JP3359449B2 - Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet - Google Patents

Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Info

Publication number
JP3359449B2
JP3359449B2 JP00089495A JP89495A JP3359449B2 JP 3359449 B2 JP3359449 B2 JP 3359449B2 JP 00089495 A JP00089495 A JP 00089495A JP 89495 A JP89495 A JP 89495A JP 3359449 B2 JP3359449 B2 JP 3359449B2
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
magnetic flux
flux density
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00089495A
Other languages
Japanese (ja)
Other versions
JPH08188824A (en
Inventor
健司 小菅
洋介 黒崎
憲人 阿部
邦秀 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP00089495A priority Critical patent/JP3359449B2/en
Publication of JPH08188824A publication Critical patent/JPH08188824A/en
Application granted granted Critical
Publication of JP3359449B2 publication Critical patent/JP3359449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、2.5〜4.0%のS
iを含み、トランス等の鉄心に用いられる{110}
〈001〉方位すなわちゴス方位を高度に発達させた高
磁束密度一方向性電磁鋼板の製造方法を提供するもので
ある。
The present invention relates to a method for producing 2.5 to 4.0% of sulfur.
{110} used for iron cores such as transformers, including i
An object of the present invention is to provide a method for producing a high magnetic flux density unidirectional magnetic steel sheet in which the <001> orientation, that is, the Goss orientation, is highly developed.

【0002】[0002]

【従来の技術】一般に、一方向性電磁鋼板の磁気特性は
鉄損特性と励磁特性の両方で評価される。励磁特性を高
めることは設計磁束密度を高める機器の小型化に有効で
ある。一方鉄損特性を少なくすることは、電気機器とし
て使用する際、熱エネルギーとして失われるものを少な
くし、消費電力を節約できる点で有効である。さらに、
製品の結晶粒の〈100〉軸を圧延方向に揃えること
は、磁化特性を高め、鉄損特性も低くすることができ、
近年特にこの面で多くの研究が重ねられ、様々な製造技
術が開発された。
2. Description of the Related Art Generally, the magnetic properties of a grain-oriented electrical steel sheet are evaluated based on both iron loss properties and excitation properties. Increasing the excitation characteristics is effective in reducing the size of equipment that increases the design magnetic flux density. On the other hand, reducing the iron loss characteristics is effective in that when it is used as an electric device, heat loss is reduced and power consumption can be saved. further,
Aligning the <100> axis of the crystal grains of the product in the rolling direction can increase the magnetizing properties and lower the iron loss properties,
In recent years, many studies have been made particularly on this aspect, and various manufacturing techniques have been developed.

【0003】たとえば、特公昭40−15644号公報
に高い磁束密度を得るために、方向性電磁鋼板の製造方
法が開示されている。これは、AlN+MnSをインヒ
ビターとして機能させ、最終冷延工程における圧下率が
80%を超える強圧下とする製造である。この方法によ
り二次再結晶粒の{110}〈001〉方位の集積度が
高く、B8 が1.870T以上の高磁束密度を有する方
向性電磁鋼板が得られる。しかし、上記特許に基づく製
品の磁束密度B8 は1.88から高々1.95T程度で
あり、3%Si鋼の飽和磁束密度2.03Tの95%程
度の値を示しているにすぎない。然るに、近年省エネル
ギー、省資源への社会的要求は益々厳しくなり、一方向
性電磁鋼板の鉄損低減、磁化特性改善への要求も熾烈に
なってきている。
For example, Japanese Patent Publication No. 40-15644 discloses a method for producing a grain-oriented electrical steel sheet in order to obtain a high magnetic flux density. This is a production in which AlN + MnS is made to function as an inhibitor, and the rolling reduction in the final cold rolling step is more than 80%. {110} of the secondary recrystallized grains by the method <001> of the high degree of integration oriented electrical steel sheet B 8 has a high magnetic flux density of more than 1.870T is obtained. However, the magnetic flux density B 8 of the product based on the patent is at most about 1.95T 1.88, only shows the value of about 95% of the saturation magnetic flux density 2.03T of 3% Si steel. However, in recent years, social demands for energy savings and resource savings have become increasingly severe, and demands for reduction of iron loss and improvement of magnetic properties of the grain-oriented electrical steel sheets have also become fierce.

【0004】一方、技術的には鉄損低減化の手法とし
て、特公昭57−2252号公報に開示されている鋼板
にレーザ処理を施す方法、さらに特公昭58−2569
号公報に鋼板に機械的な歪みを加える方法等、磁区を細
分化する様々な方法が開示されている。上記の手法によ
り磁区細分化される場合には、磁束密度が高くなればな
るほど鉄損特性は低減する傾向にある。したがって、従
来の一方向性電磁鋼板の磁束密度B8 をさらに高め、3
%Si鋼の飽和磁束密度2.03Tの値に近づける手段
の出現が待たれているのが現状である。
On the other hand, technically, as a technique for reducing iron loss, a method of subjecting a steel sheet to a laser treatment disclosed in Japanese Patent Publication No. 57-2252, and further a method of reducing the iron loss, further disclosed in Japanese Patent Publication No. 58-2569.
Various methods for subdividing magnetic domains, such as a method of applying a mechanical strain to a steel sheet, are disclosed in Japanese Patent Application Laid-Open Publication No. H11-157,878. When the magnetic domain is subdivided by the above-described method, the higher the magnetic flux density, the lower the iron loss characteristics tend to be. Therefore, the magnetic flux density B 8 of the conventional grain-oriented electrical steel sheet is further increased,
At present, the appearance of means for approaching the saturation magnetic flux density of 2.03T of% Si steel is expected.

