JP3304481B2 - Electrolyzer for hydrogen peroxide production and method for electrolytic production of hydrogen peroxide - Google Patents
Electrolyzer for hydrogen peroxide production and method for electrolytic production of hydrogen peroxideInfo
- Publication number
- JP3304481B2 JP3304481B2 JP06268593A JP6268593A JP3304481B2 JP 3304481 B2 JP3304481 B2 JP 3304481B2 JP 06268593 A JP06268593 A JP 06268593A JP 6268593 A JP6268593 A JP 6268593A JP 3304481 B2 JP3304481 B2 JP 3304481B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- chamber
- cathode
- hydrogen peroxide
- exchange membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、高効率で各種用途に酸
化剤として使用される過酸化水素を酸素の電解還元によ
り製造するための電解槽及び前記過酸化水素の製造方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic cell for producing hydrogen peroxide, which is used as an oxidizing agent in various applications with high efficiency, by electrolytic reduction of oxygen, and a method for producing the hydrogen peroxide.
【0002】[0002]
【従来技術とその問題点】過酸化水素はパルプの漂白等
に使用される酸化剤であり、この過酸化水素をガス電極
を使用して酸素や空気等の酸素含有ガスから製造する技
術は従来からあり、最近でも研究が続けられている(電
気化学57,11,1073,1989)。ガス電極は陽極又は陰極
で通常発生する酸素ガス又は水素ガスに水素ガス又は酸
素ガスをそれぞれ供給してガス発生を抑制し、このガス
発生に伴う電圧分だけ電力消費を抑えることを目的とし
ている。2. Description of the Related Art Hydrogen peroxide is an oxidizing agent used for bleaching pulp and the like. The technology for producing this hydrogen peroxide from an oxygen-containing gas such as oxygen or air using a gas electrode has been conventionally used. Research has been ongoing recently (Electrochemistry 57 , 11, 1073, 1989). The purpose of the gas electrode is to supply a hydrogen gas or an oxygen gas to an oxygen gas or a hydrogen gas normally generated at the anode or the cathode, respectively, to suppress the gas generation, and to suppress power consumption by a voltage associated with the gas generation.
【0003】このガス陰極自体は周知であり(例えば特
公平2−29757 号公報、特開昭59−25179 号公報)、こ
れらはいずれも約0.8 〜1Vの電圧低下を達成してい
る。前記ガス電極は片面に疎水性多孔層を設け、他面又
は該疎水層上に電解触媒を担持した親水層を設けて成
り、主として導電性炭素表面に白金を担持して製造され
る。[0003] The gas cathode itself is well known (for example, Japanese Patent Publication No. 2-29757 and Japanese Patent Application Laid-Open No. 59-25179), all of which achieve a voltage drop of about 0.8 to 1 V. The gas electrode is formed by providing a hydrophobic porous layer on one surface and a hydrophilic layer supporting an electrolytic catalyst on the other surface or on the hydrophobic layer, and is mainly manufactured by supporting platinum on a conductive carbon surface.
【0004】しかしこれらの電極は電解初期には良好な
性能を示すものの触媒自体が水酸化アルカリ水溶液等の
電解液に直接触れ、その中で電気化学反応が行われるた
め、触媒の耐性が不充分で短期間で触媒活性を失ってし
まうという問題点があり、更に気液が相互にリークしな
い大面積のガス電極を作製することは極めて困難であり
工業的規模の電解用として実用化されたガス電極は存在
しない。更にこのガス電極ではガスとして空気を使用す
ると空気中の二酸化炭素が電解室で水酸化アルカリと反
応して炭酸ナトリウムに変換されて膜の目詰まりを生じ
させ使用不能になることを回避するため、使用ガス中の
二酸化炭素除去が大きな問題となっている。[0004] However, these electrodes show good performance in the early stage of electrolysis, but the catalyst itself is in direct contact with an electrolytic solution such as an aqueous solution of alkali hydroxide, and the electrochemical reaction takes place therein, so that the resistance of the catalyst is insufficient. In addition, there is a problem that catalyst activity is lost in a short period of time, and it is extremely difficult to produce a large-area gas electrode in which gas and liquid do not leak from each other. No electrodes are present. Furthermore, when air is used as gas in this gas electrode, in order to avoid carbon dioxide in the air reacting with alkali hydroxide in the electrolysis chamber and being converted into sodium carbonate to cause clogging of the membrane and to render the gas electrode unusable. Removal of carbon dioxide from used gas has become a major problem.
