやすいという問題がある。
However, a general transparent material such as glass or acryl is arranged as a window in the opening of the polishing body without any level difference with respect to the surface of the polishing body which contacts the object to be polished. Then, at the time of polishing, there is a problem that the window comes into contact with the silicon wafer which is the object to be polished, not only causing damage to the silicon wafer but also causing damage to the silicon wafer. Further, there is a problem that polishing tends to be non-uniform due to the contact between the window and the silicon wafer.

【0014】また、シリコンウエハに傷を生じさせない
場合でも、窓が傷つき、窓を通過する研磨状態を測定す
るための光の強度が損失して、研磨終点の検出精度や膜
厚の測定精度が低下し、最悪の場合は研磨終点の検出や
膜厚の測定ができなくなるという問題がある。
Even when the silicon wafer is not scratched, the window is scratched and the light intensity for measuring the polishing state passing through the window is lost, so that the accuracy of detecting the polishing end point and the accuracy of measuring the film thickness are reduced. There is a problem in that, in the worst case, the polishing end point cannot be detected and the film thickness cannot be measured.

【0015】また、研磨状態を測定するための光の強度
の損失を減らすために、窓のシリコンウエハ側の反対の
表面に反射防止膜を設けることが好ましい。しかし、軟
らかい材料で製造された窓に反射防止膜を形成した場
合、窓の曲げにより反射防止膜にクラックが入ったり、
窓のガラス転移温度が低いため温度変化により窓が伸び
縮みし反射防止膜にクラックが入ったりする。このた
め、窓が軟らかい材料で製造されている場合は、反射防
止膜の形成が困難であるという問題がある。
Further, in order to reduce the loss of light intensity for measuring the polishing state, it is preferable to provide an antireflection film on the surface of the window opposite to the silicon wafer side. However, when an antireflection film is formed on a window made of a soft material, the antireflection film may crack due to bending of the window,
Since the glass transition temperature of the window is low, the window expands and contracts due to temperature changes and cracks may occur in the antireflection film. Therefore, when the window is made of a soft material, it is difficult to form the antireflection film.

【0016】また、シリコンウエハに傷を生じさせない
軟らかい透明材料、例えば、ポリウレタン、ナイロン、
軟質アクリル等を開口部に配置した場合、定盤の回転に
より、シリコンウエハの下に開口部が来たときに窓に加
わる圧力が変動し、設置された窓が変形を起こし光学的
に歪む。その歪みにより窓がレンズ等としての機能を有
するようになるため、研磨終点の検出や膜厚の測定が不
安定になるという問題がある。
Further, a soft transparent material that does not damage the silicon wafer, such as polyurethane, nylon,
When soft acrylic or the like is placed in the opening, the pressure applied to the window changes when the opening comes under the silicon wafer due to the rotation of the surface plate, and the installed window is deformed and optically distorted. Due to the distortion, the window has a function as a lens or the like, so that there is a problem that detection of the polishing end point and measurement of the film thickness become unstable.

【0017】本発明は上記問題を解決するためになされ
たもので、シリコンウエハを傷つけることがなく、研磨
が不均一にならず、窓が傷つくことがなく、研磨終点の
検出精度や膜厚の測定精度が低下することがなく、およ
び窓の変形による研磨終点の検出の不安定さや膜厚の測
定の不安定さを生じることがない、開口部に窓が設置さ
れている研磨体および平坦化装置を提供することを目的
としている。
The present invention has been made to solve the above problems, and does not damage the silicon wafer, does not cause uneven polishing, does not damage the window, and can detect the polishing end point accuracy and the film thickness. Polishing body with a window installed in the opening and flattening that does not reduce measurement accuracy and does not cause instability in detection of polishing end point and film thickness due to deformation of window The purpose is to provide a device.

【0018】[0018]

【課題を解決するための手段】即ち上記課題を解決する
ため、本発明に係る研磨体は、定盤上に設置されている
研磨体と研磨対象物の間に研磨剤を介在させた状態で、
前記研磨体と前記研磨対象物の間に荷重を加え、且つ、
相対移動させることにより、前記研磨対象物を研磨する
平坦化装置に用いる研磨体において、開口部と、該開口
部に設置されている窓を有し、該窓は2枚以上の透明材
料が積層されている(請求項1)。
[Means for Solving the Problems] In order to solve the above problems, a polishing body according to the present invention has a polishing agent interposed between a polishing body and an object to be polished which are installed on a surface plate. ,
Applying a load between the polishing body and the object to be polished, and
A polishing body used in a flattening device for polishing an object to be polished by relative movement has an opening and a window installed in the opening, and the window is formed by laminating two or more transparent materials. (Claim 1).

【0019】前記研磨体によれば、開口部に設置されて
いる窓が2枚以上の透明材料で積層されているため、研
磨対象物側の透明材料の圧縮弾性率(硬さ)とその他の
透明材料の圧縮弾性率(硬さ)を変えることにより、1
枚の窓において研磨対象物側の表面の圧縮弾性率(硬
さ)と研磨対象物側の反対側の表面の圧縮弾性率(硬
さ)を異ならせることができる。これにより、窓の表面
の圧縮弾性率(硬さ)をそれぞれ好適な値にすることが
できる。
According to the above-mentioned polishing body, since the windows installed in the opening are laminated with two or more transparent materials, the compressive elastic modulus (hardness) of the transparent material on the side of the object to be polished and other By changing the compressive elastic modulus (hardness) of the transparent material,
The compressive elastic modulus (hardness) of the surface on the side of the object to be polished and the compressive elastic modulus (hardness) of the surface on the side opposite to the object to be polished can be made different in the windows. Accordingly, the compressive elastic modulus (hardness) of the surface of the window can be set to a suitable value.

【0020】また、前記窓は2枚の透明材料が積層さ
れ、該透明材料のうちの前記研磨対象物側の透明材料の
圧縮弾性率は、前記研磨対象物側の反対側の透明材料の
圧縮弾性率より小さいことが好ましい(請求項2)。こ
れにより、研磨対象物側の反対側の透明材料が圧縮弾性
率の大きい(硬い)材料になるので窓が変形することが
なくなり、窓の変形による研磨終点の検出の不安定さや
膜厚の測定の不安定さが生じなくなる。
Further, two transparent materials are laminated on the window, and the compression elastic modulus of the transparent material of the transparent material on the side of the object to be polished has a compression elastic modulus of the transparent material on the side opposite to the object to be polished. It is preferably smaller than the elastic modulus (claim 2). As a result, the transparent material on the side opposite to the object to be polished becomes a material with a large compressive elastic modulus (hard), so that the window is not deformed, and the instability of detection of the polishing end point due to the deformation of the window and the measurement of the film thickness. Instability will not occur.

【0021】また、前記透明材料のうちの前記研磨対象
物側の透明材料の圧縮弾性率eは、2.9×107Pa≦e≦1.47
×109Paであり、且つ、研磨体の圧縮弾性率とほぼ同じ
であることが好ましい(請求項3)。これにより、研磨
対象物側の透明材料の圧縮弾性率が研磨体の圧縮弾性率
とほぼ同じ値を持つようになるため、窓が研磨対象物と
接触する際に研磨対象物を傷つけることは、なくなる。
さらに、研磨の不均一は、生じなくなる。
The compressive elastic modulus e of the transparent material of the transparent material on the side of the object to be polished is 2.9 × 10 7 Pa ≦ e ≦ 1.47
It is preferable that it is × 10 9 Pa and is almost the same as the compression elastic modulus of the polishing body (claim 3). As a result, the compression elastic modulus of the transparent material on the side of the object to be polished has almost the same value as the compression elastic modulus of the polishing body, so that the object to be polished is not damaged when the window comes into contact with the object to be polished. Disappear.
In addition, polishing non-uniformity does not occur.

【0022】また、前記研磨対象物と接触する研磨体の
表面に対して、前記窓の前記研磨対象物側の表面は、凹
んでいて、該凹み量dは0μm<d≦400μmであることが好
ましい(請求項4)。これにより、窓と研磨対象物が接
触することがなくなるため、研磨対象物が傷つくことや
窓が傷つくことがなくなる。
Further, the surface of the window on the side of the object to be polished is recessed with respect to the surface of the polishing body which is in contact with the object to be polished, and the recess amount d is 0 μm <d ≦ 400 μm. Preferred (Claim 4). This prevents the window from coming into contact with the object to be polished, so that the object to be polished and the window are not damaged.

【0023】また、前記研磨対象物と接触する研磨体の
表面に対して、前記窓の前記研磨対象物側の表面は、凹
んでいて、該凹み量dは、0μm<d≦研磨体の厚さの90%
の長さ、であり、且つ、前記窓の厚さtは、t≧研磨体の
厚さの10%の長さ、であることが好ましい(請求項
5)。これにより、窓と研磨対象物が接触することがな
くなるため、研磨対象物が傷つくことや窓が傷つくこと
がなくなる。さらに、窓の厚さが薄すぎないため、窓が
変形することがなくなり、窓の変形による研磨終点の検
出の不安定さや膜厚の測定の不安定さが生じなくなる。
Further, the surface of the window on the side of the object to be polished is recessed with respect to the surface of the object to be contacted with the object to be polished, and the amount d of the recess is 0 μm <d ≦ thickness of the object to be polished. 90% of the size
And the thickness t of the window is preferably t ≧ 10% of the thickness of the polishing body (claim 5). This prevents the window from coming into contact with the object to be polished, so that the object to be polished and the window are not damaged. Furthermore, since the thickness of the window is not too thin, the window will not be deformed, and the instability of detection of the polishing end point and the instability of film thickness measurement due to the deformation of the window will not occur.

【0024】また、前記窓の透過率は、22%以上である
ことが好ましい(請求項6)。これにより、窓を通過す
る研磨状態を測定するための光の強度の減衰が少なくな
るので、研磨終点の検出精度や膜厚の測定精度が低下し
なくなる。
The transmittance of the window is preferably 22% or more (claim 6). As a result, the attenuation of the light intensity for measuring the polishing state passing through the window is reduced, so that the accuracy of detecting the polishing end point and the accuracy of measuring the film thickness do not deteriorate.