【0005】この目標達成のための手段として、特公昭
58−50295号公報では温度勾配焼鈍法を提案し
た。この方法で始めて安定してB8 が1.95T以上の
製品が得られるようになった。しかしこの方法は工場サ
イズのコイルフォームで実施する場合、コイルの一端面
から加熱し、他端部は温度勾配をつけるため冷却すると
いう非常に熱エネルギー的損失を伴うため工業生産とし
ては問題点があった。
As means for achieving this goal, Japanese Patent Publication No. 58-50295 proposes a temperature gradient annealing method. B 8 stably started in this way is now more products 1.95T is obtained. However, when this method is implemented with a factory-sized coil foam, there is a problem in industrial production because heating is performed from one end of the coil and the other end is cooled due to a temperature gradient, which is very thermal energy loss. there were.

【0006】さらに、特開平6−88171号公報では
溶鋼に100〜5000g/TのBiを添加する方法が
開示され、B8 が1.95T以上の製品が得られるよう
になった。しかしこの方法では、工場サイズのコイルフ
ォームで実施する場合、二次再結晶が一部不安定な部分
があり、コイルの全長、全幅に亘り、すべての箇所にお
いて工業的に安定してB8 が1.95T以上の製品が得
られないという、問題点を大きくはらんでいる。
Furthermore, a method of adding Bi in 100~5000g / T in molten steel is disclosed in JP-A 6-88171 JP, B 8 is now more products 1.95T is obtained. However, in this method, when implemented in a coil form in plant size, there are secondary recrystallization portion unstable portions, the total length of the coil, over the entire width, industrially stable B 8 is at all points There is a large problem that a product of 1.95T or more cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】以上の従来の製造方法
では、極めて磁束密度の高い超高磁束密度一方向性電磁
鋼板を工業生産としてコイル全長、全幅に亘り安定して
8 が1.95T以上の製品を得ることは困難であり、
本発明はそれを解決する製造方法を提供するものであ
る。
In the [0007] above conventional manufacturing method, B 8 stable over coils entire length, the full width of the extremely high magnetic flux density ultra-high magnetic flux density grain-oriented electrical steel sheet as industrial production 1.95T It is difficult to obtain the above products,
The present invention provides a manufacturing method for solving the problem.

【0008】[0008]

【課題を解決するための手段】本発明では、上記課題を
解決すべく検討を重ねた結果、重量比で、C:0.10
%以下、Si:2.5〜4.0%、Mn:0.02〜
0.30%、SおよびSeのうちから選んだ1種又は2
種の合計:0.001〜0.040%、酸可溶性Al:
0.010〜0.065%、N:0.0030〜0.0
200%を基本成分とし、残余はFeおよび不可避的不
純物よりなる一方向性電磁鋼熱延板に、熱延板焼鈍を施
し、1回あるいは2回以上あるいは中間焼鈍をはさむ2
回以上の冷間圧延を実施し、脱炭焼鈍した後、最終仕上
焼鈍を施して一方向性電磁鋼板を製造する方法におい
て、素材の組成成分にBiを0.0005〜0.05%
含有させ、最終板厚まで圧延されたストリップを脱炭焼
鈍する前に、P H2 O /P H2が0.4以下の雰囲気中
で、100℃/秒以上の加熱速度で700℃以上の温度
域へ急速に加熱処理することを特徴とすることにより、
コイルの全長、全幅に亘り工業的に安定してB8 が1.
95T以上の極めて高い磁束密度をもつ一方向性電磁鋼
板の製造方法が得られることを見い出した。
According to the present invention, as a result of repeated studies to solve the above-mentioned problems, the weight ratio of C: 0.10
% Or less, Si: 2.5 to 4.0%, Mn: 0.02 to
0.30%, one or two selected from S and Se
Total species: 0.001-0.040%, acid soluble Al:
0.010-0.065%, N: 0.0030-0.0
A hot-rolled sheet of unidirectional magnetic steel made of 200% as a basic component, with the balance being Fe and unavoidable impurities, is subjected to hot-rolled sheet annealing, and is subjected to one or more times or intermediate annealing.
In a method of manufacturing a grain-oriented electrical steel sheet by performing cold rolling more than once, decarburizing annealing, and then performing final finishing annealing, Bi is added to the composition of the material in an amount of 0.0005 to 0.05%.
Before decarburizing and annealing the strip rolled to the final thickness and containing it, at a heating rate of 100 ° C./sec or more and 700 ° C. or more in an atmosphere of PH 2 O / P H 2 of 0.4 or less. By rapidly heating to the temperature range,
Industrially stably B 8 over the entire length of the coil, the total width is 1.
It has been found that a method for producing a grain-oriented electrical steel sheet having an extremely high magnetic flux density of 95 T or more can be obtained.