【0005】又ガス電極をイオン交換膜と一体化した構
造体が提案され(米国特許3,124,520 号)ているが、こ
の構造体ではガス電極から電解液室にH+ (陽極)及び
OH- (陰極)を供給され、この提案はガス電極の大型
化に有利なように思えるが、具体的な使用条件等が不明
であり、過酸化水素製造用としての暗示もなく依然とし
て実用化には至っていない。このように塩化アルカリ電
解用等としてガス電極を使用する省エネルギー化につい
ては、実用化の予測はある程度立っているが、実現のた
めの手段、ガス電極の長寿命化等の具体的手法について
は依然として見出されていないのが実情である。前述の
電気化学57,11,1073,1989には、陽イオン交換膜及び
陰イオン交換膜により陽極室−中間室−陰極室に区画さ
れた過酸化水素製造用電解槽が記載され前記陰極室には
ガス陰極が収容されて過酸化水素の電解的製造を行うこ
とが提案されているが、陰極室内のガス陰極が前記陰イ
オン交換膜に密着していないため該ガス陰極が腐食性の
ある水酸化カリウム水溶液である陰極液と接触しその寿
命の短縮化を招いている。[0005] Furthermore although structures with integrated gas electrode and the ion exchange membrane has been proposed (U.S. Pat. No. 3,124,520), H + from the gas electrode in the structure in the electrolyte chamber (anode) and OH - (cathode ), This proposal seems to be advantageous for increasing the size of the gas electrode, but the specific conditions of use and the like are unknown, and have not yet been put to practical use without any suggestion for producing hydrogen peroxide. As for energy savings using gas electrodes for alkaline chloride electrolysis and the like, predictions of practical use have been made to some extent, but specific measures such as means for realizing them and extending the life of gas electrodes are still in place. The fact is that it has not been found. In the above-mentioned electrochemicals 57 , 11, 1073, 1989, an electrolytic cell for producing hydrogen peroxide which is divided into an anode chamber, an intermediate chamber and a cathode chamber by a cation exchange membrane and an anion exchange membrane is described. It has been proposed that a gas cathode be housed therein to perform electrolytic production of hydrogen peroxide.However, since the gas cathode in the cathode chamber does not adhere to the anion exchange membrane, the gas cathode is made of corrosive water. It comes into contact with the catholyte, which is an aqueous solution of potassium oxide, leading to shortening of its life.
【0006】[0006]
【発明の目的】本発明は、ガス陰極を使用する酸素の電
解還元による過酸化水素の製造に使用する電解槽及び該
電解槽を使用する過酸化水素の電解的製造方法、特に前
記ガス陰極の電極性能を長期間良好に維持しながらかつ
工業的規模での電解を可能にする過酸化水素製造用電解
槽及び過酸化水素の電解的製造方法を提供することを目
的とする。SUMMARY OF THE INVENTION The present invention relates to an electrolytic cell used for producing hydrogen peroxide by electrolytic reduction of oxygen using a gas cathode, and an electrolytic production method for hydrogen peroxide using the electrolytic cell. An object of the present invention is to provide an electrolytic cell for producing hydrogen peroxide and a method for producing hydrogen peroxide electrolytically, which enable electrolysis on an industrial scale while maintaining good electrode performance for a long period of time.
【0007】[0007]
【問題点を解決するための手段】本発明に係わる過酸化
水素製造用電解槽は、陽イオン交換膜により陽極を収容
する陽極室とガス陰極を収容する陰極室とに区画され、
更に該陰極室が前記ガス陰極に密着する陰イオン交換膜
により前記陽極室と接する溶液室と前記ガス陰極を収容
するガス室とに区画されたことを特徴とする過酸化水素
製造用電解槽であり、本発明方法はこのような構成から
成る電解槽の陽極室と溶液室に水や水酸化アルカリ水溶
液を、又前記ガス室に酸素含有ガスを供給しながら電解
を行い、前記溶液室で過酸化水素を生成することを特徴
とする過酸化水素の電解的製造方法である。以下本発明
を詳細に説明する。The electrolytic cell for producing hydrogen peroxide according to the present invention is divided by a cation exchange membrane into an anode chamber containing an anode and a cathode chamber containing a gas cathode.
Further, the cathode chamber is divided into a solution chamber in contact with the anode chamber and a gas chamber containing the gas cathode by an anion exchange membrane in close contact with the gas cathode. In the method of the present invention, electrolysis is performed while supplying water or an alkali hydroxide aqueous solution to the anode chamber and the solution chamber of the electrolytic cell having such a configuration, and supplying an oxygen-containing gas to the gas chamber. An electrolytic production method for hydrogen peroxide, which comprises producing hydrogen oxide. Hereinafter, the present invention will be described in detail.
【0008】前述の通り従来のガス陰極を使用する過酸
化水素の電解的製造では耐食性がさほど十分でない前記
ガス陰極が通常腐食性である陰極液と直接接触し該陰極
液の化学的腐食性により前記ガス陰極の触媒層が消耗し
これが過酸化水素の電解的製造におけるガス陰極の短寿
命化の一因と考えられている。しかし本発明者らは、過
酸化水素の電解的製造における陰極の役割は陰極室へ過
酸化水素イオンを供給することであると認識し、それ以
外の機能は極力排除するよう試みた。つまり本発明の電
解槽及び電解方法は、電解槽を陽イオン交換膜により陽
極室とガス陰極を収容する陰極室とに区画し、更に前記
ガス陰極に密着する陰イオン交換膜により前記陰極室を
溶液室とガス室とに区画することにより、前記ガス陰極
が存在するガス室内に電解液が存在せず本来的に腐食性
物質と接触しないことに加えて、前記陰イオン交換膜の
存在によりガス陰極が直接腐食性のある電解液と接触す
ることを防止し前記ガス陰極の長寿命化を意図する。As described above, in the conventional electrolytic production of hydrogen peroxide using a gas cathode, the gas cathode, which is not sufficiently corrosion-resistant, comes into direct contact with a catholyte, which is usually corrosive, and the chemical corrosion of the catholyte causes It is considered that the catalyst layer of the gas cathode is consumed and this is one of the causes of shortening the life of the gas cathode in the electrolytic production of hydrogen peroxide. However, the present inventors have recognized that the role of the cathode in the electrolytic production of hydrogen peroxide is to supply hydrogen peroxide ions to the cathode chamber, and have tried to eliminate other functions as much as possible. In other words, in the electrolytic cell and the electrolytic method of the present invention, the electrolytic cell is partitioned into an anode chamber and a cathode chamber containing a gas cathode by a cation exchange membrane, and the cathode chamber is further partitioned by an anion exchange membrane in close contact with the gas cathode. By partitioning into a solution chamber and a gas chamber, in addition to the fact that the electrolyte does not exist in the gas chamber where the gas cathode is present and does not inherently come into contact with corrosive substances, the presence of the anion exchange membrane causes gas It is intended to prevent the cathode from coming into direct contact with a corrosive electrolytic solution and to extend the life of the gas cathode.