【0025】前記窓の前記研磨対象物側の反対側の表面
に反射防止膜が形成されていることが好ましい(請求項
7)。これにより、窓を通過する研磨状態を測定するた
めの光の窓の表面での反射量が少なくなり、研磨状態を
測定するための光の強度の減衰が少なくなるので、研磨
終点の検出精度や膜厚の測定精度が低下しなくなる。
An antireflection film is preferably formed on the surface of the window opposite to the side of the object to be polished (claim 7). This reduces the amount of light reflected on the surface of the window for measuring the polishing state that passes through the window, and reduces the attenuation of the light intensity for measuring the polishing state. The film thickness measurement accuracy does not decrease.

【0026】さらに上記課題を解決するため、本発明に
係る平坦化装置は、定盤上に設置されている研磨体と研
磨対象物の間に研磨剤を介在させた状態で、前記研磨体
と前記研磨対象物の間に荷重を加え、且つ、相対移動さ
せることにより、前記研磨対象物を研磨する平坦化装置
において、前記定盤に形成された開口部と、前記研磨体
に形成された開口部と、前記研磨体に形成された該開口
部の少なくとも一部分を塞ぐように設置されている窓
と、該窓を介して前記研磨対象物の研磨面を光学的に観
察し、研磨状態を測定する装置を有し、前記研磨体に形
成された前記開口部と前記定盤に形成された前記開口部
は、重なっていて、前記窓は2枚以上の透明材料が積層
されている(請求項8)。
In order to solve the above-mentioned problems, the flattening apparatus according to the present invention comprises a polishing body installed on a surface plate and an object to be polished with an abrasive agent interposed between the polishing body and the polishing body. In a flattening apparatus that polishes the polishing object by applying a load between the polishing objects and moving the load relative to each other, an opening formed in the surface plate and an opening formed in the polishing body. Section, a window installed so as to close at least a part of the opening formed in the polishing body, and the polishing surface of the polishing object is optically observed through the window to measure the polishing state. The opening formed in the polishing body and the opening formed in the surface plate are overlapped with each other, and the window is formed by laminating two or more transparent materials. 8).

【0027】前記平坦化装置によれば、開口部に設置さ
れている窓が2枚以上の透明材料で積層されているた
め、研磨対象物側の透明材料の圧縮弾性率(硬さ)とそ
の他の透明材料の圧縮弾性率(硬さ)を変えることによ
り、1枚の窓において研磨対象物側の表面の圧縮弾性率
(硬さ)と研磨対象物側の反対側の表面の圧縮弾性率
(硬さ)を異ならせることができる。これにより、窓の
表面の圧縮弾性率(硬さ)をそれぞれ好適な値にするこ
とができる。
According to the flattening apparatus, since the windows installed in the opening are laminated with two or more transparent materials, the compression elastic modulus (hardness) of the transparent material on the side of the object to be polished and other By changing the compressive elastic modulus (hardness) of the transparent material in (1), the compressive elastic modulus (hardness) of the surface on the side of the object to be polished and the compressive elastic modulus (surface) on the side opposite to the object of polishing ( Hardness) can be different. Accordingly, the compressive elastic modulus (hardness) of the surface of the window can be set to a suitable value.

【0028】また、前記窓は2枚の透明材料が積層さ
れ、該透明材料のうちの前記研磨対象物側の透明材料の
圧縮弾性率は、前記研磨状態を測定する装置側の透明材
料の圧縮弾性率より小さいことが好ましい(請求項
9)。これにより、研磨状態を測定する装置側の透明材
料が圧縮弾性率の大きい(硬い)材料になるので窓が変
形することがなくなり、窓の変形による研磨終点の検出
の不安定さや膜厚の測定の不安定さが生じなくなる。
Further, the window is formed by laminating two transparent materials, and the compressive elastic modulus of the transparent material of the transparent material on the side of the object to be polished is the compression of the transparent material on the side of the device for measuring the polishing state. It is preferably smaller than the elastic modulus (claim 9). As a result, the transparent material on the side of the device that measures the polishing state becomes a material with a high compression modulus (hard), so the window does not deform, and the instability of the detection of the polishing end point due to the deformation of the window and the measurement of the film thickness Instability will not occur.

【0029】前記透明材料のうちの前記研磨対象物側の
透明材料の圧縮弾性率eは、2.9×10 7Pa≦e≦1.47×109P
aであり、且つ、研磨体の圧縮弾性率とほぼ同じである
ことが好ましい(請求項10)。これにより、研磨対象
物側の透明材料の圧縮弾性率が研磨体の圧縮弾性率とほ
ぼ同じ値を持つようになるため、窓が研磨対象物と接触
する際に研磨対象物を傷つけることがなくなる。さら
に、研磨の不均一は、生じなくなる。
Of the transparent material, on the side of the object to be polished
The compressive elastic modulus e of transparent material is 2.9 × 10 7Pa ≦ e ≦ 1.47 × 109P
is a and is almost the same as the compressive elastic modulus of the polishing body.
It is preferable (claim 10). This makes it possible to polish
The compressive elastic modulus of the transparent material on the object side is almost the same as the compressive elastic modulus of the polishing body.
The windows come into contact with the object to be polished because they have almost the same value.
When doing so, the object to be polished is not damaged. Furthermore
In addition, non-uniformity of polishing does not occur.

【0030】前記研磨対象物と接触する研磨体の表面に
対して、前記窓の前記研磨対象物側の表面は、凹んでい
て、該凹み量dは0μm<d≦400μmであることが好ましい
(請求項11)。これにより、窓と研磨対象物が接触す
ることがなくなるため、研磨対象物が傷つくことや窓が
傷つくことがなくなる。
It is preferable that the surface of the window on the side of the object to be polished is recessed with respect to the surface of the polishing body that is in contact with the object to be polished, and the amount d of the recess is 0 μm <d ≦ 400 μm. Claim 11). This prevents the window from coming into contact with the object to be polished, so that the object to be polished and the window are not damaged.

【0031】また、前記研磨対象物と接触する研磨体の
表面に対して、前記窓の前記研磨対象物側の表面は、凹
んでいて、該凹み量dは、0μm<d≦研磨体の厚さの90%
の長さ、であり、且つ、前記窓の厚さtは、t≧研磨体の
厚さの10%の長さ、であることが好ましい(請求項1
2)。これにより、窓と研磨対象物が接触することがな
くなるため、研磨対象物が傷つくことや窓が傷つくこと
がなくなる。さらに、窓の厚さが薄すぎないため、窓が
変形することがなくなり、窓の変形による研磨終点の検
出の不安定さや膜厚の測定の不安定さが生じなくなる。
Further, the surface of the window on the side of the object to be polished is dented with respect to the surface of the object to be brought into contact with the object to be polished, and the dent amount d is 0 μm <d ≦ thickness of the object to be polished. 90% of the size
And the thickness t of the window is preferably t ≧ 10% of the thickness of the polishing body (claim 1).
2). This prevents the window from coming into contact with the object to be polished, so that the object to be polished and the window are not damaged. Furthermore, since the thickness of the window is not too thin, the window will not be deformed, and the instability of detection of the polishing end point and the instability of film thickness measurement due to the deformation of the window will not occur.

【0032】また、前記研磨状態を測定する装置は、光
を出射し、前記研磨状態を測定する装置から出射した前
記光は、前記窓を通過し、前記窓と前記研磨対象物の間
の前記研磨剤を通過し、前記研磨対象物の研磨面で反射
し、前記窓と前記研磨対象物の間の前記研磨剤を再び通
過し、前記窓を再び通過し、前記研磨状態を測定する装
置へ戻り、前記研磨状態を測定する装置から出射する前
記光の強度に対する前記研磨状態を測定する装置へ戻る
光の強度の比が5%以上であることが好ましい(請求項
13)。これにより、研磨状態を測定する装置へ戻る光
の強度が研磨状態を測定するのに十分な強度となるた
め、研磨状態を測定する装置による研磨終点の検出精度
や膜厚の測定精度が低下しなくなる。
Further, the device for measuring the polishing state emits light, and the light emitted from the device for measuring the polishing state passes through the window, and the light between the window and the object to be polished is removed. To an apparatus that passes through an abrasive, reflects on the polishing surface of the object to be polished, passes through the abrasive between the window and the object to be polished again, passes through the window again, and measures the polishing state. It is preferable that the ratio of the intensity of the light returning to the device for measuring the polishing state to the intensity of the light emitted from the device for measuring the polishing state is 5% or more (claim 13). As a result, the intensity of the light returning to the apparatus for measuring the polishing state becomes sufficient to measure the polishing state, so that the accuracy of detecting the polishing end point and the measurement accuracy of the film thickness by the apparatus for measuring the polishing state are reduced. Disappear.

【0033】また、前記窓の前記研磨状態を測定する装
置側の表面に反射防止膜が形成されていることが好まし
い(請求項14)。これにより、窓の表面での反射光量
が減り、研磨状態を測定する装置へ戻る光の強度の低下
が少なくなるため、研磨状態を測定する装置による研磨
終点の検出精度や膜厚の測定精度が低下しなくなる。
Further, it is preferable that an antireflection film is formed on the surface of the window on the device side for measuring the polished state (claim 14). This reduces the amount of light reflected on the surface of the window and reduces the decrease in the intensity of light that returns to the device that measures the polishing state, so that the accuracy of detecting the polishing end point and the measurement accuracy of the film thickness by the device that measures the polishing state can be reduced. It will not fall.

【0034】さらに、本発明に係る半導体デバイス製造
方法は、本発明に係る平坦化装置を用いて半導体ウエハ
の表面を平坦化する工程を有する(請求項15)。
Further, the semiconductor device manufacturing method according to the present invention has a step of flattening the surface of the semiconductor wafer by using the flattening apparatus according to the present invention (claim 15).

【0035】前記半導体デバイス製造方法によれば、半
導体ウエハの表面を平坦化する工程において本発明に係
る平坦化装置を用いているため、半導体ウエハの表面を
平坦化する工程での研磨終点の検出精度または膜厚の測
定精度が低下することがなくなる等により、半導体ウエ
ハの表面を平坦化する工程での歩留まりが向上する。こ
れにより、従来の半導体デバイス製造方法に比べて低コ
ストで半導体デバイスを製造することができる。
According to the semiconductor device manufacturing method, since the flattening apparatus according to the present invention is used in the step of flattening the surface of the semiconductor wafer, the polishing end point is detected in the step of flattening the surface of the semiconductor wafer. Since the accuracy or the measurement accuracy of the film thickness is not reduced, the yield in the step of flattening the surface of the semiconductor wafer is improved. As a result, it is possible to manufacture a semiconductor device at a lower cost than the conventional semiconductor device manufacturing method.