【0009】加えて、上記の急速加熱処理が、P H2 O
/P H2 が0.2以下の非酸化性雰囲気中で加熱処理す
ることにより、さらに極めて高い磁束密度をもつ一方向
性電磁鋼板の製造方法が得られることを見い出した。さ
らに、上記の2つの加熱処理が脱炭焼鈍の昇温段階とし
て取り込むことにより、工程が少ない方法で、極めて高
い磁束密度をもつ一方向性電磁鋼板が得られることを見
い出した。
[0009] In addition, the above-mentioned rapid heating treatment is performed by using P H 2 O
It has been found that a method for producing a grain-oriented electrical steel sheet having an extremely high magnetic flux density can be obtained by performing a heat treatment in a non-oxidizing atmosphere having / P H 2 of 0.2 or less. Furthermore, it has been found that by incorporating the above two heat treatments as a temperature raising stage of decarburizing annealing, a unidirectional magnetic steel sheet having an extremely high magnetic flux density can be obtained by a method with a small number of steps.

【0010】また、以上の製造方法において、成分を重
量比でSb,Sn,CuおよびMoから選ばれる1種又
は2種以上を0.003〜0.50%含有することを特
徴とすることにより、さらに極めて高い磁束密度をもつ
一方向性電磁鋼板の製造方法が得られることを見い出し
た。
The above-mentioned production method is characterized in that one or more components selected from Sb, Sn, Cu and Mo are contained in a weight ratio of 0.003 to 0.50%. It has been found that a method for producing a grain-oriented electrical steel sheet having an extremely high magnetic flux density can be obtained.

【0011】以下に本発明を詳細に説明する。本発明者
は、所謂高磁束密度一方向性電磁鋼板の磁束密度を高め
るべく種々の研究を重ね、窒化アルミニウムを主インヒ
ビターとする一方向性電磁鋼板用素材溶鋼にBiを極微
量に添加することにより現在市販されている高磁束密度
一方向性電磁鋼板の磁束密度B8 =1.93T程度をは
るかに超える1.95T以上、2Tにも及ぶ高磁束密度
一方向性電磁鋼板を製造することに成功した。
Hereinafter, the present invention will be described in detail. The present inventors have conducted various studies to increase the magnetic flux density of a so-called high magnetic flux density unidirectional magnetic steel sheet, and added a very small amount of Bi to a molten steel material for a unidirectional magnetic steel sheet having aluminum nitride as a main inhibitor. To produce a high magnetic flux density unidirectional electrical steel sheet of 1.95T or more and 2T, far exceeding the magnetic flux density B 8 = 1.93T of the high magnetic flux density unidirectional electrical steel sheet currently commercially available. Successful.

【0012】しかし、上記の方法では、工業的に安定し
て1.95T以上、2Tにも及ぶ高磁束密度一方向性電
磁鋼板を製造することが、非常に困難であった。つま
り、コイルフォームで製造する際、コイルの全長、全幅
において磁束密度B8 =1.93T程度をはるかに超え
た1.95T以上、2Tにも及ぶ高磁束密度一方向性電
磁鋼板を得ることが、非常に困難であった。
However, it is very difficult with the above-mentioned method to industrially produce a high magnetic flux density unidirectional magnetic steel sheet of 1.95 T or more and 2 T or more. In other words, when manufacturing with a coil form, it is possible to obtain a high magnetic flux density unidirectional electrical steel sheet of not less than 1.95T and 2T far exceeding magnetic flux density B 8 = 1.93T over the entire length and width of the coil. Was very difficult.

【0013】これを改善すべく種々の検討を重ねた結
果、脱炭焼鈍前の加熱処理および脱炭焼鈍での昇温中の
雰囲気および加熱速度が、B8 が1.95T以上の超高
磁束密度を安定して得ることに、大きく寄与することが
判明した。
[0013] result of various studies in order to improve this, atmosphere and heating rate during heating in heat treatment and decarburization annealing before the decarburization annealing is ultra-high magnetic flux B 8 is not less than 1.95T It has been found that it contributes greatly to obtaining a stable density.

【0014】一方向性電磁鋼板は、その製造工程の最終
焼鈍中に二次再結晶を十分に起こさせ、所謂ゴス集合組
織を得ることにより製造できる。このゴス集合組織を得
るためには、一次再結晶粒の成長粗大化を抑制し、圧延
方向に揃った{110}〈001〉方位の再結晶粒のみ
をある温度範囲で選択的に成長させる。つまり、二次再
結晶させるような素地を作ってやることが必要である。
そのためには、素材にMnS,AlN,Cu2 S等の微
細な析出物が一次再結晶粒の成長の抑制材(インヒビタ
ー)として、均一に分散していなければならない。そこ
で、従来での製造方法は特開平6−88171号公報の
ようにBiを添加し均一微細なインヒビター効果を得て
いた。
A grain-oriented electrical steel sheet can be produced by sufficiently causing secondary recrystallization during the final annealing in the production process to obtain a so-called Goss texture. In order to obtain this Goss texture, the coarse growth of primary recrystallized grains is suppressed, and only the recrystallized grains having the {110} <001> orientation aligned with the rolling direction are selectively grown in a certain temperature range. In other words, it is necessary to make a base material for secondary recrystallization.
For this purpose, fine precipitates such as MnS, AlN, and Cu 2 S must be uniformly dispersed in the material as an inhibitor (inhibitor) for the growth of primary recrystallized grains. Therefore, in the conventional manufacturing method, Bi was added to obtain a uniform and fine inhibitor effect as disclosed in JP-A-6-88171.