【0009】このように陽イオン交換膜、陰イオン交換
膜及びガス陰極を配置し陽極室及び溶液室に水又は希釈
水酸化アルカリ水溶液を、ガス室に酸素や空気等の酸素
含有ガスを供給すると、該酸素含有ガス中の酸素がガス
陰極上で還元されてOH- イオン及びHO2 - イオンと
なって前記陰イオン交換膜を浸透して溶液室に達し、該
溶液室内で水素イオン(H+ )又はアルカリイオンと反
応して過酸化水素又は過酸化水素アルカリと水酸化アル
カリを生成する。この電解フローにおいて、溶液室中に
供給されかつ存在する水酸化アルカリ中のナトリウムイ
オン等のガス室方向への浸透が前記陰イオン交換膜によ
り阻止され、又ガス陰極表面で生成するHO2 - イオン
はその電荷により陰イオン交換膜を浸透して溶液室方向
に移動し再度陰極に接触することが防止され、該イオン
の移動は前記ナトリウムイオンのガス陰極への接触を更
に確実に防止し、実質的に前記ガス陰極は腐食性の電解
液中のイオンと接触することがなくなり、ガス陰極の寿
命を長くすることができる。When the cation exchange membrane, the anion exchange membrane and the gas cathode are arranged as described above, water or a diluted alkali hydroxide aqueous solution is supplied to the anode chamber and the solution chamber, and an oxygen-containing gas such as oxygen or air is supplied to the gas chamber. The oxygen in the oxygen-containing gas is reduced on the gas cathode to form OH - ions and HO 2 - ions, which penetrate the anion exchange membrane and reach the solution chamber, where hydrogen ions (H + ) Or reacts with alkali ions to produce hydrogen peroxide or alkali hydrogen peroxide and alkali hydroxide. In this electrolysis flow, permeation of sodium ions and the like in the alkali hydroxide supplied into the solution chamber toward the gas chamber is prevented by the anion exchange membrane, and HO 2 - ions generated on the gas cathode surface are prevented. Is prevented from penetrating the anion exchange membrane by the charge and moving toward the solution chamber and coming into contact with the cathode again, and the movement of the ions further reliably prevents the sodium ions from coming into contact with the gas cathode. In addition, the gas cathode does not come into contact with ions in the corrosive electrolytic solution, and the life of the gas cathode can be extended.
【0010】更に多孔質である前記ガス陰極自体により
陰極室を溶液室とガス室とに区画する方式と比較して本
発明における電解槽及び電解方法は、両室の分離をガス
陰極と該ガス陰極より遙に緻密で液不浸透性に優れた陰
イオン交換膜により行っているため、気液リーク特に溶
液室の腐食性の陰極液のガス室への浸透を確実に防止し
てガス陰極の劣化及び電流効率の低下を抑制できるた
め、高電流密度での操業を必要とする工業的規模の電解
にも使用することができる。但し電解反応の進行に従っ
て触媒とガスとの接触面積が小さくなったり、生成した
イオンの移動に若干の制限が生じたりするため、小型の
電解セル例えば燃料電池の場合のようには所望の性能が
実現される訳ではなく、特に高電流密度では過電圧が大
きくなりがちであり、実用上は5KA/m2 以下の電流
密度で操業を行うことが望ましい。Further, in comparison with a system in which the cathode chamber is divided into a solution chamber and a gas chamber by the porous gas cathode itself, the electrolytic cell and the electrolysis method according to the present invention separate the two chambers from the gas cathode and the gas chamber. Since it uses an anion exchange membrane that is much more dense than the cathode and has excellent liquid impermeability, gas-liquid leakage, especially the corrosive catholyte in the solution chamber, is reliably prevented from penetrating into the gas chamber, and Since the deterioration and the decrease in current efficiency can be suppressed, it can also be used for electrolysis on an industrial scale that requires operation at a high current density. However, since the contact area between the catalyst and the gas decreases with the progress of the electrolytic reaction or the movement of the generated ions is slightly restricted, the desired performance is not obtained as in the case of a small electrolytic cell such as a fuel cell. This is not always realized, and especially at high current densities, the overvoltage tends to increase, and in practice, it is desirable to operate at a current density of 5 KA / m 2 or less.