【0036】さらに、本発明に係る半導体デバイスは、
本発明に係る半導体デバイス製造方法により製造される
(請求項16)。
Further, the semiconductor device according to the present invention is
It is manufactured by the semiconductor device manufacturing method according to the present invention (claim 16).

【0037】前記半導体デバイスによれば、本発明に係
る半導体デバイス製造方法により製造されているので、
従来の半導体デバイス製造方法に比べて低コストで半導
体デバイスを製造することができ、半導体デバイスの製
造原価を低減させることができる。
Since the semiconductor device is manufactured by the semiconductor device manufacturing method according to the present invention,
The semiconductor device can be manufactured at a lower cost than the conventional semiconductor device manufacturing method, and the manufacturing cost of the semiconductor device can be reduced.

【0038】[0038]

【発明の実施の形態】本発明の実施の形態について図面
を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings.

【0039】図1(a)、(b)は、本発明に係る研磨
体の実施の形態を示す図である。図1(a)は上面図で
あり、図1(b)は図1(a)のA−B部分の断面図で
ある。
1A and 1B are views showing an embodiment of a polishing body according to the present invention. 1A is a top view, and FIG. 1B is a cross-sectional view taken along the line AB of FIG. 1A.

【0040】上部透明材料13および下部透明材料14から
なる2枚の透明材料が積層されている窓が、研磨体(研
磨パッド)11に設けられた開口部12に設置されている。
上部透明材料13は研磨対象物側の透明材料であり、下部
透明材料14は研磨対象物側の反対側の透明材料である。
A window in which two transparent materials consisting of an upper transparent material 13 and a lower transparent material 14 are laminated is installed in an opening 12 provided in a polishing body (polishing pad) 11.
The upper transparent material 13 is a transparent material on the side of the object to be polished, and the lower transparent material 14 is a transparent material on the side opposite to the side of the object to be polished.

【0041】上部透明材料13としては、ポリウレタン、
アクリル、ポリカーボネート、ポリスチレン、塩化ビニ
ル、ポリエチレンテレフタラート、ポリエステル、もし
くはエポキシ等の透明材料が用いられる。
As the upper transparent material 13, polyurethane,
A transparent material such as acrylic, polycarbonate, polystyrene, vinyl chloride, polyethylene terephthalate, polyester, or epoxy is used.

【0042】下部透明材料14としては、ガラス、アクリ
ル、ポリカーボネート、ポリスチレン、塩化ビニル、ポ
リエチレンテレフタラート、ポリエステル、もしくはエ
ポキシ等の透明材料が用いられる。
As the lower transparent material 14, a transparent material such as glass, acrylic, polycarbonate, polystyrene, vinyl chloride, polyethylene terephthalate, polyester, or epoxy is used.

【0043】本発明に係る研磨体の実施の形態では、窓
は2枚の透明材料が積層されているが、積層される透明
材料の枚数は、3枚以上であっても良い。
In the embodiment of the polishing body according to the present invention, two transparent materials are laminated on the window, but the number of transparent materials laminated may be three or more.

【0044】研磨対象物側の透明材料である上部透明材
料13の圧縮弾性率は、研磨対象物側の反対側の透明材料
である下部研磨材料14の圧縮弾性率より小さいことが好
ましい。これにより、窓の下部研磨材料14は、硬いた
め、変形することがなく、窓の変形による研磨終点の検
出の不安定さや膜厚の測定の不安定さが生じなくなると
いう効果がある。
The compression elastic modulus of the upper transparent material 13 which is the transparent material on the side of the object to be polished is preferably smaller than the compression elastic modulus of the lower polishing material 14 which is the transparent material on the side opposite to the object to be polished. As a result, since the lower polishing material 14 for the window is hard, it does not deform, and there is an effect that instability in detection of the polishing end point and instability in film thickness measurement due to the deformation of the window does not occur.

【0045】さらに、窓の下部研磨材料14が硬いことに
より、下部研磨材料14の表面14aに反射防止膜を形成す
ることができる。反射防止膜が形成されていることによ
り、窓を通過する研磨状態を測定するための光が窓の表
面で反射することが少なくなり、光の強度の減衰が少な
くなるので、研磨終点の検出精度や膜厚の測定精度が低
下しなくなるという効果がある。よって、窓の研磨対象
物側の反対側の表面である下部研磨材料14の表面14aに
反射防止膜が形成されていることが好ましい。
Further, since the lower polishing material 14 of the window is hard, an antireflection film can be formed on the surface 14a of the lower polishing material 14. Since the anti-reflection film is formed, the light for measuring the polishing state that passes through the window is less likely to be reflected on the surface of the window, and the light intensity is less attenuated. There is an effect that the measurement accuracy of the film thickness and the film thickness does not decrease. Therefore, it is preferable that the antireflection film is formed on the surface 14a of the lower polishing material 14, which is the surface of the window opposite to the object to be polished.

【0046】研磨対象物側の透明材料である上部透明材
料13の圧縮弾性率は、研磨体の圧縮弾性率と同程度であ
ることが好ましい。一般的な研磨体の圧縮弾性率は、2.
9×107Pa以上、1.47×109Pa以下である。このため、研
磨対象物側の透明材料である上部透明材料13の圧縮弾性
率eは、2.9×107Pa≦e≦1.47×109Paであることが好ま
しい。これにより、窓が研磨対象物と接触する際に研磨
対象物を傷つけることがなくなるという効果がある。
The compressive elastic modulus of the upper transparent material 13, which is the transparent material on the side of the object to be polished, is preferably about the same as the compressive elastic modulus of the polishing body. The compression elastic modulus of a general abrasive body is 2.
9 × 10 7 Pa or more and 1.47 × 10 9 Pa or less. Therefore, the compressive elastic modulus e of the upper transparent material 13, which is the transparent material on the side of the object to be polished, is preferably 2.9 × 10 7 Pa ≦ e ≦ 1.47 × 10 9 Pa. This has the effect of not damaging the object to be polished when the window contacts the object to be polished.

【0047】また、研磨体11に設けられている開口部12
は、階段状の穴になっているが、開口部12は、1つの貫
通穴でも良い。
Further, the opening 12 provided in the polishing body 11
Is a stepped hole, but the opening 12 may be a single through hole.

【0048】図2は本発明に係る平坦化装置の実施の形
態を示す概略構成図である。本発明に係る平坦化装置
は、研磨部材31、研磨対象物保持部32(以下、研磨ヘッ
ドと称す)、および研磨剤供給部34から構成されてい
る。そして、研磨ヘッド32には、研磨対象物であるシリ
コンウエハ33が取り付けられ、研磨剤供給部34は、研磨
剤(スラリー)35を供給する。研磨部材31は、開口部38
を有する定盤36の上に前述した本発明に係る研磨体11を
設置したものであり、研磨体11は両面テープもしくは接
着剤により定盤36に貼り付けられている。開口部38を介
し研磨対象物であるシリコンウエハ33の研磨面を光学的
に観察し、研磨状態を測定する装置39も設置されてい
る。図2では研磨体11に設置されている窓を省略してい
る。定盤36に形成されている開口部38と研磨体11に形成
されている開口部(不図示)は、重なっている。このよ
うに、透明な窓を設けることにより、研磨状態を測定す
る装置39から出射する光17およびシリコンウエハ33の研
磨面で反射した光は、窓を通過するが、研磨剤35が開口
部38から漏れることを防ぐことができる。
FIG. 2 is a schematic configuration diagram showing an embodiment of a flattening apparatus according to the present invention. The flattening apparatus according to the present invention includes a polishing member 31, a polishing object holding unit 32 (hereinafter referred to as a polishing head), and an abrasive supply unit 34. Then, a silicon wafer 33, which is an object to be polished, is attached to the polishing head 32, and a polishing agent supply unit 34 supplies a polishing agent (slurry) 35. The polishing member 31 has an opening 38.
The polishing body 11 according to the present invention described above is installed on the surface plate 36 having the above. The polishing body 11 is attached to the surface plate 36 with a double-sided tape or an adhesive. An apparatus 39 for optically observing the polishing surface of the silicon wafer 33 to be polished through the opening 38 and measuring the polishing state is also installed. In FIG. 2, the window installed in the polishing body 11 is omitted. The opening 38 formed in the surface plate 36 and the opening (not shown) formed in the polishing body 11 overlap each other. In this way, by providing the transparent window, the light 17 emitted from the device 39 for measuring the polishing state and the light reflected by the polishing surface of the silicon wafer 33 pass through the window, but the polishing agent 35 has an opening 38. Can be prevented from leaking.

【0049】研磨対象物であるシリコンウエハ33は、研
磨ヘッド32により保持され、回転させながら揺動させら
れ、研磨部材31の研磨体11に所定の圧力で押し付けられ
る。研磨部材31も回転させ、シリコンウエハ33との間で
相対運動を行わせる。この状態で、研磨剤35が研磨剤供
給部34から研磨体11上に供給され、研磨剤35は研磨体11
上で拡散し、研磨部材31とシリコンウエハ33の相対運動
に伴って研磨体11とシリコンウエハ33の間に入り込み、
シリコンウエハ33の研磨面を研磨する。即ち、研磨部材
31とシリコンウエハ33の相対運動による機械的研磨と、
研磨剤35の化学的作用が相乗的に作用して良好な研磨が
行われる。
The silicon wafer 33, which is the object to be polished, is held by the polishing head 32, oscillated while being rotated, and pressed against the polishing body 11 of the polishing member 31 with a predetermined pressure. The polishing member 31 is also rotated so that relative movement with the silicon wafer 33 is performed. In this state, the polishing agent 35 is supplied from the polishing agent supply unit 34 onto the polishing body 11, and the polishing agent 35 is supplied to the polishing body 11.
Diffuses above and enters between the polishing body 11 and the silicon wafer 33 with the relative movement of the polishing member 31 and the silicon wafer 33,
The polishing surface of the silicon wafer 33 is polished. That is, the polishing member
Mechanical polishing by relative movement of 31 and silicon wafer 33,
The chemical action of the abrasive 35 acts synergistically to perform good polishing.