【0015】しかし、Bi金属は、その融点が約270
℃ということから、二次再結晶させる1100℃付近の
高温域ではBiが非常に不安定な状態にある。そのた
め、AlN等インヒビターの均一微細な状態が高温域で
保持できず、結果として安定して1.95T以上の超高
磁束密度が得られないということを発見した。
However, Bi metal has a melting point of about 270.
Due to the temperature of Bi, Bi is very unstable in a high temperature region around 1100 ° C where the secondary recrystallization is performed. For this reason, it has been discovered that a uniform fine state of an inhibitor such as AlN cannot be maintained in a high temperature range, and as a result, an ultra-high magnetic flux density of 1.95 T or more cannot be obtained stably.

【0016】これを改善するため、本発明者らは、二次
再結晶前での酸化皮膜を制御することで、Biの不安定
性を補うことに着眼した。つまり、脱炭焼鈍を始める前
の初期の酸化膜をSiO2 リッチに制御することによ
り、二次再結晶焼鈍中の窒素の吸収、脱窒素を抑制し、
AlN等インヒビターの均一微細な状態をできるだけ保
持することを考えた。
In order to improve this, the present inventors have focused on compensating for Bi instability by controlling the oxide film before the secondary recrystallization. In other words, by controlling the initial oxide film before starting decarburization annealing to be SiO 2 rich, nitrogen absorption and denitrification during secondary recrystallization annealing are suppressed,
It was conceived to maintain a uniform and fine state of an inhibitor such as AlN as much as possible.

【0017】そして、このSiO2 を制御するため、P
H2 O /P H2 が0.4以下の酸素ポテンシャルの雰囲
気中で加熱処理を短時間で実施することが非常に有効で
あることを突き止めた。つまり、P H2 O /P H2
0.4以下の雰囲気中で、700℃以上の温度域に10
0℃/秒以上の加熱速度で急速加熱処理することにより
達成できる。加えて、上記の急速加熱処理がP H2 O /
P H2 を0.2以下の非酸化性雰囲気中で実施すること
も、さらに磁気特性を良好なものにすることを突き止め
た。
In order to control the SiO 2 , P
It has been found that it is very effective to perform the heat treatment in an atmosphere having an oxygen potential of H 2 O / P H 2 of 0.4 or less in a short time. That is, in a temperature range of 700 ° C. or more in an atmosphere of PH 2 O / P H 2 of 0.4 or less, 10
This can be achieved by performing a rapid heating treatment at a heating rate of 0 ° C./second or more. In addition, the above-mentioned rapid heat treatment is carried out with PH 2 O /
It was also found that the implementation of P H 2 in a non-oxidizing atmosphere of 0.2 or less further improved the magnetic properties.

【0018】[0018]

【作用】次に本発明において、鋼組成および製造条件を
前記のように限定した理由を、詳細に説明する。この鋼
成分の限定理由は下記のとおりである。Cについての上
限0.10%は、これ以上多くなると脱炭所要時間が長
くなり、経済的に不利となるので限定した。Siは鉄損
を良くするために下限を2.5%とするが、多すぎると
冷間圧延の際に割れやすく加工が困難となるので上限を
4.0%とする。
Next, the reason why the steel composition and the manufacturing conditions are limited as described above in the present invention will be described in detail. The reasons for limiting the steel components are as follows. The upper limit of 0.10% for C is limited because if it is more than this, the time required for decarburization becomes longer and it is economically disadvantageous. The lower limit of Si is set to 2.5% in order to improve iron loss, but if it is too large, it is likely to crack during cold rolling and processing becomes difficult, so the upper limit is set to 4.0%.

【0019】さらに、一方向性電磁鋼板を製造するため
に、通常のインヒビター成分として以下の成分元素を添
加する。Mn,SおよびSeは、インヒビターとして硫
化マンガンおよびMnSe形成により、補助的インヒビ
ターとして作用させるために、Mn:0.02〜0.3
0%、SおよびSeのうちから選んだ1種又は2種の合
計:0.001〜0.040%が必要である。Mnは硫
化マンガン、MnSeの適正な分散状態を得るため、
0.02〜0.30%に限定した。SおよびSeのうち
から選んだ1種又は2種の合計は、硫化マンガン、Mn
Seの適正な分散状態を得るため、0.001〜0.0
40%に限定した。
Further, in order to produce a grain-oriented electrical steel sheet, the following component elements are added as ordinary inhibitor components. Mn, S and Se are manganese sulfide as an inhibitor and Mn: 0.02-0.3 in order to act as an auxiliary inhibitor by forming MnSe.
0%, a total of one or two selected from S and Se: 0.001 to 0.040% is required. Mn is manganese sulfide, in order to obtain an appropriate dispersion state of MnSe,
It was limited to 0.02 to 0.30%. One or two kinds selected from S and Se are manganese sulfide, Mn.
In order to obtain a proper dispersion state of Se, 0.001 to 0.0
Limited to 40%.

【0020】さらに、インヒビターとして窒化アルミニ
ウムを利用するため、酸可溶性AlとNを添加する。酸
可溶性Alは窒化アルミニウムの適正な分散状態を得る
ため0.010〜0.065%に限定した。Nも、窒化
アルミニウムの適正な分散状態を得るため0.0030
〜0.0200%に限定した。
Further, in order to utilize aluminum nitride as an inhibitor, acid-soluble Al and N are added. Acid-soluble Al is limited to 0.010 to 0.065% in order to obtain an appropriate dispersion state of aluminum nitride. N is also 0.0030 in order to obtain a proper dispersion state of aluminum nitride.
Limited to ~ 0.0200%.