【0011】過酸化水素の電解的製造の実用的電流密度
である1KA/m2 では、陰イオン交換膜の性能にもよ
るが、従来の水素発生陰極の場合と比較して、酸素を陰
極室に供給しながら電解を行う場合には約0.9 V、空気
を供給しながら電解を行う場合には約0.8 Vの電解電圧
の低下が見られる。又前述した供給ガス中の二酸化炭素
は膜の目詰まりの原因になることがあり本発明でも例外
ではないが、供給前に酸素含有ガスを石灰水中を通すこ
とにより実質的に膜の目詰まりを防止することができ
る。これは従来のように親水層でガスと液が直接会合す
るのではないからと推測される。本発明の電解槽は従来
のフィルタープレス型電解槽として構成することが望ま
しい。又オンサイトでの組立及び運転を容易に行うこと
ができる。At a current density of 1 KA / m 2 , which is a practical current density for the electrolytic production of hydrogen peroxide, oxygen depends on the performance of the anion exchange membrane, but oxygen is supplied to the cathode chamber as compared with the conventional hydrogen generating cathode. When the electrolysis is performed while supplying the air, the electrolysis voltage is reduced by about 0.9 V, and when the electrolysis is performed while the air is supplied, the electrolysis voltage is reduced by about 0.8 V. In addition, carbon dioxide in the above-described supply gas may cause clogging of the membrane, which is not an exception in the present invention. However, by passing an oxygen-containing gas through lime water before supply, the clogging of the membrane can be substantially reduced. Can be prevented. This is presumed to be because the gas and the liquid do not associate directly in the hydrophilic layer as in the conventional case. The electrolytic cell of the present invention is desirably configured as a conventional filter press type electrolytic cell. Also, on-site assembly and operation can be easily performed.
【0012】本発明に使用する陰イオン交換膜は約10重
量%の高濃度の高温水酸化アルカリ水溶液に接触するこ
とがある。そのため従来の陽イオン交換膜に使用されて
いるような高耐アルカリ性のフッ素樹脂系イオン交換膜
を使用することが好ましいが、炭化水素系のイオン交換
膜も数カ月程度の運転では問題なく使用することがで
き、これはガス陰極の特徴的な作用である陰極側からの
陰イオンの移行とそれに伴う随伴水によって陰イオン交
換膜表面が保護されること及びガス発生による気泡の攪
拌効果がないことからと推測される。しかし1年以上の
連続運転の場合には上述のフッ素樹脂系イオン交換膜を
使用すべきである。本発明に使用できる陰イオン交換膜
としては、徳山曹達株式会社の商品名ネオセプタACL
E−5P、東ソー株式会社のフッ素系陰イオン交換膜で
ある商品名トスフレックスIE−SF34等がある。又
前記陰イオン交換膜は粒状の陰イオン交換樹脂から成膜
したものであってもよい。The anion exchange membrane used in the present invention may come into contact with a high concentration of about 10% by weight of a high-temperature aqueous alkali hydroxide solution. For this reason, it is preferable to use a fluorine-based ion-exchange membrane with high alkali resistance as used in conventional cation-exchange membranes. This is because the anion exchange membrane surface is protected by the migration of anions from the cathode side and the accompanying water, which are the characteristic actions of the gas cathode, and there is no bubble stirring effect due to gas generation. It is presumed. However, in the case of continuous operation for one year or more, the above-mentioned fluororesin-based ion exchange membrane should be used. The anion exchange membrane that can be used in the present invention is Neosepta ACL, trade name of Tokuyama Soda Co., Ltd.
E-5P and Tosflex IE-SF34 (trade name, which is a fluorine-based anion exchange membrane manufactured by Tosoh Corporation). The anion exchange membrane may be formed from a granular anion exchange resin.
【0013】この陰イオン交換膜はガス陰極が腐食性の
陰極液と直接接触することを防止するとともに、溶液室
内の陰極液が該陰イオン交換膜を浸透しガス陰極と接触
することも防止する。従って前記陰イオン交換膜はその
周縁を確実に電解槽の室枠等で締着して液のリークを防
止しなければならない。The anion exchange membrane prevents the gas cathode from directly contacting the corrosive catholyte and also prevents the catholyte in the solution chamber from penetrating the anion exchange membrane and coming into contact with the gas cathode. . Therefore, the anion exchange membrane must be securely fastened at its periphery with a chamber frame of the electrolytic cell or the like to prevent liquid leakage.
【0014】前記陰イオン交換膜のガス室側に設置する
ガス陰極は、 H2 O + O2 + 2e- → HO2 - + OH- の反応で過酸化水素イオンを生成する機能を有し、生成
したイオンは前記陰イオン交換膜を通して電場により溶
液室に移行する。ガス陰極はガス室中に液と接触しない
ように配置される。従って液相における会合が生じない
ため、従来の疎水層と親水層の2層により構成される電
極であっても、又疎水層中に触媒を埋め込んだ形態の電
極であってもよい。該ガス陰極は例えば白金や銀等の触
媒を担持した炭素粉末やグラファイト粉末とポリテトラ
フルオロエチレン(以下PTFEという)のような撥水
性樹脂の分散剤を混合しシート状に加工した従来のガス
電極を使用すればよく、芯材としてカーボンクロスや金
属メッシュを使用することもできる。該ガス電極に給電
するための集電体としては例えば白金あるいは銀メッキ
したステンレス、ニッケル及び銅等の多孔体(エキスパ
ンドメッシュ、パンチプレート等)又は多孔質焼結体を
使用し、これを前記ガス陰極に圧接して給電する。The gas cathode installed on the gas chamber side of the anion exchange membrane has a function of generating hydrogen peroxide ions by a reaction of H 2 O + O 2 + 2e − → HO 2 − + OH − , The generated ions are transferred to the solution chamber by the electric field through the anion exchange membrane. The gas cathode is arranged in the gas chamber so as not to come into contact with the liquid. Therefore, since no association occurs in the liquid phase, a conventional electrode composed of two layers, a hydrophobic layer and a hydrophilic layer, or an electrode in which a catalyst is embedded in the hydrophobic layer may be used. The gas cathode is formed by mixing a carbon powder or graphite powder carrying a catalyst such as platinum or silver with a dispersant of a water-repellent resin such as polytetrafluoroethylene (hereinafter referred to as PTFE) and processing the mixture into a sheet. And a carbon cloth or a metal mesh can also be used as the core material. As a current collector for supplying power to the gas electrode, for example, a porous body (expanded mesh, punch plate, etc.) or a porous sintered body of platinum or silver-plated stainless steel, nickel, copper, or the like is used. Power is supplied by pressing against the cathode.