【0050】研磨対象物であるシリコンウエハ33が接触
する研磨体11の表面に対して、窓の研磨対象物側の表面
が凹んでいることが好ましい。これにより、シリコンウ
エハと窓が接触することがなくなるため、シリコンウエ
ハが傷つくことや窓の表面が傷つくことがなくなる。こ
のように窓の表面が傷つくことがなくなることにより、
研磨状態を測定する装置39から出射する光17の減衰が増
えないため、研磨終点の検出精度および膜厚の測定精度
が低下することがなくなるという効果がある。
It is preferable that the surface of the window on the side of the polishing object is recessed with respect to the surface of the polishing body 11 with which the silicon wafer 33, which is the polishing object, contacts. This prevents the silicon wafer and the window from coming into contact with each other, so that the silicon wafer is not damaged and the surface of the window is not damaged. By preventing the surface of the window from being damaged in this way,
Since the attenuation of the light 17 emitted from the device 39 for measuring the polishing state does not increase, there is an effect that the accuracy of detecting the polishing end point and the accuracy of measuring the film thickness do not decrease.

【0051】ただし、前記凹み量が400μmを越える場合
は、凹み部分に溜まる研磨剤の量が多くなり、研磨剤が
散乱体となり研磨状態を測定する装置39から出射する光
17を減衰させるので、終点検出の精度および膜厚検出の
感度が低下してしまう。このため、凹み量dは0μm<d≦
400μmであることが好ましい。
However, when the recess amount exceeds 400 μm, the amount of the polishing agent accumulated in the recess portion increases, the polishing agent becomes a scatterer, and the light emitted from the device 39 for measuring the polishing state is used.
Since 17 is attenuated, the end point detection accuracy and the film thickness detection sensitivity decrease. Therefore, the amount of depression d is 0 μm <d ≦
It is preferably 400 μm.

【0052】また、窓の厚さが研磨体の厚さの10%未満
になると、窓の厚さが薄くなるため、窓が変形する恐れ
がある。このため、窓の厚さが研磨体の厚さの10%以上
となるように、該凹み量dは、0μm<d≦研磨体の厚さの
90%の長さ、であり、且つ、前記窓の厚さtは、t≧研磨
体の厚さの10%の長さ、であることが好ましい。これに
より、窓の変形による研磨終点の検出の不安定さや膜厚
の測定の不安定さが生じなくなるという効果がある。
Further, if the thickness of the window is less than 10% of the thickness of the polishing body, the thickness of the window becomes thin, which may deform the window. Therefore, the recess amount d is 0 μm <d ≦ the thickness of the polishing body so that the thickness of the window is 10% or more of the thickness of the polishing body.
It is preferable that the length is 90%, and the thickness t of the window is t ≧ 10% of the thickness of the polishing body. As a result, there is an effect that instability in detection of the polishing end point and instability in film thickness measurement due to the deformation of the window do not occur.

【0053】また、窓の透過率は22%以上であることが
好ましい。これにより、窓を通過する研磨状態を測定す
るための光の強度の減衰が少なくなるので、研磨終点の
検出精度や膜厚の測定精度が低下しなくなるという効果
がある。
The transmittance of the window is preferably 22% or more. As a result, the attenuation of the light intensity for measuring the polishing state passing through the window is reduced, so that the accuracy of detecting the polishing end point and the accuracy of measuring the film thickness are not reduced.

【0054】さらに、研磨状態を測定する装置39から出
射する光17の強度、および研磨状態を測定する装置39か
ら出射し、窓を通過し、窓とシリコンウエハ33の間の研
磨剤35を通過し、シリコンウエハ33の研磨面で反射し、
窓とシリコンウエハ33の間の研磨剤35を再び通過し、窓
を再び通過し、研磨状態を測定する装置39へ戻る光の強
度の関係は、研磨状態を測定する装置39から出射する光
17の強度に対する前記装置へ戻る光の強度の比が5%以
上であることが好ましい。これにより、研磨状態を測定
する装置へ戻る光の強度が低下しないため、研磨状態を
測定する装置による研磨終点の検出精度や膜厚の測定精
度が低下しなくなるという効果がある。
Further, the intensity of the light 17 emitted from the device 39 for measuring the polishing state and the intensity of the light 17 emitted from the device 39 for measuring the polishing state pass through the window and pass through the polishing agent 35 between the window and the silicon wafer 33. Then, it is reflected by the polishing surface of the silicon wafer 33,
The relationship between the intensities of the light passing through the polishing agent 35 between the window and the silicon wafer 33 again, passing through the window again, and returning to the device 39 for measuring the polishing state is the light emitted from the device 39 for measuring the polishing state.
The ratio of the intensity of light returning to the device to the intensity of 17 is preferably 5% or more. As a result, the intensity of the light returning to the apparatus for measuring the polishing state does not decrease, so that the accuracy of detecting the polishing end point and the accuracy of measuring the film thickness by the apparatus for measuring the polishing state do not decrease.

【0055】また、本発明の実施の形態では窓が研磨体
の開口部に直接設置されているが、窓は研磨体に直接設
置されていなくても良い。例えば、窓は研磨体の開口部
の一部分を塞ぐように直接もしくは治具を介して定盤に
設置されていても良い。
Although the window is directly installed in the opening of the polishing body in the embodiment of the present invention, the window may not be directly installed in the polishing body. For example, the window may be installed on the surface plate directly or via a jig so as to close a part of the opening of the polishing body.

【0056】図3は、半導体デバイス製造プロセスを示
すフローチャートである。半導体デバイス製造プロセス
をスタートして、まずステップS200で、次に挙げるステ
ップS201〜S204の中から適切な処理工程を選択する。選
択に従って、ステップS201〜S204のいずれかに進む。
FIG. 3 is a flowchart showing the semiconductor device manufacturing process. When the semiconductor device manufacturing process is started, first in step S200, an appropriate processing step is selected from the following steps S201 to S204. Depending on the selection, proceed to any of steps S201 to S204.

【0057】ステップS201はシリコンウエハの表面を酸
化させる酸化工程である。ステップS202はCVD等により
シリコンウエハ表面に絶縁膜を形成するCVD工程であ
る。ステップS203はシリコンウエハ上に電極を蒸着等の
工程で形成する電極形成工程である。ステップS204はシ
リコンウエハにイオンを打ち込むイオン打ち込み工程で
ある。
Step S201 is an oxidation process for oxidizing the surface of the silicon wafer. Step S202 is a CVD process for forming an insulating film on the surface of a silicon wafer by CVD or the like. Step S203 is an electrode forming step of forming electrodes on the silicon wafer by a process such as vapor deposition. Step S204 is an ion implantation step of implanting ions into the silicon wafer.

【0058】CVD工程もしくは電極形成工程の後で、ス
テップS205に進む。ステップS205はCMP工程である。CMP
工程では本発明に係る平坦化装置により、層間絶縁膜の
平坦化や、半導体デバイスの表面の金属膜の研磨による
ダマシン(damascene)の形成等が行われる。
After the CVD process or the electrode forming process, the process proceeds to step S205. Step S205 is a CMP process. CMP
In the process, the flattening apparatus according to the present invention flattens the interlayer insulating film and forms a damascene by polishing the metal film on the surface of the semiconductor device.

【0059】CMP工程もしくは酸化工程の後でステップS
206に進む。ステップS206はフォトリソ工程である。フ
ォトリソ工程では、シリコンウエハへのレジストの塗
布、露光装置を用いた露光によるシリコンウエハへの回
路パターンの焼き付け、露光したシリコンウエハの現像
が行われる。さらに次のステップS207は現像したレジス
ト像以外の部分をエッチングにより削り、その後レジス
ト剥離が行われ、エッチングが済んで不要となったレジ
ストを取り除くエッチング工程である。
After the CMP process or the oxidation process, step S
Continue to 206. Step S206 is a photolithography process. In the photolithography process, a resist is applied to a silicon wafer, a circuit pattern is printed on the silicon wafer by exposure using an exposure device, and the exposed silicon wafer is developed. Further, the next step S207 is an etching step in which a portion other than the developed resist image is shaved by etching, and then resist stripping is performed to remove the unnecessary resist after etching.

【0060】次にステップS208で必要な全工程が完了し
たかを判断し、完了していなければステップS200に戻
り、先のステップを繰り返して、シリコンウエハ上に回
路パターンが形成される。ステップS208で全工程が完了
したと判断されればエンドとなる。
Next, in step S208, it is determined whether or not all necessary steps are completed. If not completed, the process returns to step S200, and the previous steps are repeated to form a circuit pattern on the silicon wafer. If it is determined in step S208 that all the processes are completed, the process ends.

【0061】本発明に係る半導体デバイス製造方法で
は、CMP工程において本発明に係る平坦化装置を用いて
いるため、CMP工程での研磨終点の検出精度または膜厚
の測定精度が向上することにより、CMP工程での歩留ま
りが向上する。これにより、従来の半導体デバイス製造
方法に比べて低コストで半導体デバイスを製造すること
ができるという効果がある。
In the semiconductor device manufacturing method according to the present invention, since the flattening apparatus according to the present invention is used in the CMP process, the accuracy of detecting the polishing end point or the accuracy of measuring the film thickness in the CMP process is improved. The yield in the CMP process is improved. As a result, there is an effect that the semiconductor device can be manufactured at a lower cost than the conventional semiconductor device manufacturing method.

【0062】なお、上記の半導体デバイス製造プロセス
以外の半導体デバイス製造プロセスのCMP工程に本発明
に係る平坦化装置を用いても良い。
The flattening apparatus according to the present invention may be used in the CMP process of the semiconductor device manufacturing process other than the above semiconductor device manufacturing process.

【0063】本発明に係る半導体デバイスは、本発明に
係る半導体デバイス製造方法により製造される。これに
より、従来の半導体デバイス製造方法に比べて低コスト
で半導体デバイスを製造することができ、半導体デバイ
スの製造原価を低下することができるという効果があ
る。
The semiconductor device according to the present invention is manufactured by the semiconductor device manufacturing method according to the present invention. As a result, the semiconductor device can be manufactured at a lower cost than the conventional semiconductor device manufacturing method, and the manufacturing cost of the semiconductor device can be reduced.