【0021】また、本発明の特徴であるBiは、Bi:
0.0005〜0.05%の極微量の範囲が有効であ
る。0.0005%未満では磁束密度の向上が僅かであ
り、また、0.05%超では磁束密度向上の効果が飽和
し、熱延板の端部に割れが生じるので、上限を0.05
%に限定する。
Bi, which is a feature of the present invention, is represented by Bi:
A very small range of 0.0005 to 0.05% is effective. If it is less than 0.0005%, the improvement of the magnetic flux density is slight, and if it exceeds 0.05%, the effect of improving the magnetic flux density is saturated and cracks occur at the end of the hot rolled sheet.
%.

【0022】その他、重量でSb,Sn,CuおよびM
oから選ばれる1種又は2種以上を0.003〜0.5
0%添加しても良い。上記範囲外では、適正な析出物の
分散状態が得られないため限定した。次に、上記の溶鋼
を通常の鋳塊鋳造法又は連続鋳造法、熱間圧延によりホ
ットストリップを得る。なお、このホットストリップを
得る際、ストリップ鋳造法も本発明に適用することが可
能である。
In addition, Sb, Sn, Cu and M
one or more selected from the group consisting of 0.003 to 0.5
0% may be added. When the amount is outside the above range, an appropriate dispersion state of the precipitate cannot be obtained, so that the amount is limited. Next, a hot strip is obtained from the molten steel by a normal ingot casting method or a continuous casting method or hot rolling. When obtaining the hot strip, a strip casting method can be applied to the present invention.

【0023】次に、AlN等の析出のために熱延板焼鈍
を行う。この際、950〜1200℃で30秒〜30分
の焼鈍を行うことが望ましい。次に、1回あるいは2回
以上あるいは中間焼鈍を含む2回以上の圧延により最終
製品厚のストリップを得る。2回以上の圧延をする際
の、1回目の圧延は圧下率5〜50%が望ましい。ま
た、2回以上の圧延の間に中間焼鈍を実施する場合には
950〜1200℃で30秒〜30分で行うことが望ま
しい。
Next, hot rolled sheet annealing is performed to precipitate AlN and the like. At this time, it is desirable to perform annealing at 950 to 1200 ° C. for 30 seconds to 30 minutes. Next, a strip having a final product thickness is obtained by rolling once, twice or more, or twice or more including intermediate annealing. When rolling two or more times, the first rolling preferably has a reduction of 5 to 50%. In the case where intermediate annealing is performed between two or more rollings, it is preferable to perform the intermediate annealing at 950 to 1200 ° C. for 30 seconds to 30 minutes.

【0024】上記圧延において、最終製品厚まで冷延す
る際の最終圧下率は、圧下率85%以上が望ましい。下
限85%は、これ以下では{110}〈001〉方位が
圧延方向に高い集積度をもつゴス核が得られないからで
ある。なお、この時の冷間圧延方法として、冷間圧延中
に複数回のパスにより各板厚段階を経て最終板厚となる
が、磁気特性を向上させるため、その少なくとも1回以
上の途中板厚段階において鋼板に100℃以上の温度範
囲で1分以上の時間保持する熱効果を与えても構わな
い。
In the above-mentioned rolling, the final rolling reduction in cold rolling to the final product thickness is desirably 85% or more. The lower limit of 85% is because below this, a Goss nucleus with a {110} <001> orientation having a high degree of integration in the rolling direction cannot be obtained. As a cold rolling method at this time, during the cold rolling, the final sheet thickness is obtained through each thickness step by a plurality of passes, but in order to improve the magnetic properties, at least one or more intermediate sheet thicknesses are required. At the stage, the steel sheet may have a thermal effect of maintaining the steel sheet at a temperature range of 100 ° C. or more for a time of 1 minute or more.

【0025】以上、最終製品厚まで圧延されたストリッ
プに加熱処理を施す。この加熱処理は酸化皮膜を最適に
形成するため、P H2 O /P H2 が0.4以下の雰囲気
中で、100℃/秒以上の加熱速度で700℃以上の温
度域へ急速加熱を実施しなければならない。P H2 O /
P H2 が0.4以下の雰囲気中の場合には、SiO2
形成が適正でないので、短時間で焼鈍する必要がある。
この時の加熱速度の下限100℃/秒は、これ以下で
は、SiO2 の形成が適正でなく、後の二次再結晶中に
おいて鋼中のAlN等が窒素雰囲気の影響を鋼板表面か
ら非常に受けやすくなり、安定して超高磁束密度が得ら
れないので限定した。
As described above, the strip rolled to the final product thickness is subjected to a heat treatment. In this heat treatment, rapid heating to a temperature range of 700 ° C. or more at a heating rate of 100 ° C./sec or more in an atmosphere of PH 2 O / P H 2 of 0.4 or less to optimally form an oxide film. Must be implemented. PH 2 O /
In an atmosphere where PH 2 is 0.4 or less, it is necessary to perform annealing in a short time because formation of SiO 2 is not appropriate.
When the lower limit of the heating rate at this time is 100 ° C./sec, below this, the formation of SiO 2 is not appropriate, and during the subsequent secondary recrystallization, AlN and the like in the steel significantly affect the influence of the nitrogen atmosphere from the steel sheet surface. This is limited because it is easy to receive and it is not possible to stably obtain an ultra-high magnetic flux density.