【0015】陽イオン交換膜によって前記溶液室から区
画される陽極室に収容される陽極は寸法安定性陽極(D
SA)として知られるチタン等のバルブメタル基体上に
貴金属酸化物を主体とする触媒層を担持した電極を使用
することが好ましい。前記陽イオン交換膜は通常のイオ
ン交換膜法塩化アルカリ電解に使用されるフッ素系イオ
ン交換膜を使用することが好ましく、これらのイオン交
換膜としては例えば米国デュポン社性の商品名ナフィオ
ン、旭硝子株式会社の商品名フレミオン、旭化成株式会
社の商品名アシプレックスF等がある。The anode accommodated in the anode compartment separated from the solution compartment by the cation exchange membrane is a dimensionally stable anode (D
It is preferable to use an electrode which carries a catalyst layer mainly composed of a noble metal oxide on a valve metal substrate such as titanium known as SA). As the cation exchange membrane, it is preferable to use a fluorine-based ion exchange membrane used for ordinary ion exchange membrane method alkali chloride electrolysis. As these ion exchange membranes, for example, trade name Nafion of Asahi Glass Co. There are Flemion, a trade name of a company, and Aciplex F, a trade name of Asahi Kasei Corporation.
【0016】次に添付図面に基づいて本発明方法を説明
する。図1は本発明に係わる過酸化水素製造用電解槽の
一例を示す概略縦断面図である。電解槽本体1は陽イオ
ン交換膜2により陽極室3と陰極室4とに区画され、陽
極室3内には前記陽イオン交換膜2に密着するようにD
SE等である陽極5が設置されている。前記陰極室4は
陰イオン交換膜6により更に陽極室3側の溶液室7と該
陰イオン交換膜6に密着するガス陰極8及び該ガス陰極
8に給電するためのメッシュ状の集電体9が収容された
ガス室10とに区画されている。前記陽極室3の側壁の下
部及び上部にはそれぞれ希釈水酸化アルカリ水溶液供給
口11及び希釈水酸化アルカリ水溶液取出口12が設置さ
れ、前記溶液室7の下面及び上面にはそれぞれ希釈水酸
化アルカリ水溶液供給口13及び過酸化水素及び濃厚水酸
化アルカリ水溶液取出口14が設置され、更にガス室10の
側壁の上部及び下部にはそれぞれ酸素含有ガス供給口15
及び酸素含有ガス取出口16が設置されている。Next, the method of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic longitudinal sectional view showing an example of an electrolytic cell for producing hydrogen peroxide according to the present invention. The electrolytic cell main body 1 is divided into an anode chamber 3 and a cathode chamber 4 by a cation exchange membrane 2.
An anode 5 such as SE is provided. The cathode chamber 4 is further provided with a solution chamber 7 on the side of the anode chamber 3 by the anion exchange membrane 6, a gas cathode 8 in close contact with the anion exchange membrane 6, and a mesh-shaped current collector 9 for supplying power to the gas cathode 8. And a gas chamber 10 in which is stored. A diluted alkali hydroxide aqueous solution supply port 11 and a diluted alkali hydroxide aqueous solution outlet 12 are provided at the lower and upper portions of the side wall of the anode chamber 3, respectively. A supply port 13 and an outlet 14 for hydrogen peroxide and a concentrated aqueous solution of concentrated alkali hydroxide are provided, and an oxygen-containing gas supply port 15 is provided at the upper and lower portions of the side wall of the gas chamber 10, respectively.
And an oxygen-containing gas outlet 16 is provided.
【0017】この電解槽本体1の陽極室3及び溶液室7
に希釈水酸化アルカリ水溶液を、又ガス室10に酸素含有
ガスを供給しながら両極に通電すると、ガス陰極8表面
で生成する過酸化水素イオン及び水酸化イオンが陰イオ
ン交換膜6を浸透して該溶液室7で過酸化水素と水酸化
アルカリを生成する。陽極室で生成する酸素ガスはガス
室に循環し酸素含有ガス供給源として使用することが望
ましい。この過酸化水素の電解的製造において、ガス室
内のガス陰極はガス室内に実質的に腐食性物質が存在せ
ずかつ溶液室に存在する陰極液である水酸化アルカリ水
溶液は陰イオン交換膜により確実にガス陰極から分離さ
れ陰極液のリークが防止されるためガス陰極8の寿命が
延びる。又通常のガス電極の場合と異なり溶液室とガス
室がイオン交換膜で区画され前記水酸化アルカリ水溶液
のリークが確実に防止され、大型の電解槽でも使用でき
るため、図示の電解槽は工業的規模の電解にも適用する
ことができる。The anode chamber 3 and the solution chamber 7 of the electrolytic cell body 1
When a dilute alkaline hydroxide aqueous solution is supplied to both electrodes while supplying an oxygen-containing gas to the gas chamber 10, hydrogen peroxide ions and hydroxide ions generated on the surface of the gas cathode 8 penetrate the anion exchange membrane 6. In the solution chamber 7, hydrogen peroxide and alkali hydroxide are generated. The oxygen gas generated in the anode chamber is desirably circulated to the gas chamber and used as an oxygen-containing gas supply source. In the electrolytic production of hydrogen peroxide, the gas cathode in the gas chamber is substantially free of corrosive substances in the gas chamber, and the aqueous solution of alkali hydroxide, which is the catholyte present in the solution chamber, is assured by the anion exchange membrane. The gas cathode 8 is separated from the gas cathode to prevent leakage of the catholyte, thereby extending the life of the gas cathode 8. Also, unlike the case of a normal gas electrode, the solution chamber and the gas chamber are separated by an ion exchange membrane, and the leak of the alkali hydroxide aqueous solution is reliably prevented, and it can be used even in a large electrolytic cell. It can also be applied to electrolysis on a scale.