【0064】[0064]

【実施例】[実施例1]図4は実施例1の研磨体の断面
図である。反射防止膜が形成されたサイズ20mm×50mm、
厚さ0.5mmのアクリル板14の上に、同サイズで厚さ0.6mm
のポリウレタン13をUV接着剤で固定し、2層窓を作製す
る。この時、窓全体の形状はサイズ20mm×50mm、厚さ1.
15mmである。実施例1ではアクリル板14が下部透明材料
であり、ポリウレタン13が上部透明材料であり、反射防
止膜は、下部透明材料であるアクリル板14の表面14aに
形成されている。
[Embodiment] [Embodiment 1] FIG. 4 is a sectional view of a polishing body of Embodiment 1. Size 20mm x 50mm with anti-reflection film formed,
0.6 mm thick with the same size on a 0.5 mm thick acrylic plate 14
The polyurethane 13 is fixed with UV adhesive to make a two-layer window. At this time, the overall shape of the window is 20 mm x 50 mm and the thickness is 1.
It is 15 mm. In the first embodiment, the acrylic plate 14 is the lower transparent material, the polyurethane 13 is the upper transparent material, and the antireflection film is formed on the surface 14a of the acrylic plate 14 which is the lower transparent material.

【0065】Rodel社の研磨体IC1000(符号11a)に20mm
×50mmの開口部、およびサブ研磨体SUBA400(符号11b)
に10mm×40mmの開口部を設け、各開口部の中心が一致す
るように積層し、2層の研磨体11を形成する。研磨体IC
1000の圧縮弾性率は、7.5×107Pa、サブ研磨体SUBA400
の圧縮弾性率は、9.6×106Paであり、アクリルの圧縮弾
性率は、0.29×1010Paであり、ポリウレタンの圧縮弾性
率は、7.5×107Paである。次いで、先に作製した窓を研
磨体の開口部に厚さ0.1mmの両面テープを用いて貼り付
けることにより設置する。この時の研磨体の表面に対す
る窓の表面の凹み量は、10μm以下である。
20 mm in the polishing body IC1000 (code 11a) of Rodel
× 50mm opening and sub polishing body SUBA400 (11b)
An opening of 10 mm × 40 mm is provided in each layer and laminated so that the centers of the openings are aligned with each other to form a two-layer polishing body 11. Polished body IC
The compressive elastic modulus of 1000 is 7.5 × 10 7 Pa, and the sub-abrasive body SUBA400
Has a compression elastic modulus of 9.6 × 10 6 Pa, acrylic has a compression elastic modulus of 0.29 × 10 10 Pa, and polyurethane has a compression elastic modulus of 7.5 × 10 7 Pa. Next, the window prepared above is attached to the opening of the polishing body by sticking it with a double-sided tape having a thickness of 0.1 mm. At this time, the amount of depression of the surface of the window with respect to the surface of the polishing body is 10 μm or less.

【0066】この後、定盤36に設置されている開口部38
を介して研磨対象物であるシリコンウエハ33の研磨面を
光学的に観察し研磨状態を測定する装置39を有する平坦
化装置(図2)に上記研磨体を取り付ける。厚さ1μmの
熱酸化膜が形成された6インチシリコンウエハの研磨
を、以下の条件で行い、シリコンウエハ上の酸化膜の残
留膜厚をin-situ計測する。
After this, the opening 38 installed on the surface plate 36
The polishing body is attached to a flattening device (FIG. 2) having a device 39 for optically observing the polishing surface of the silicon wafer 33, which is the object to be polished, and measuring the polishing state via the. A 6-inch silicon wafer on which a 1-μm-thick thermal oxide film is formed is polished under the following conditions, and the residual film thickness of the oxide film on the silicon wafer is measured in-situ.

【0067】研磨ヘッドの回転数:50rpm、研磨定盤の
回転数:50rpm、荷重(研磨対象物が研磨体に押し付け
られる圧力):2.4×104Pa、揺動:なし、研磨時間:90
秒、使用研磨剤:Cabot社製SS25をイオン交換水で2倍
に希釈、研磨剤流量:200ml/分。
Rotation speed of polishing head: 50 rpm, rotation speed of polishing surface plate: 50 rpm, load (pressure at which the object to be polished is pressed against the polishing body): 2.4 × 10 4 Pa, rocking: none, polishing time: 90
Second, polishing agent used: Cabot SS25 was diluted twice with ion-exchanged water, polishing agent flow rate: 200 ml / min.

【0068】この時の平均研磨速度は、430nm/minであ
る。また、窓によるシリコンウエハへの傷や不均一な研
磨は、生じない。図5はin-situで計測したシリコンウ
エハ表面からの反射分光スペクトルのグラフであり、図
5のグラフの曲線のうち曲線(a)が実施例1の反射分
光スペクトルである。図5のグラフにおいて、横軸は波
長であり、縦軸は研磨剤の代わりにイオン交換水を介在
させた状態で、アルミが成膜されたシリコンウエハを研
磨体の窓の部分の上に配置した時の、研磨状態を測定す
る装置39へ戻る光の反射分光スペクトルを基準反射分光
スペクトルとし、その基準反射分光スペクトルに対する
計測した反射分光スペクトルの強度比である。シミュレ
ーションによる波形フィッティングから研磨状況(シリ
コンウエハ上の熱酸化膜の残留膜厚)の計測が可能であ
る。
The average polishing rate at this time is 430 nm / min. Further, the window does not cause scratches or uneven polishing on the silicon wafer. FIG. 5 is a graph of the reflection spectrum from the surface of the silicon wafer measured in-situ, and the curve (a) of the curves in the graph of FIG. 5 is the reflection spectrum of Example 1. In the graph of FIG. 5, the horizontal axis is the wavelength, and the vertical axis is a state in which ion-exchanged water is used instead of the polishing agent, and a silicon wafer on which aluminum is formed is placed on the window portion of the polishing body. The reflection spectroscopic spectrum of the light returning to the device 39 for measuring the polishing state at the time is set as the reference reflection spectroscopic spectrum, and is the intensity ratio of the measured reflection spectroscopic spectrum to the reference reflection spectroscopic spectrum. The polishing condition (residual film thickness of the thermal oxide film on the silicon wafer) can be measured from the waveform fitting by simulation.

【0069】[実施例2]図6(a)〜(k)は実施例
2で使用するin-situ計測するための窓を有する研磨体
の製造工程を示す断面図である。
[Embodiment 2] FIGS. 6A to 6K are sectional views showing the steps of manufacturing a polishing body having a window for in-situ measurement used in Embodiment 2.

【0070】反射防止膜52が形成されたサイズ20mm×50
mm、厚さ1mmの石英ガラス板51を準備し(図6
(a))、石英ガラス板51の周辺に耐熱テープ53を巻
き、底面を石英ガラスとする容器を作製する(図6
(b))。油化シェルエポキシ社製エピコート828とエ
ピコート871を重量比で4:6で混合し、これとエポキシ等
量のp-p’メチレンジアニリンを硬化剤として溶解混合
した樹脂54を、上記の容器に流し込み加熱硬化する(図
6(c))。次いでエポキシ樹脂58を石英ガラスに対し
て平行にバイト59等で切削した後(図6(d))、エポ
キシ樹脂54を研磨で鏡面加工し、下から順番に反射防止
膜/石英ガラス/エポキシ樹脂からなる窓55を得る(図
6(e))。この時の、窓の厚さは1.6mmである。
Size with antireflection film 52 formed 20 mm x 50
A quartz glass plate 51 having a thickness of 1 mm and a thickness of 1 mm is prepared (see FIG. 6).
(A)), a heat-resistant tape 53 is wrapped around the quartz glass plate 51 to produce a container whose bottom is made of quartz glass (FIG. 6).
(B)). Oiled shell epoxy Epicoat 828 and Epicoat 871 were mixed at a weight ratio of 4: 6, and a resin 54 obtained by dissolving and mixing this with epoxy equivalent of p-p 'methylene dianiline as a curing agent was added to the above container. It is poured and cured by heating (FIG. 6 (c)). Next, after cutting the epoxy resin 58 parallel to the quartz glass with a cutting tool 59 or the like (FIG. 6 (d)), the epoxy resin 54 is mirror-finished by polishing, and the antireflection film / quartz glass / epoxy resin is sequentially processed from the bottom. A window 55 consisting of is obtained (FIG. 6 (e)). At this time, the thickness of the window is 1.6 mm.

【0071】開口部56を有するアルミプレート57を準備
し、アルミプレート57の開口部、周辺に耐熱テープ53を
貼り(図6(g))、窓55の作製時と同じ成分のエポキ
シ樹脂54を厚さ4mmとなるよう流し込み、加熱硬化する
(図6(h))。この後、加工したエポキシ樹脂60を研
磨体とするため、周辺の耐熱テープを取り、機械切削に
より研磨体の表面に所定の溝パターンを形成する(図6
(i))。次いで、上記窓の表面が、研磨体の表面と同
じ高さとなるようサイズに合わせて、開口部に階段状の
穴を開け(図6(j))、両面テープで窓を固定する
(図6(k))。この時の研磨体の表面に対する窓表面
の凹み量は、10μm以下であり、窓の表面と研磨体の表
面は、ほぼ同一の面になっている。
An aluminum plate 57 having an opening 56 is prepared, a heat-resistant tape 53 is attached around the opening of the aluminum plate 57 (FIG. 6 (g)), and an epoxy resin 54 having the same composition as that of the window 55 is prepared. It is poured so as to have a thickness of 4 mm and cured by heating (FIG. 6 (h)). After that, in order to use the processed epoxy resin 60 as a polishing body, a heat-resistant tape around the periphery is removed, and a predetermined groove pattern is formed on the surface of the polishing body by mechanical cutting (FIG. 6).
(I)). Then, the window surface is adjusted to have the same height as the surface of the polishing body, a stepped hole is formed in the opening (FIG. 6 (j)), and the window is fixed with double-sided tape (FIG. 6). (K)). At this time, the amount of depression of the window surface with respect to the surface of the polishing body was 10 μm or less, and the surface of the window and the surface of the polishing body were substantially the same surface.

【0072】実施例2ではアルミプレートとしては開口
部56を有するアルミプレートが用いられているが、開口
部を有しないアルミプレートを用い、図6(j)の工程
で研磨体に開口部を設けるのと同時にアルミプレートに
開口部を設けても良い。
Although the aluminum plate having the opening 56 is used as the aluminum plate in the second embodiment, the aluminum plate having no opening is used, and the opening is provided in the polishing body in the step of FIG. 6 (j). At the same time, an opening may be provided in the aluminum plate.