【0026】なお、この急速加熱処理により一次再結晶
集合組織を改善し、二次再結晶の安定化を狙うことも可
能である。また、加熱温度範囲もSiO2 の形成を良好
なものにするため下限を700℃に限定した。加熱した
後は通常の冷却を行い、次は脱炭焼鈍工程へ持ち込む。
この時の冷却はできるだけ速い方が望ましい。
It is also possible to improve the primary recrystallization texture by this rapid heating treatment and to stabilize the secondary recrystallization. In addition, the lower limit of the heating temperature range was set to 700 ° C. in order to improve the formation of SiO 2 . After the heating, normal cooling is performed, and then the decarburization annealing step is carried.
It is desirable that the cooling at this time be as fast as possible.

【0027】さらに、上記急速加熱処理で、P H2 O /
P H2 が0.2以下の非酸化性雰囲気中を組み合わせる
ことにより、さらに超高磁束密度一方向性電磁鋼板が得
られる。P H2 O /P H2 の上限0.2は、これ以上で
は最適なSiO2 の量が少なくなるので限定した。なお
非酸化性雰囲気とは、N2 ,Ar等の不活性ガス中、あ
るいは若干H2 を含んだ還元雰囲気のことをここではい
う。
Further, in the above-mentioned rapid heating treatment, PH 2 O /
By P H 2 is combined with a non-oxidizing atmosphere of 0.2 or less, ultra-high magnetic flux density grain-oriented electrical steel sheet is obtained further. The upper limit of P H 2 O / P H 2 , 0.2, was limited above this value because the optimum amount of SiO 2 was reduced. The non-oxidizing atmosphere refers to an inert gas such as N 2 or Ar or a reducing atmosphere containing a small amount of H 2 .

【0028】また、上記の急速加熱処理は、次に施され
る脱炭焼鈍とは別に行われているが、脱炭焼鈍の昇温段
階として脱炭焼鈍工程に組み込む方が工程数が少ないの
で望ましい。次に、湿水素雰囲気中で脱炭焼鈍を行う、
この時製品での磁気特性を劣化させないため炭素は0.
005%以下に低減されなければならない。ここで、熱
延でのスラブ加熱温度が低い場合は、アンモニア雰囲気
中で窒化処理を付加することもある。以上の製造方法に
より、脱炭焼鈍後の酸化膜中のSiO2 の量が適正にな
る。ここでのSiO2 の適正量とは、酸化膜中のSiO
2 の比率が50%以上にあることをいう。
The above-mentioned rapid heating treatment is performed separately from the decarburization annealing to be performed next. However, since the number of steps is smaller when incorporated into the decarburization annealing step as the temperature raising step of decarburization annealing. desirable. Next, decarburization annealing is performed in a wet hydrogen atmosphere.
At this time, the carbon content is set to 0.1 in order not to deteriorate the magnetic characteristics of the product.
005% or less. Here, when the slab heating temperature in hot rolling is low, nitriding treatment may be added in an ammonia atmosphere. According to the above manufacturing method, the amount of SiO 2 in the oxide film after the decarburizing annealing becomes appropriate. Here, the appropriate amount of SiO 2 means the SiO 2 in the oxide film.
2 means that the ratio is 50% or more.

【0029】さらに、MgO等の焼鈍分離剤を塗布し
て、二次再結晶と純化のため1100℃以上の仕上焼鈍
を行うことで、フォルステライト等の良好な皮膜を鋼板
表面に形成した二次再結晶粒を得る。次に、フォルステ
ライト等の皮膜の上に、さらに絶縁皮膜を塗布すること
により極めて低い鉄損特性を有する一方向性電磁鋼板が
製造される。なお、得られた製品で、さらに鉄損を良好
にするため、上記一方向性電磁鋼板に、磁区を細分化す
るための処理を施すことが望ましい。
Further, by applying an annealing separator such as MgO and performing finish annealing at 1100 ° C. or more for secondary recrystallization and purification, a secondary film having a good film such as forsterite formed on the steel sheet surface is formed. Obtain recrystallized grains. Next, a unidirectional magnetic steel sheet having extremely low iron loss characteristics is manufactured by further applying an insulating film on a film such as forsterite. In addition, in order to further improve iron loss in the obtained product, it is desirable to subject the above-described grain-oriented electrical steel sheet to a treatment for subdividing magnetic domains.

【0030】[0030]

【実施例】【Example】

(実施例1)表1に示す化学成分を含み2.3mm厚にま
で熱間圧延させた熱延板に1100℃で1分間焼鈍を施
した。この後、冷間圧延により最終板厚0.22mmにま
で圧延した。
Example 1 A hot-rolled sheet containing the chemical components shown in Table 1 and hot-rolled to a thickness of 2.3 mm was annealed at 1100 ° C. for 1 minute. Then, it was rolled to a final thickness of 0.22 mm by cold rolling.