【0018】[0018]
【実施例】次に本発明による過酸化水素の電解製造を例
示する実施例を記載するが、本発明はこれらに限定され
るものではない。EXAMPLES Next, examples illustrating the electrolytic production of hydrogen peroxide according to the present invention will be described, but the present invention is not limited to these examples.
【実施例1】平均粒径7μmの黒鉛粉末(TGP−7、
東海カーボン株式会社製)とポリテトラフルオロエチレ
ンディスパージョン30J(三井フロロケミカル株式会社
製)を重量比が2:1となるように混合し、室温で溶媒
を揮発させた後、この混合物をチタン板上に展開し、上
下2枚のチタン板に挟みロール掛けによりシート状に加
工し、このシートを空気中350 ℃で10分間焼成しガス電
極とした。このガス電極の片面にニッケル製エキスパン
ドメッシュ(長径4mm、短径2mm、板厚0.2 mm)
を集電体として配置し、他面に陰イオン交換膜(徳山曹
達株式会社製ACLE−5P)を配置して一体化し、ガ
ス電極構造体とした。該構造体を、ナフィオン117 (米
国デュポン社製)の陽イオン交換膜で陽極室と陰極室と
に区画したアクリル樹脂製電解槽の陰極室内に組み込
み、前記陰イオン交換膜により前記陰極室を陽極室側の
溶液室と前記ガス電極及び集電体を有するガス室とに区
画した。前記陽極室にはニッケル製酸素発生用陽極(長
径8mm、短径3.7 mm、板厚1mm)を前記陽イオン
交換膜に接するように配置し、該陽極室及び前記溶液室
には10%水酸化ナトリウム水溶液を満たした。陽極で発
生した酸素は配管を通して前記ガス室に供給するように
し、更に発生量の10%に相当する過剰の酸素ガスを前記
ガス室に供給した。室温にて10A/dm2 の電流密度で電
解を行ったところ槽電圧は1.6 Vで、前記溶液室で2%
の過酸化水素が生成し、このときの電流効率は80%であ
った。Example 1 Graphite powder having an average particle size of 7 μm (TGP-7,
Tokai Carbon Co., Ltd.) and Polytetrafluoroethylene Dispersion 30J (Mitsui Fluorochemicals Co., Ltd.) were mixed at a weight ratio of 2: 1, and the solvent was volatilized at room temperature. The sheet was developed, processed into a sheet by being sandwiched between two upper and lower titanium plates, and rolled. The sheet was fired in air at 350 ° C. for 10 minutes to obtain a gas electrode. A nickel expanded mesh (long diameter 4 mm, short diameter 2 mm, plate thickness 0.2 mm) is provided on one side of this gas electrode.
Was disposed as a current collector, and an anion exchange membrane (ACLE-5P manufactured by Tokuyama Soda Co., Ltd.) was disposed on the other surface to be integrated to obtain a gas electrode structure. The structure is incorporated into a cathode chamber of an acrylic resin electrolytic cell partitioned into an anode chamber and a cathode chamber by a cation exchange membrane of Nafion 117 (manufactured by DuPont, USA). The chamber was divided into a solution chamber on the chamber side and a gas chamber having the gas electrode and the current collector. A nickel oxygen-generating anode (long diameter: 8 mm, short diameter: 3.7 mm, plate thickness: 1 mm) was placed in the anode chamber so as to be in contact with the cation exchange membrane, and 10% hydroxylation was applied to the anode chamber and the solution chamber. Filled with aqueous sodium solution. Oxygen generated at the anode was supplied to the gas chamber through a pipe, and an excess oxygen gas corresponding to 10% of the generated amount was supplied to the gas chamber. When electrolysis was performed at room temperature with a current density of 10 A / dm 2, the cell voltage was 1.6 V, and 2%
Of hydrogen peroxide was generated, and the current efficiency at this time was 80%.
【比較例1】陰イオン交換膜を使用しなかったこと以外
は実施例1と同様にして電解槽を組み立て、実施例1と
同一条件で電解を行ったところ、槽電圧は1.2 Vと低か
ったが、電解開始10分後に溶液室からガス室に水酸化ナ
トリウム水溶液がリークしはじめた。Comparative Example 1 An electrolytic cell was assembled in the same manner as in Example 1 except that the anion exchange membrane was not used, and electrolysis was performed under the same conditions as in Example 1. The cell voltage was as low as 1.2 V. However, 10 minutes after the start of electrolysis, the aqueous sodium hydroxide solution began to leak from the solution chamber to the gas chamber.