【0073】実施例2では、石英ガラスが下部透明材
料、エポキシ樹脂が上部透明材料となっている。エポキ
シ樹脂の圧縮弾性率は、1.47×109Pa、石英ガラスの圧
縮弾性率は、7.31×1010Paである。
In the second embodiment, quartz glass is the lower transparent material and epoxy resin is the upper transparent material. The compressive elastic modulus of epoxy resin is 1.47 × 10 9 Pa, and the compressive elastic modulus of quartz glass is 7.31 × 10 10 Pa.

【0074】この後、定盤36に設置されている開口部38
を介して研磨対象物であるシリコンウエハ33の研磨面を
光学的に観察して、研磨状態を測定する装置39を有する
平坦化装置(図2)に上記研磨体を取り付ける。厚さ1
μmの熱酸化膜が形成された6インチシリコンウエハの研
磨を、以下の条件で行い、シリコンウエハ上の酸化膜の
残留膜厚をin-situ計測する。
After this, the opening 38 installed on the surface plate 36
The polishing body is attached to a flattening device (FIG. 2) having a device 39 for optically observing the polishing surface of the silicon wafer 33, which is the object to be polished, through the laser. Thickness 1
Polishing of a 6-inch silicon wafer having a thermal oxide film of μm formed is performed under the following conditions, and the residual film thickness of the oxide film on the silicon wafer is measured in-situ.

【0075】研磨ヘッドの回転数:50rpm、研磨定盤の
回転数:50rpm、荷重(研磨対象物が研磨体に押し付け
られる圧力):2.4×104Pa、揺動:なし、研磨時間:90
秒、使用研磨剤:Cabot社製SS25をイオン交換水で2倍
に希釈、研磨剤流量:200ml/分。
Rotation speed of the polishing head: 50 rpm, rotation speed of the polishing platen: 50 rpm, load (pressure at which the object to be polished is pressed against the polishing body): 2.4 × 10 4 Pa, rocking: none, polishing time: 90
Second, polishing agent used: Cabot SS25 was diluted twice with ion-exchanged water, polishing agent flow rate: 200 ml / min.

【0076】この時の平均研磨速度は210nm/minであ
る。また、窓によるシリコンウエハへの傷や不均一な研
磨は、生じない。また、in-situ計測で得られたシリコ
ンウエハ表面からの反射分光スペクトルは図5の曲線
(b)であり、シミュレーションによる波形フィッティ
ングから研磨状況(シリコンウエハ上の熱酸化膜の残留
膜厚)の計測が可能である。
The average polishing rate at this time is 210 nm / min. Further, the window does not cause scratches or uneven polishing on the silicon wafer. Further, the reflection spectrum from the surface of the silicon wafer obtained by the in-situ measurement is the curve (b) of FIG. 5, and the waveform fitting by simulation shows the polishing condition (residual film thickness of the thermal oxide film on the silicon wafer). It is possible to measure.

【0077】[比較例1]反射防止膜を施したサイズ20m
m×50mm、厚さ2mmのアクリルの窓を、実施例2と同様に
作製した研磨体の開口部に、窓の表面と研磨体表面が同
じ高さとなるように実施例2と同様に固定する。この時
の研磨体の表面に対する窓の表面の凹みは、10μm以下
である。
[Comparative Example 1] Size 20 m with antireflection film
An acrylic window having a size of m × 50 mm and a thickness of 2 mm is fixed in the opening portion of the polishing body prepared in the same manner as in Example 2 in the same manner as in Example 2 so that the surface of the window and the polishing body surface have the same height. . At this time, the depression of the window surface with respect to the surface of the polishing body is 10 μm or less.

【0078】この後、定盤36に設置されている開口部38
を介して研磨対象物であるシリコンウエハ33の研磨面を
光学的に観察して、研磨状態を測定する装置39を有する
平坦化装置(図2)に上記研磨体を取り付ける。厚さ1
μmの熱酸化膜が形成された6インチシリコンウエハの研
磨を、以下の条件で行い、シリコンウエハ上の酸化膜の
残留膜厚をin-situ計測する。
After this, the opening 38 installed on the surface plate 36
The polishing body is attached to a flattening device (FIG. 2) having a device 39 for optically observing the polishing surface of the silicon wafer 33, which is the object to be polished, through the laser. Thickness 1
Polishing of a 6-inch silicon wafer having a thermal oxide film of μm formed is performed under the following conditions, and the residual film thickness of the oxide film on the silicon wafer is measured in-situ.

【0079】研磨ヘッドの回転数:50rpm、研磨定盤の
回転数:50rpm、荷重(研磨対象物が研磨体に押し付け
られる圧力):2.4×104Pa、揺動:なし、研磨時間:90
秒、使用研磨剤:Cabot社製SS25をイオン交換水で2倍
に希釈、研磨剤流量:200ml/分。
Rotation number of polishing head: 50 rpm, rotation number of polishing platen: 50 rpm, load (pressure at which the object to be polished is pressed against the polishing body): 2.4 × 10 4 Pa, rocking: none, polishing time: 90
Second, polishing agent used: Cabot SS25 was diluted twice with ion-exchanged water, polishing agent flow rate: 200 ml / min.

【0080】実施例1、2と同様にin-situ計測でシリ
コンウエハの表面からの反射分光スペクトルが得られ、
in-situで研磨状況(シリコンウエハ上熱酸化膜の残留
膜厚)の計測は可能であるが、研磨によりシリコンウエ
ハに傷が発生する。
In-situ measurement was performed in the same manner as in Examples 1 and 2 to obtain a reflection spectrum from the surface of the silicon wafer.
It is possible to measure the polishing condition (residual film thickness of the thermal oxide film on the silicon wafer) in-situ, but the polishing causes scratches on the silicon wafer.

【0081】[比較例2]サイズ20mm×50mm、厚さ2mm
のポリウレタンの窓を、実施例2と同様に作製した研磨
体の開口部に、窓の表面と研磨体の表面が同じ高さとな
るように実施例2と同様に固定する。
[Comparative Example 2] Size 20 mm × 50 mm, thickness 2 mm
The polyurethane window is fixed to the opening of the polishing body prepared in the same manner as in Example 2 so that the surface of the window and the surface of the polishing body have the same height as in Example 2.

【0082】この後、定盤36に設置されている開口部38
を介して研磨対象物であるシリコンウエハ33の研磨面を
光学的に観察して研磨状態を測定する装置39を有する平
坦化装置(図2)に上記研磨体を取り付ける。厚さ1μm
の熱酸化膜が形成された6インチシリコンウエハの研磨
を、以下の条件で行い、開口部を用いてシリコンウエハ
の残留膜厚をin-situ計測する。
After this, the opening 38 installed on the surface plate 36
The polishing body is attached to a flattening device (FIG. 2) having a device 39 for optically observing the polishing surface of the silicon wafer 33, which is the object to be polished, and measuring the polishing state. Thickness 1 μm
The 6-inch silicon wafer on which the thermal oxide film is formed is polished under the following conditions, and the residual film thickness of the silicon wafer is measured in-situ using the opening.

【0083】研磨ヘッドの回転数:50rpm、研磨定盤の
回転数:50rpm、荷重(研磨対象物が研磨体に押し付け
られる圧力):2.4×104Pa、揺動:なし、研磨時間:90
秒、使用研磨剤:Cabot社製SS25をイオン交換水で2倍
に希釈、研磨剤流量:200ml/分。
Rotation speed of the polishing head: 50 rpm, rotation speed of the polishing platen: 50 rpm, load (pressure at which the object to be polished is pressed against the polishing body): 2.4 × 10 4 Pa, rocking: none, polishing time: 90
Second, polishing agent used: Cabot SS25 was diluted twice with ion-exchanged water, polishing agent flow rate: 200 ml / min.

【0084】また、窓によるシリコンウエハへの傷や不
均一な研磨は、生じない。しかし、図7は比較例2によ
る反射分光スペクトルのグラフであり、ポリウレタンの
窓の変形により、計測される反射分光スペクトルの形状
が変形し、計測シミュレーションと一致せず膜厚測定が
困難である。
Further, the window does not cause scratches or uneven polishing on the silicon wafer. However, FIG. 7 is a graph of the reflection spectrum according to Comparative Example 2, and the shape of the reflection spectrum to be measured is deformed due to the deformation of the window of polyurethane, which does not match the measurement simulation, and it is difficult to measure the film thickness.

【0085】[0085]

【発明の効果】以上説明した通り、本発明によれば、開
口部に設置する窓を硬い透明材料と軟らかい透明材料を
2枚以上積層した構造とし、研磨対象物であるシリコン
ウエハ側の透明材料を軟らかい透明材料にすることで、
表面が研磨体の表面と同一面内にある窓を構成すること
により、窓によるシリコンウエハ上の傷の発生や、不均
一な研磨を生じることがなくなるという効果がある。ま
た、研磨剤による散乱に影響されないin-situでの研磨
状態の測定が可能になるという効果がある。また、窓の
変形がなくなるため、研磨終点の検出や膜厚の測定の不
安定さを生じることがないという効果がある。
As described above, according to the present invention, the window installed at the opening has a structure in which two or more hard transparent materials and soft transparent materials are laminated, and the transparent material on the side of the silicon wafer to be polished is the transparent material. By using a soft transparent material,
By forming the window whose surface is in the same plane as the surface of the polishing body, there is an effect that a scratch on the silicon wafer due to the window and uneven polishing are not caused. Further, there is an effect that it is possible to measure the polishing state in-situ without being affected by scattering by the polishing agent. Further, since the window is not deformed, there is an effect that the detection of the polishing end point and the instability of the film thickness measurement do not occur.

【0086】また、研磨対象物側の反対側の面に反射防
止膜を形成することにより、反射による光量の損失が減
少し、研磨状態を測定するための光の強度が損失するこ
とがなくなる。これにより、研磨終点の検出精度や膜厚
の測定精度が低下しないという効果がある。
Further, by forming the antireflection film on the surface opposite to the side of the object to be polished, the loss of light quantity due to reflection is reduced, and the intensity of light for measuring the polishing state is not lost. This has the effect of not lowering the accuracy of detecting the polishing end point and the accuracy of measuring the film thickness.