【0031】さらに、得られたストリップを脱炭焼鈍す
る際、昇温段階で雰囲気は表2に示す条件でそれぞれ実
施した。この時の加熱速度は表3に示す条件で840℃
まで加熱した。この後、840℃の均一温度、湿潤水素
中で脱炭焼鈍し、MgO粉を塗布した後、1200℃に
10時間、水素ガス雰囲気中で高温焼鈍を行った。得ら
れた鋼板の余剰MgOを除去し、形成されたフォルステ
ライト皮膜上に、絶縁皮膜を塗布した。
Further, when the obtained strip was decarburized and annealed, the atmosphere was carried out under the conditions shown in Table 2 at the temperature raising stage. The heating rate at this time was 840 ° C. under the conditions shown in Table 3.
Until heated. Thereafter, decarburizing annealing was performed in wet hydrogen at a uniform temperature of 840 ° C., and after applying MgO powder, high-temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. Excess MgO of the obtained steel sheet was removed, and an insulating film was applied on the formed forsterite film.

【0032】表2に得られた製品の磁束密度を示す。磁
束密度は、1000mm幅の製品コイルの両エッジ、中央
部の3点で実施した。本発明により、幅方向に安定して
8が1.95T以上の超高磁束密度を有する一方向性
電磁鋼板が得られている。
Table 2 shows the magnetic flux density of the obtained product. The magnetic flux density was measured at three points at both edges and the center of a product coil having a width of 1000 mm. According to the present invention, a grain-oriented electrical steel sheet having an ultra-high magnetic flux density with a B 8 of 1.95 T or more stably in the width direction is obtained.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】(実施例2)表3に示す成分組成を含む溶
鋼を15Ton 鋳造し、スラブ加熱後、熱間圧延を行い
2.3mmの熱延鋼板を得た。これを1000℃で4分間
焼鈍を行い、1.55mmに圧延した。これを1120℃
で5分間焼鈍を行い、さらに酸洗した後、冷間圧延を行
い0.22mm厚にした。さらに、得られたストリップを
脱炭焼鈍する際、昇温段階において加熱速度300℃/
s、雰囲気P H2 O /P H2 が0.05の条件で840
℃まで加熱した。この後、840℃の均一温度、湿潤水
素中で脱炭焼鈍した。
Example 2 A molten steel containing the composition shown in Table 3 was cast for 15 tons, heated to a slab, and then hot-rolled to obtain a 2.3 mm hot-rolled steel sheet. This was annealed at 1000 ° C. for 4 minutes and rolled to 1.55 mm. This is 1120 ° C
For 5 minutes, followed by pickling, followed by cold rolling to a thickness of 0.22 mm. Further, when the obtained strip is decarburized and annealed, a heating rate of 300 ° C. /
s, atmosphere 840 under the condition of PH 2 O / P H 2 of 0.05
Heated to ° C. Thereafter, decarburization annealing was performed in wet hydrogen at a uniform temperature of 840 ° C.

【0036】次にMgO粉を塗布した後、1200℃に
10時間、水素ガス雰囲気中で高温焼鈍を行った。得ら
れた鋼板の余剰MgOを除去し、形成されたフォルステ
ライト皮膜上に、絶縁皮膜を塗布した。これにより得ら
れた製品コイル全長8000mを展開した際、100
m,4000m,7800mの各位置での磁束密度を測
定した。結果はB8 =1.97T(100m),1.9
8T(4000m),1.98T(7800m)であっ
た。本発明によりコイル全長に亘って安定してB8
1.95T以上の超高磁束密度をもつ一方向性電磁鋼板
が得られた。さらに、上記で得られた鋼板にレーザ処理
を施した。この時鉄損値は、W17/5 0 =0.68W/kg
(100m),0.64W/kg(4000m),0.6
2W/kg(7800m)であり、非常に良好な鉄損特性
が得られた。
Next, after applying MgO powder, high-temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. Excess MgO of the obtained steel sheet was removed, and an insulating film was applied on the formed forsterite film. When 8000 m of the product coil obtained as described above is deployed,
The magnetic flux density was measured at each position of m, 4000 m, and 7800 m. The result was B 8 = 1.97 T (100 m), 1.9.
8T (4000m) and 1.98T (7800m). B 8 stably over the coil entire length by the present invention is oriented electrical steel sheet with ultra-high magnetic flux density of more than 1.95T was obtained. Further, the steel sheet obtained above was subjected to laser treatment. At this time, the iron loss value is W 17/5 0 = 0.68 W / kg.
(100m), 0.64W / kg (4000m), 0.6
It was 2 W / kg (7800 m), and very good iron loss characteristics were obtained.

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【発明の効果】本発明によれば、工業的に安定して良好
な超高磁束密度を有する一方向性電磁鋼板を製造するこ
とができるので、産業上の貢献するところが極めて大で
ある。
According to the present invention, a grain-oriented electrical steel sheet having a good ultra-high magnetic flux density can be produced industrially stably, so that the industrial contribution is extremely large.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高嶋 邦秀 富津市新富20−1 新日本製鐵株式会社 技術開発本部内 (56)参考文献 特開 平11−61356(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C22C 38/00 303 C22C 38/60 H01F 1/16 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunihide Takashima 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Division (56) References JP-A-11-61356 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) C21D 8/12 C22C 38/00 303 C22C 38/60 H01F 1/16