【0024】[0024]
【発明の効果】本発明は、陽イオン交換膜により陽極を
収容する陽極室とガス陰極を収容する陰極室とに区画さ
れ、更に該陰極室が前記ガス陰極に密着する陰イオン交
換膜により前記陽極室と接する溶液室と前記ガス陰極を
収容するガス室とに区画されたことを特徴とする過酸化
水素製造用電解槽である。According to the present invention, the cation exchange membrane is divided into an anode chamber accommodating an anode and a cathode chamber accommodating a gas cathode, and the cathode chamber is further provided with an anion exchange membrane in close contact with the gas cathode. An electrolytic cell for producing hydrogen peroxide, characterized by being divided into a solution chamber in contact with an anode chamber and a gas chamber containing the gas cathode.
【0025】本発明では、腐食性の陰極液の存在する溶
液室とガス陰極が存在するガス室とが緻密な陰イオン交
換膜で区画されかつガス陰極が存在するガス室内に本来
的に腐食性物質が存在しないため、耐性に劣るガス陰極
が直接腐食性物質と直接接触することが回避され、従っ
て前記ガス陰極の長寿命化が達成される。しかも前記陰
イオン交換膜により確実に溶液室とガス室が区画されて
いるため、前記陰極液のガス室へのリークが防止され、
従って前記ガス陰極が間接的にも陰極液と接触すること
も防止され、より長寿命化が達成できる。In the present invention, the solution chamber in which the corrosive catholyte is present and the gas chamber in which the gas cathode is present are partitioned by a dense anion exchange membrane, and the gas chamber in which the gas cathode is present is inherently corrosive. The absence of the substance avoids direct contact of the poorly resistant gas cathode with the corrosive substance, thus achieving a longer life of the gas cathode. Moreover, since the solution chamber and the gas chamber are reliably separated by the anion exchange membrane, the leakage of the catholyte to the gas chamber is prevented,
Therefore, the gas cathode is prevented from indirectly coming into contact with the catholyte, and a longer life can be achieved.
【0026】そして電解槽を大型化するにつれ溶液室の
陰極液のガス室へのリークの防止が困難になるが、本発
明の電解槽では前述の通りリークをほぼ完全に阻止する
ことができ、本発明は電解槽の大型化及びそれによる工
業的規模の操業をも可能にする。本発明による電解方法
の場合も同様に、陰イオン交換膜の使用によるガス陰極
の長寿命化を達成できかつ電解槽の大型化にも寄与する
ことができる。As the size of the electrolytic cell is increased, it becomes difficult to prevent the catholyte in the solution chamber from leaking into the gas chamber. However, the electrolytic cell of the present invention can almost completely prevent the leak as described above. The present invention also allows for larger electrolyzers and thereby industrial scale operation. Similarly, in the case of the electrolysis method according to the present invention, the use of the anion-exchange membrane can extend the life of the gas cathode and contribute to the enlargement of the electrolytic cell.
【図1】本発明に係わる過酸化水素製造用電解槽の一例
を示す概略縦断面図。FIG. 1 is a schematic longitudinal sectional view showing an example of an electrolytic cell for producing hydrogen peroxide according to the present invention.
1・・・電解槽本体 2・・・陽イオン交換膜 3・・
・陽極室 4・・・陰極室 5・・・陽極 6・・・陰
イオン交換膜 7・・・溶液室 8・・・ガス陰極 9
・・・集電体 10・・・ガス室1 ・ ・ ・ Electrolyzer main body 2 ・ ・ ・ Cation exchange membrane 3 ・ ・
・ Anode chamber 4 ・ ・ ・ Cathode chamber 5 ・ ・ ・ Anode 6 ・ ・ ・ Anion exchange membrane 7 ・ ・ ・ Solution chamber 8 ・ ・ ・ Gas cathode 9
・ ・ ・ Current collector 10 ・ ・ ・ Gas chamber
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−132498(JP,A) 特開 昭56−47578(JP,A) 特開 昭56−69384(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-54-132498 (JP, A) JP-A-56-47578 (JP, A) JP-A-56-69384 (JP, A) (58) Field (Int.Cl. 7 , DB name) C25B 1/00-15/08
Claims (3)
極室とガス陰極を収容する陰極室とに区画され、更に該
陰極室が前記ガス陰極に密着する陰イオン交換膜により
前記陽極室と接する溶液室と前記ガス陰極を収容するガ
ス室とに区画されたことを特徴とする過酸化水素製造用
電解槽。1. A cation exchange membrane divided into an anode chamber for housing an anode and a cathode chamber for housing a gas cathode, and the cathode chamber is in contact with the anode chamber through an anion exchange membrane closely contacting the gas cathode. An electrolytic cell for producing hydrogen peroxide, wherein the electrolytic cell is partitioned into a solution chamber and a gas chamber containing the gas cathode.