【0087】また、研磨対象物を研磨する研磨体の表面
に対して、窓の表面が凹んでいることにより、窓が傷つ
くことがなくなり、研磨状態を測定するための光の強度
が損失することがなくなる。これにより、研磨終点の検
出精度や膜厚の測定精度が低下しないという効果があ
る。
Further, since the window surface is recessed with respect to the surface of the polishing body for polishing the object to be polished, the window is prevented from being damaged and the intensity of light for measuring the polishing state is lost. Disappears. This has the effect of not lowering the accuracy of detecting the polishing end point and the accuracy of measuring the film thickness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る研磨体の実施の形態を示す図であ
る。図1(a)は上面図である。図1(b)は図1
(a)A−B部分の断面図である。
FIG. 1 is a diagram showing an embodiment of a polishing body according to the present invention. FIG. 1A is a top view. 1 (b) is shown in FIG.
(A) It is sectional drawing of AB section.

【図2】本発明に係る平坦化装置の実施の形態の概略構
成図である。
FIG. 2 is a schematic configuration diagram of an embodiment of a flattening device according to the present invention.

【図3】本発明に係る半導体デバイス製造方法のフロー
チャートである。
FIG. 3 is a flowchart of a semiconductor device manufacturing method according to the present invention.

【図4】本発明の実施例1の研磨体の断面図である。FIG. 4 is a sectional view of a polishing body of Example 1 of the present invention.

【図5】in-situ計測により求めた反射分光スペクトル
である。曲線(a)は実施例1、曲線(b)は実施例2
における反射分光スペクトルである。
FIG. 5 is a reflection spectroscopy spectrum obtained by in-situ measurement. Curve (a) is Example 1 and curve (b) is Example 2
2 is a reflection spectroscopy spectrum in FIG.

【図6】本発明に係る研磨体の製造工程を示す図であ
る。
FIG. 6 is a diagram showing a manufacturing process of a polishing body according to the present invention.

【図7】in-situ計測により求めた比較例2の反射分光
スペクトルである。
FIG. 7 is a reflection spectroscopy spectrum of Comparative Example 2 obtained by in-situ measurement.

【図8】半導体製造プロセスにおける平坦化技術の概念
図であり、半導体デバイスの断面図である。図8(a)
は半導体デバイスの表面の層間絶縁膜を平坦化する例で
ある。図8(b)は半導体デバイスの表面の金属膜を研
磨し、いわゆるダマシン(damascene)を形成する例で
ある。
FIG. 8 is a conceptual diagram of a planarization technique in a semiconductor manufacturing process and is a cross-sectional view of a semiconductor device. Figure 8 (a)
Is an example of planarizing an interlayer insulating film on the surface of a semiconductor device. FIG. 8B shows an example of polishing a metal film on the surface of a semiconductor device to form a so-called damascene.

【図9】CMPに用いる従来の平坦化装置の概略構成図で
ある。
FIG. 9 is a schematic configuration diagram of a conventional flattening apparatus used for CMP.

【符号の説明】[Explanation of symbols]

11、137・・・・研磨体 11a・・・・研磨体IC1000 11b・・・・研磨体SUBA400 12・・・・開口部 13・・・・上部透明材料 14・・・・下部透明材料 14a・・・・下部透明材料の表面 21・・・・シリコンウエハ 22・・・・絶縁膜(誘電体膜) 23・・・・金属配線 24・・・・半導体デバイス 31、131・・・・研磨部材 32、132・・・・研磨対象物保持部(研磨ヘッド) 33、133・・・・研磨対象物(シリコンウエハ) 34、134・・・・研磨剤供給部 35、135・・・・研磨剤(スラリー) 36、136・・・・定盤 38、138・・・・開口部 39、139・・・・研磨状態を測定する装置 51・・・・ガラス 52・・・・反射防止膜 53・・・・耐熱テープ 54、58、60・・・・エポキシ樹脂 55・・・・窓 56・・・・開口部 57・・・・アルミプレート 59・・・・バイト 11, 137 ... ・ Abrasive body 11a ··· Polished body IC1000 11b ・ ・ ・ ・ Abrasive body SUBA400 12 ... Opening 13 ・ ・ ・ ・ Upper transparent material 14 ... Lower transparent material 14a ... ・ Surface of lower transparent material 21 ... Silicon wafer 22 ··· Insulating film (dielectric film) 23 ... Metal wiring 24 ... Semiconductor device 31, 131 ... 32, 132 ... ・ Holding part for polishing (polishing head) 33, 133 ・ ・ ・ ・ Object of polishing (silicon wafer) 34, 134 ...- Abrasive agent supply unit 35, 135 ... ・ Abrasive (slurry) 36, 136 ... Surface plate 38, 138 ... ・ Opening 39, 139 ...- Device for measuring polishing state 51 ・ ・ ・ ・ Glass 52 .... Antireflection film 53 ... Heat resistant tape 54, 58, 60 ... Epoxy resin 55 ... window 56 ... Opening 57 ··· Aluminum plate 59 ... Bite

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B24B 37/04 H01L 21/304 622 Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) B24B 37/04 H01L 21/304 622

Claims (16)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】定盤上に設置されている研磨体と研磨対象
物の間に研磨剤を介在させた状態で、前記研磨体と前記
研磨対象物の間に荷重を加え、且つ、相対移動させるこ
とにより、前記研磨対象物を研磨する平坦化装置に用い
る研磨体において、 開口部と、 該開口部に設置されている窓を有し、 該窓は2枚以上の透明材料が積層されていることを特徴
とする研磨体。
1. A load is applied between the polishing body and the object to be polished while a polishing agent is interposed between the polishing body and the object to be polished, which are installed on a surface plate, and relative movement is performed. Thus, the polishing body used in the flattening device for polishing the object to be polished has an opening and a window installed in the opening, and the window is formed by laminating two or more transparent materials. Abrasive body characterized by being
【請求項2】前記窓は2枚の透明材料が積層され、 該透明材料のうちの前記研磨対象物側の透明材料の圧縮
弾性率は、前記研磨対象物側の反対側の透明材料の圧縮
弾性率より小さいことを特徴とする請求項1に記載の研
磨体。
2. The window is formed by laminating two transparent materials, and the compression elastic modulus of the transparent material of the transparent material on the side of the polishing object is the compression of the transparent material on the side opposite to the polishing object. 2. The polishing body according to claim 1, which has a smaller elastic modulus.
【請求項3】前記透明材料のうちの前記研磨対象物側の
透明材料の圧縮弾性率eは、2.9×10 7Pa≦e≦1.47×109P
aであり、且つ、研磨体の圧縮弾性率とほぼ同じである
ことを特徴とする請求項1または2に記載の研磨体。
3. The side of the object to be polished of the transparent material
The compressive elastic modulus e of transparent material is 2.9 × 10 7Pa ≦ e ≦ 1.47 × 109P
is a and is almost the same as the compressive elastic modulus of the polishing body.
The abrasive body according to claim 1 or 2, characterized in that:
【請求項4】前記研磨対象物と接触する研磨体の表面に
対して、前記窓の前記研磨対象物側の表面は、凹んでい
て、 該凹み量dは0μm<d≦400μmであることを特徴とする請
求項1から3のいずれかに記載の研磨体。
4. The surface of the window on the side of the object to be polished is recessed with respect to the surface of the polishing body that comes into contact with the object to be polished, and the amount d of the recess is 0 μm <d ≦ 400 μm. The abrasive body according to any one of claims 1 to 3, which is characterized in that.
【請求項5】前記研磨対象物と接触する研磨体の表面に
対して、前記窓の前記研磨対象物側の表面は、凹んでい
て、 該凹み量dは、0μm<d≦研磨体の厚さの90%の長さ、で
あり、且つ、前記窓の厚さtは、t≧研磨体の厚さの10%
の長さ、であることを特徴とする請求項1から3のいず
れかに記載の研磨体。
5. The surface of the window on the side of the object to be polished is recessed with respect to the surface of the object to be contacted with the object to be polished, and the dent amount d is 0 μm <d ≦ thickness of the object to be polished. 90% of the length, and the thickness t of the window is t ≧ 10% of the thickness of the polishing body.
The polishing body according to any one of claims 1 to 3, characterized in that
【請求項6】前記窓の透過率は、22%以上であることを
特徴とする請求項1から5のいずれかに記載の研磨体。
6. The polishing body according to claim 1, wherein the window has a transmittance of 22% or more.
【請求項7】前記窓の前記研磨対象物側の反対側の表面
に反射防止膜が形成されていることを特徴とする請求項
1から6のいずれかに記載の研磨体。
7. An antireflection film is formed on the surface of the window opposite to the side of the object to be polished.
7. The polishing body according to any one of 1 to 6.
【請求項8】定盤上に設置されている研磨体と研磨対象
物の間に研磨剤を介在させた状態で、前記研磨体と前記
研磨対象物の間に荷重を加え、且つ、相対移動させるこ
とにより、前記研磨対象物を研磨する平坦化装置におい
て、 前記定盤に形成された開口部と、 前記研磨体に形成された開口部と、 前記研磨体に設置されている、もしくは前記研磨体に形
成された該開口部の少なくとも一部分を塞ぐように前記
定盤に設置されている窓と、 該窓を介して前記研磨対象物の研磨面を光学的に観察し
て、研磨状態を測定する装置を有し、 前記研磨体に形成された前記開口部と前記定盤に形成さ
れた前記開口部は、重なっていて、 前記窓は2枚以上の透明材料が積層されていることを特
徴とする平坦化装置。
8. A load is applied between the polishing body and the object to be polished while a polishing agent is interposed between the polishing body and the object to be polished, which are installed on a surface plate, and relative movement is performed. In the flattening device for polishing the object to be polished, the opening formed in the surface plate, the opening formed in the polishing body, and the polishing body installed in the polishing body, or A window installed on the surface plate so as to close at least a part of the opening formed in the body, and a polishing surface of the polishing object is optically observed through the window to measure a polishing state. The opening formed in the polishing body and the opening formed in the surface plate are overlapped with each other, and the window is formed by laminating two or more transparent materials. And flattening device.
【請求項9】前記窓は2枚の透明材料が積層され、 該透明材料のうちの前記研磨対象物側の透明材料の圧縮
弾性率は、前記研磨状態を測定する装置側の透明材料の
圧縮弾性率より小さいことを特徴とする請求項8に記載
の平坦化装置。
9. The window is formed by laminating two transparent materials, and the compression elastic modulus of the transparent material of the transparent material on the side of the object to be polished is the compression of the transparent material on the side of the device for measuring the polishing state. The flattening device according to claim 8, wherein the flattening device has a smaller elastic modulus.
【請求項10】前記透明材料のうちの前記研磨対象物側
の透明材料の圧縮弾性率eは、2.9×10 7Pa≦e≦1.47×10
9Paであり、且つ、研磨体の圧縮弾性率とほぼ同じであ
ることを特徴とする請求項8または9に記載の平坦化装
置。
10. The polishing object side of the transparent material
The compressive elastic modulus e of the transparent material is 2.9 × 10 7Pa ≦ e ≦ 1.47 × 10
9Pa and is almost the same as the compression elastic modulus of the polishing body.
The flattening device according to claim 8 or 9, wherein
Place
【請求項11】前記研磨対象物と接触する研磨体の表面
に対して、前記窓の前記研磨対象物側の表面は、凹んで
いて、 該凹み量dは0μm<d≦400μmであることを特徴とする請
求項8から10のいずれかに記載の平坦化装置。
11. The surface of the window on the side of the object to be polished is recessed with respect to the surface of the polishing body that comes into contact with the object to be polished, and the amount d of the recess is 0 μm <d ≦ 400 μm. The flattening apparatus according to claim 8, wherein the flattening apparatus is a flattening apparatus.
【請求項12】前記研磨対象物と接触する研磨体の表面
に対して、前記窓の前記研磨対象物側の表面は、凹んで
いて、 該凹み量dは、0μm<d≦研磨体の厚さの90%の長さ、で
あり、且つ、前記窓の厚さtは、t≧研磨体の厚さの10%
の長さ、であることを特徴とする請求項8から10のい
ずれかに記載の平坦化装置。
12. The surface of the window on the side of the object to be polished is recessed with respect to the surface of the object to be contacted with the object to be polished, and the recess amount d is 0 μm <d ≦ thickness of the object to be polished. 90% of the length, and the thickness t of the window is t ≧ 10% of the thickness of the polishing body.
The flattening apparatus according to any one of claims 8 to 10, characterized in that
【請求項13】前記研磨状態を測定する装置から出射す
る光は、前記窓を通過し、前記窓と前記研磨対象物の間
の前記研磨剤を通過し、前記研磨対象物の研磨面で反射
し、前記窓と前記研磨対象物の間の前記研磨剤を再び通
過し、前記窓を再び通過し、前記研磨状態を測定する装
置へ戻り、 前記研磨状態を測定する装置から出射する前記光の強度
に対する前記研磨状態を測定する装置へ戻る光の強度の
比が5%以上であることを特徴とする請求項8から12
のいずれかに記載の平坦化装置。
13. Light emitted from the device for measuring the polishing state passes through the window, passes through the abrasive between the window and the object to be polished, and is reflected by the polishing surface of the object to be polished. Then, the polishing agent between the window and the object to be polished is passed again, the light is passed through the window again, returns to the apparatus for measuring the polishing state, and emits the light emitted from the apparatus for measuring the polishing state. 13. The ratio of the intensity of light returning to the device for measuring the polishing state to the intensity is 5% or more.
The flattening apparatus according to any one of 1.
【請求項14】前記窓の前記研磨状態を測定する装置側
の表面に反射防止膜が形成されていることを特徴とする
請求項8から13のいずれかに記載の平坦化装置。
14. The flattening device according to claim 8, wherein an antireflection film is formed on a surface of the window on the device side for measuring the polished state.
【請求項15】請求項8から14のいずれかに記載の平
坦化装置を用いて半導体ウエハの表面を平坦化する工程
を有することを特徴とする半導体デバイス製造方法。
15. A method of manufacturing a semiconductor device, comprising a step of flattening a surface of a semiconductor wafer by using the flattening apparatus according to any one of claims 8 to 14.
【請求項16】請求項15に記載の半導体デバイス製造
方法により製造されることを特徴とする半導体デバイ
ス。
16. A semiconductor device manufactured by the method for manufacturing a semiconductor device according to claim 15.
JP34505899A 1999-03-31 1999-12-03 Polishing body, planarization apparatus, semiconductor device manufacturing method, and semiconductor device Expired - Lifetime JP3374814B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP34505899A JP3374814B2 (en) 1999-12-03 1999-12-03 Polishing body, planarization apparatus, semiconductor device manufacturing method, and semiconductor device
CNB00802085XA CN1150601C (en) 1999-03-31 2000-03-14 Polishing body, polisher, method for adjusting polisher, method for measuring thickness of polished film or end point of polishing, method for producing semiconductor device
EP00908067A EP1176630B1 (en) 1999-03-31 2000-03-14 Polishing body, polisher, method for adjusting polisher, method for measuring thickness of polished film or end point of polishing, method for producing semiconductor device
DE60035341T DE60035341D1 (en) 1999-03-31 2000-03-14 POLISHING BODY, POLISHING MACHINE, POLISHING MACHINE ADJUSTING METHOD, THICKNESS OR FINAL POINT MEASURING METHOD FOR THE POLISHED LAYER, PRODUCTION METHOD OF A SEMICONDUCTOR COMPONENT
KR10-2001-7008191A KR100435246B1 (en) 1999-03-31 2000-03-14 Polishing body, polisher, method for adjusting polisher, method for measuring thickness of polished film or end point of polishing, method for producing semiconductor device
PCT/JP2000/001545 WO2000060650A1 (en) 1999-03-31 2000-03-14 Polishing body, polisher, method for adjusting polisher, method for measuring thickness of polished film or end point of polishing, method for producing semiconductor device
TW089105309A TW484181B (en) 1999-03-31 2000-03-23 Polishing body, polishing device, adjusting method for polishing device, measurement method for polishing film thickness or polishing stop
US09/846,339 US6458014B1 (en) 1999-03-31 2001-05-02 Polishing body, polishing apparatus, polishing apparatus adjustment method, polished film thickness or polishing endpoint measurement method, and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34505899A JP3374814B2 (en) 1999-12-03 1999-12-03 Polishing body, planarization apparatus, semiconductor device manufacturing method, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2001162520A JP2001162520A (en) 2001-06-19
JP3374814B2 true JP3374814B2 (en) 2003-02-10

Family

ID=18374013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34505899A Expired - Lifetime JP3374814B2 (en) 1999-03-31 1999-12-03 Polishing body, planarization apparatus, semiconductor device manufacturing method, and semiconductor device

Country Status (1)

Country Link
JP (1) JP3374814B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100789663B1 (en) * 2000-03-15 2007-12-31 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스 인코포레이티드 A polishing pad having a transparent window portion in a polishing layer
JP2002001647A (en) * 2000-06-19 2002-01-08 Rodel Nitta Co Polishing pad
CN1220259C (en) 2001-12-27 2005-09-21 松下电器产业株式会社 Forming method for wiring structure
CN1207773C (en) 2001-12-27 2005-06-22 松下电器产业株式会社 Forming method of wiring structure
CN1198331C (en) 2001-12-27 2005-04-20 松下电器产业株式会社 Forming method for wiring structure
KR20050059123A (en) * 2002-08-30 2005-06-17 도레이 가부시끼가이샤 Polishing pad, polishing plate hole cover, polishing apparatus, polishing method, and method for manufacturing semiconductor device
JP4514199B2 (en) * 2004-05-10 2010-07-28 東洋ゴム工業株式会社 Polishing pad and semiconductor device manufacturing method
JP4904027B2 (en) * 2005-08-10 2012-03-28 ニッタ・ハース株式会社 Polishing pad
CN100580885C (en) * 2006-02-06 2010-01-13 东丽株式会社 Polishing pad, polishing apparatus, protection film for the polishing apparatus and polishing method
JP2014113644A (en) 2012-12-06 2014-06-26 Toyo Tire & Rubber Co Ltd Polishing pad
JP7348860B2 (en) * 2020-02-26 2023-09-21 富士紡ホールディングス株式会社 Polishing pad and polishing pad manufacturing method

Also Published As

Publication number Publication date
JP2001162520A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
US6458014B1 (en) Polishing body, polishing apparatus, polishing apparatus adjustment method, polished film thickness or polishing endpoint measurement method, and semiconductor device manufacturing method
EP1176631B1 (en) Method and apparatus for monitoring polishing state, polishing device, process wafer, semiconductor device, and method of manufacturing semiconductor device
JP5277163B2 (en) Polishing pad with window having multiple parts
US6503839B2 (en) Endpoint stabilization for polishing process
US5830041A (en) Method and apparatus for determining endpoint during a polishing process
JP3374814B2 (en) Polishing body, planarization apparatus, semiconductor device manufacturing method, and semiconductor device
KR101109156B1 (en) Anti-scattering layer for polishing pad windows
KR20030075912A (en) Apparatus and method for chemically and mechanically polishing semiconductor wafer
US6200908B1 (en) Process for reducing waviness in semiconductor wafers
JP2000326220A (en) Detection of end point using light of different wavelength
JP3367496B2 (en) Polishing body, planarization apparatus, semiconductor device manufacturing method, and semiconductor device
US20010009838A1 (en) Laser interferometry endpoint detection with windowless polishing pad for chemical mechanical polishing process
JP3141939B2 (en) Metal wiring formation method
US6916525B2 (en) Method of using films having optimized optical properties for chemical mechanical polishing endpoint detection
US6743075B2 (en) Method for determining chemical mechanical polishing time
US6503766B1 (en) Method and system for detecting an exposure of a material on a semiconductor wafer during chemical-mechanical polishing
JP2001212752A (en) Polishing body, polishing device, semiconductor device manufacturing method and semiconductor device
Desai et al. Chemical mechanical polishing for planarization in manufacturing environment
TW200408496A (en) Polishing pad with window
JP2003285258A (en) Polishing pad, polishing apparatus, and method for manufacturing semiconductor device
TW525257B (en) Improvement method of forming integrated circuit shallow trench isolation region
Isobe A study of CMP Edge Profile for Production Wafers
KR20030066033A (en) Polishing pads

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3374814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141129

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141129

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141129

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term