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比で、 C :0.10%以下、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 SおよびSeのうちから選んだ1種又は2種の合計:
0.001〜0.040%、 酸可溶性Al:0.010〜0.065%、 N :0.0030〜0.0200% を基本成分とし、残余はFeおよび不可避的不純物より
なる一方向性電磁鋼熱延板に、熱延板焼鈍を施し、1回
あるいは2回以上あるいは中間焼鈍をはさむ2回以上の
冷間圧延を実施し、脱炭焼鈍した後、最終仕上焼鈍を施
して一方向性電磁鋼板を製造する方法において、素材の
組成成分にBiを0.0005〜0.05%含有させ、
最終板厚まで圧延されたストリップを脱炭焼鈍する前
に、P H2 O/P H2 が0.4以下の雰囲気中で、10
0℃/秒以上の加熱速度で700℃以上の温度域へ急速
に加熱処理することを特徴とする、極めて高い磁束密度
を有する一方向性電磁鋼板の製造方法。
1. A weight ratio of C: 0.10% or less, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, one or more selected from S and Se or The sum of the two:
0.001-0.040%, acid-soluble Al: 0.010-0.065%, N: 0.0030-0.0200%, with the balance being one-way electromagnetic consisting of Fe and unavoidable impurities. Hot-rolled steel sheet is subjected to hot-rolled sheet annealing, cold-rolled one or more times or two or more times including intermediate annealing, decarburized annealing, and final finish annealing to be unidirectional. In the method of manufacturing an electrical steel sheet, Bi is contained in the composition of the material in an amount of 0.0005 to 0.05%,
Prior to decarburizing annealing of the strip rolled to the final thickness, the strip is rolled in an atmosphere having a PH 2 O / PH 2 of 0.4 or less.
A method for producing a grain-oriented electrical steel sheet having an extremely high magnetic flux density, characterized by rapidly heating at a heating rate of 0 ° C / sec or more to a temperature range of 700 ° C or more.
【請求項2】 加熱処理がP H2 O /P H2 が0.2以
下の雰囲気中で加熱処理することを特徴とする請求項1
記載の方法。
2. The heat treatment according to claim 1, wherein the heat treatment is carried out in an atmosphere in which PH 2 O / P H 2 is 0.2 or less.
The described method.
【請求項3】 加熱処理が脱炭焼鈍の昇温段階として行
われる請求項1又は2記載の方法。
3. The method according to claim 1, wherein the heat treatment is performed as a temperature raising step of the decarburizing annealing.
【請求項4】 重量比でSb,Sn,CuおよびMoか
ら選ばれる1種又は2種以上を0.003〜0.50%
含有することを特徴とする請求項1又は2又は3記載の
方法。
4. An amount of one or more selected from Sb, Sn, Cu and Mo in a weight ratio of 0.003 to 0.50%
The method according to claim 1, wherein the compound is contained.
JP00089495A 1995-01-06 1995-01-06 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet Expired - Lifetime JP3359449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00089495A JP3359449B2 (en) 1995-01-06 1995-01-06 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00089495A JP3359449B2 (en) 1995-01-06 1995-01-06 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH08188824A JPH08188824A (en) 1996-07-23
JP3359449B2 true JP3359449B2 (en) 2002-12-24

Family

ID=11486396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00089495A Expired - Lifetime JP3359449B2 (en) 1995-01-06 1995-01-06 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3359449B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926250B1 (en) * 1997-04-16 2009-04-15 Nippon Steel Corporation Grain-oriented electromagnetic steel sheet having excellent film characteristics and magnetic characteristics, its production method and decarburization annealing setup therefor
WO2003008654A1 (en) * 2001-07-16 2003-01-30 Nippon Steel Corporation Ultra-high magnetic flux density unidirectional electrical sheet excellent in high magnetic field iron loss and coating characteristics and production method therefor
JP2009155731A (en) * 2009-03-30 2009-07-16 Nippon Steel Corp Unidirectional electromagnetic steel sheet which has high magnetic flux density and is excellent in high magnetic field iron loss
JP5417936B2 (en) * 2009-03-31 2014-02-19 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP5760590B2 (en) * 2011-03-30 2015-08-12 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP6119959B2 (en) * 2012-11-05 2017-04-26 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP5854233B2 (en) 2013-02-14 2016-02-09 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP6900686B2 (en) * 2017-02-01 2021-07-07 日本製鉄株式会社 Directional electrical steel sheet and its manufacturing method
JP7110641B2 (en) * 2018-03-20 2022-08-02 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
JP7110642B2 (en) * 2018-03-20 2022-08-02 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
JP7159594B2 (en) * 2018-03-30 2022-10-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7230931B2 (en) * 2019-01-16 2023-03-01 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3839924B2 (en) * 1997-08-18 2006-11-01 新日本製鐵株式会社 Unidirectional electrical steel sheet excellent in film characteristics and magnetic characteristics, its manufacturing method, and decarburization annealing equipment used for the manufacturing method

Also Published As

Publication number Publication date
JPH08188824A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3392669B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS6250529B2 (en)
JP2000129352A (en) Production of grain oriented silicon steel sheet high in magnetic flux density
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3386742B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JP3390109B2 (en) Low iron loss high magnetic flux density
JP2983129B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH11323438A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH04362138A (en) Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JPH10245629A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JP3507232B2 (en) Manufacturing method of unidirectional electrical steel sheet with large product thickness
JPS6296615A (en) Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rolling

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term