極室とガス陰極を収容する陰極室とに区画され、更に該
陰極室が前記ガス陰極に密着する陰イオン交換膜により
前記陽極室と接する溶液室と前記ガス陰極を収容するガ
ス室とに区画された過酸化水素製造用電解槽の前記ガス
室に酸素含有ガスを供給しながら電解を行い、前記溶液
室で過酸化水素を前記陽極室で酸素をそれぞれ生成する
ことを特徴とする過酸化水素の製造方法。2. A cation exchange membrane divided into an anode chamber containing an anode and a cathode chamber containing a gas cathode, and the cathode chamber comes into contact with the anode chamber by an anion exchange membrane closely contacting the gas cathode. Electrolysis is performed while supplying an oxygen-containing gas to the gas chamber of the electrolytic cell for producing hydrogen peroxide partitioned into a solution chamber and a gas chamber containing the gas cathode, and the hydrogen peroxide is supplied to the anode chamber in the solution chamber. A method for producing hydrogen peroxide, wherein oxygen is generated in each step.
過酸化水素製造原料とする請求項2に記載の方法。3. The method according to claim 2, wherein the oxygen generated in the anode chamber is circulated to the gas chamber to produce hydrogen peroxide.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06268593A JP3304481B2 (en) | 1993-02-26 | 1993-02-26 | Electrolyzer for hydrogen peroxide production and method for electrolytic production of hydrogen peroxide |
AT94830041T ATE179765T1 (en) | 1993-02-26 | 1994-02-04 | ELECTROLYSIS CELL AND METHOD FOR PRODUCING ALKALINE METAL HYDROXIDE AND HYDROGEN PEROXIDE |
ES94830041T ES2132364T3 (en) | 1993-02-26 | 1994-02-04 | ELECTROLYSIS CELL AND PRODUCTION PROCEDURES FOR ALKALINE HYDROXIDE AND HYDROGEN PEROXIDE. |
DE69418239T DE69418239T2 (en) | 1993-02-26 | 1994-02-04 | Electrolysis cell and process for the production of alkali metal hydroxide and hydrogen peroxide |
EP94830041A EP0612864B1 (en) | 1993-02-26 | 1994-02-04 | Electrolytic cell and processes for producing alkali hydroxide and hydrogen peroxide |
US08/196,442 US5437771A (en) | 1993-02-26 | 1994-02-15 | Electrolytic cell and processes for producing alkali hydroxide and hydrogen peroxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06268593A JP3304481B2 (en) | 1993-02-26 | 1993-02-26 | Electrolyzer for hydrogen peroxide production and method for electrolytic production of hydrogen peroxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06248482A JPH06248482A (en) | 1994-09-06 |
JP3304481B2 true JP3304481B2 (en) | 2002-07-22 |
Family
ID=13207393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06268593A Expired - Fee Related JP3304481B2 (en) | 1993-02-26 | 1993-02-26 | Electrolyzer for hydrogen peroxide production and method for electrolytic production of hydrogen peroxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3304481B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2457885A (en) * | 2008-02-26 | 2009-09-02 | Dyson Technology Ltd | Spray dispenser for dispensing hydrogen peroxide-bearing water |
JP4968628B2 (en) * | 2008-04-10 | 2012-07-04 | 国立大学法人 新潟大学 | Equipment for simultaneous production of ozone water and hydrogen peroxide water |
-
1993
- 1993-02-26 JP JP06268593A patent/JP3304481B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06248482A (en) | 1994-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4191618A (en) | Production of halogens in an electrolysis cell with catalytic electrodes bonded to an ion transporting membrane and an oxygen depolarized cathode | |
US4224121A (en) | Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane | |
US5437771A (en) | Electrolytic cell and processes for producing alkali hydroxide and hydrogen peroxide | |
US4311569A (en) | Device for evolution of oxygen with ternary electrocatalysts containing valve metals | |
US4209368A (en) | Production of halogens by electrolysis of alkali metal halides in a cell having catalytic electrodes bonded to the surface of a porous membrane/separator | |
US4528083A (en) | Device for evolution of oxygen with ternary electrocatalysts containing valve metals | |
US5415759A (en) | Water ionizing electrode and electrochemical process for using | |
EP1033419B1 (en) | Soda electrolytic cell provided with gas diffusion electrode | |
US4707229A (en) | Method for evolution of oxygen with ternary electrocatalysts containing valve metals | |
US4457824A (en) | Method and device for evolution of oxygen with ternary electrocatalysts containing valve metals | |
US5565082A (en) | Brine electrolysis and electrolytic cell therefor | |
US4397730A (en) | Electrolytic cells with alkaline electrolytes containing trifluoromethylane sulfonic acid | |
US7083708B2 (en) | Oxygen-consuming chlor alkali cell configured to minimize peroxide formation | |
US4956061A (en) | Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane | |
JP3421021B2 (en) | Electrolysis method of alkali chloride | |
US5879521A (en) | Gas-diffusion cathode and salt water electrolytic cell using the gas-diffusion cathode | |
US4772364A (en) | Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane | |
JP3304481B2 (en) | Electrolyzer for hydrogen peroxide production and method for electrolytic production of hydrogen peroxide | |
JP3596997B2 (en) | Electrode feeder, method for producing the same, and electrolytic cell for producing hydrogen peroxide | |
JP4743696B2 (en) | Oxygen reducing gas diffusion cathode for salt electrolysis and salt electrolysis method | |
CA1155792A (en) | Air-depolarized chlor-alkali cell operation methods | |
CA2163896A1 (en) | Process of preparing solutions of alkali peroxide and percarbonate | |
JP3420790B2 (en) | Electrolyzer and electrolysis method for alkali chloride electrolysis | |
JPH11172484A (en) | Gas diffusion electrode structural body and its production | |
JP2001020089A (en) | Protective method of alkali chloride electrolytic cell and protective device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |