JP3259919B2 - Rotating device with built-in power and signal transmission mechanism - Google Patents

Rotating device with built-in power and signal transmission mechanism

Info

Publication number
JP3259919B2
JP3259919B2 JP18830692A JP18830692A JP3259919B2 JP 3259919 B2 JP3259919 B2 JP 3259919B2 JP 18830692 A JP18830692 A JP 18830692A JP 18830692 A JP18830692 A JP 18830692A JP 3259919 B2 JP3259919 B2 JP 3259919B2
Authority
JP
Japan
Prior art keywords
power
rotating shaft
signal transmission
rotating device
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18830692A
Other languages
Japanese (ja)
Other versions
JPH0636940A (en
Inventor
淳之 平井
義二 平賀
裕二 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP18830692A priority Critical patent/JP3259919B2/en
Priority to US08/193,009 priority patent/US5637973A/en
Priority to JP06501340A priority patent/JP3142570B2/en
Priority to EP98101897A priority patent/EP0844627A3/en
Priority to EP98101895A priority patent/EP0851441A1/en
Priority to EP98101896A priority patent/EP0845794A1/en
Priority to KR1019940700474A priority patent/KR100309240B1/en
Priority to EP93913542A priority patent/EP0598924B1/en
Priority to PCT/JP1993/000822 priority patent/WO1993026020A1/en
Priority to DE69321325T priority patent/DE69321325T2/en
Priority to EP98101894A priority patent/EP0845793A1/en
Publication of JPH0636940A publication Critical patent/JPH0636940A/en
Priority to US08/674,858 priority patent/US5798622A/en
Priority to US08/725,171 priority patent/US5770936A/en
Priority to US08/762,427 priority patent/US5818188A/en
Application granted granted Critical
Publication of JP3259919B2 publication Critical patent/JP3259919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電動機などの回転軸の
端部に設けた電気負荷に対して、電力および信号の伝送
を行う伝送機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission mechanism for transmitting electric power and signals to an electric load provided at an end of a rotating shaft such as a motor.

【0002】[0002]

【従来の技術】工作機械加工分野においては、図10に
示すように主軸電動機101の先端で刃物台104を位
置決め制御したり(フェーサーマシニングセンタ)、主
軸電動機111あるいはスピンドルユニット121の軸
端で加工物114をチャッキングする(図11)など回
転軸上において回転動力の伝達とは別にさらにパワを伝
えさらには信号の授受を行って、仕事をさせたいという
場合がある。
2. Description of the Related Art In the field of machine tool machining, as shown in FIG. 10, the position of a tool post 104 is controlled by the tip of a spindle motor 101 (facer machining center), or machining is performed by the spindle end of a spindle motor 111 or a spindle unit 121. In some cases, such as chucking the object 114 (FIG. 11), it is desired to transmit power further on the rotating shaft and transmit and receive signals to perform work.

【0003】[0003]

【発明が解決しようとする課題】これらの場合におい
て、従来は電力や信号の供給が容易にできなかったた
め、図12に示すように、主軸電動機やスピンドルユニ
ット121を中空軸にしてその中に同軸シャフト123
を配して機械動力の形でパワを供給するなどしてきた
が、加工精度上の問題や長期信頼性の問題により低コス
トでこれを実用化するのは甚だ難しかった。
In these cases, since power and signals could not be supplied easily in the past, as shown in FIG. 12, the spindle motor and the spindle unit 121 were made hollow and coaxial therewith. Shaft 123
However, it has been extremely difficult to put this into practical use at low cost due to problems in machining accuracy and long-term reliability.

【0004】また多関節ロボットやSCARAロボット
においては、各電動出力軸ごとの電力および信号授受は
多本数の配線により行われ、その配線のかわしの問題か
らロボットアームの動作範囲が制限を受たり、長期繰り
返し動作による配線の疲労破断の問題を生じるなどして
いた。
In articulated robots and SCARA robots, power and signal transmission and reception for each electric output shaft are performed by a large number of wires, and the operation range of the robot arm is limited due to the problem of wiring. There was a problem such as fatigue fracture of wiring due to long-term repetitive operation.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、請求項1の本発明は、分割型高周波変圧器の1次コ
イルと2次コイルが、それぞれ固定部側と回転軸側に間
隙を設けて対向配置されてあり、信号伝送カップラの発
信部と受信部の何れか一方が固定部側に、他方が回転軸
側に間隙を設けて対向配置されてあり、前記2次コイル
の電力取り出し線、前記発信部と前記受信部の何れか一
方の信号取り出し線となる配線を回転装置の回転軸上の
溝または中空部穴内に設けてあり、前記回転軸の端部に
設けた電気負荷への電力および信号の伝送機構を内蔵す
る回転装置において、前記回転装置が電動機であって、
軸受で両端支持される回転軸の軸受間に前記分割型高周
波変圧器の1次コイルに対向するように2次コイルを設
け、軸受間の外側に前記信号伝送カップラの送信部に対
向するように受信部を設けたものである。また、請求項
2の本発明は、分割型高周波変圧器の1次コイルと2次
コイルが、それぞれ固定部側と回転軸側に間隙を設けて
対向配置されてあり、信号伝送カップラの発信部と受信
部の何れか一方が固定部側に、他方が回転軸側に間隙を
設けて対向配置されてあり、前記2次コイルの電力取り
出し線、前記発信部と前記受信部の何れか一方の信号取
り出し線となる配線を回転装置の回転軸上の溝または中
空部穴内に設けてあり、前記回転軸の端部に設けた電気
負荷への電力および信号の伝送機構を内蔵する回転装置
において、前記回転装置が変速機であって、軸受で両端
支持される変速出力軸の軸受間に前記分割型高周波変圧
器の1次コイルに対向するように2次コイルを設けると
共に、前記信号伝送カップラの送信部に対向するように
受信部を設けたものである。
In order to solve the above-mentioned problems, the present invention according to claim 1 is directed to a primary type of split-type high-frequency transformer.
Between the fixed part and the rotating shaft, respectively.
The signal transmission coupler is located opposite to
One of the transmitter and receiver is on the fixed part side, the other is the rotating shaft
The secondary coil is disposed so as to have a gap on the
One of the transmitting unit and the receiving unit
A wiring which is provided in the groove or hollow hole on the rotating shaft of the rotating device, and which includes a mechanism for transmitting power and a signal to an electric load provided at an end of the rotating shaft. In the above, the rotating device is an electric motor,
A secondary coil is provided between the bearings of the rotary shaft supported at both ends by bearings so as to face the primary coil of the split-type high-frequency transformer, and to face the transmitter of the signal transmission coupler outside between the bearings. A receiving unit is provided. Further, according to the present invention, a primary coil and a secondary coil of a split type high-frequency transformer are provided.
The coil has a gap between the fixed part side and the rotating shaft side.
Opposed to transmit and receive signal transmission coupler
One of the parts has a gap on the fixed part side and the other has a gap on the rotating shaft side.
And the power supply of the secondary coil
Outgoing line, signal acquisition of one of the transmitting unit and the receiving unit
In a rotating device in which a wiring serving as a lead wire is provided in a groove or a hollow hole on the rotating shaft of the rotating device, and a mechanism for transmitting power and a signal to an electric load provided at an end of the rotating shaft is built in, The rotating device is a transmission, and both ends are supported by bearings.
A secondary coil is provided between bearings of a supported transmission output shaft so as to face a primary coil of the split-type high-frequency transformer, and a receiving unit is provided so as to face a transmitting unit of the signal transmission coupler. It is.

【0006】[0006]

【作用】電力伝送手段として高周波変圧器を、また信号
伝送手段として電磁誘導式または光学式のカップラをそ
れぞれ採用し、変圧器の1次コイルおよび2次コイル
を、またカップラの送信側および受信側を、それぞれ別
々に回転軸側および固定部側に間隙を設けて対向配置す
ることで、回転軸上で配線を介さないで、無接触に電力
および信号の伝送を行うことができる。
A high-frequency transformer is used as power transmission means, and an electromagnetic induction or optical coupler is used as signal transmission means. The primary and secondary coils of the transformer are used, and the transmitting and receiving sides of the coupler are used. By separately providing the gaps on the rotating shaft side and the fixed portion side so as to face each other, power and signals can be transmitted without contact on the rotating shaft without wiring.

【0007】[0007]

【実施例】本発明の実施例について図面を参照して説明
する。図1は、本発明における無接触の電力伝送につい
て原理的な構成を示す図である。図において、分割型高
周波変圧器Trは、固定側に配置した1次コイル11と
回転側に配置した2次コイル12を僅かな間隔を設けて
構成される。1次コイル11には、2次側コイル12に
電力供給するための電源となる高周波電圧発生器が接続
され、2次側コイル12には負荷などが接続される。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a principle configuration of contactless power transmission in the present invention. In the figure, a split-type high-frequency transformer Tr is configured such that a primary coil 11 disposed on a fixed side and a secondary coil 12 disposed on a rotating side are provided at a slight interval. The primary coil 11 is connected to a high-frequency voltage generator serving as a power supply for supplying power to the secondary coil 12, and the secondary coil 12 is connected to a load or the like.

【0008】図2は、本発明における分割型高周波変圧
器の具体的な構成を示す図で、ポット型コアを用いたA
タイプの場合と、回転機型であるBタイプの場合とであ
る。ポット型コアの場合(タイプA)、1次巻線21を
巻き付けたポットコア20と2次巻線22を巻き付けた
ポットコア20とを間隔をおいて突き合わせ、電磁誘導
を行う。このタイプは、構造上、フラットな形状である
ので、電動機あるいは減速機内に収納して設けるに際し
て、設計上、回転軸方向の形状増大に与える影響が少な
いが、磁路が図示のように回転軸方向であるためコア材
磁束密度の上限から通過磁束量が制限されやすい。他方
タイプBは、回転機の回転子と固定子の関係と同様に、
円筒形コアの内側に他のコアを挿入する同心型のもの
で、磁路が図示のように、回転軸方向に垂直となるた
め、これらを内蔵した電動機や減速機の長手方向の寸法
は長くなるが、通常の電動機と同様に単位体積当たりの
通過磁束量を大きくすることができ、総合的なパワレー
ト(単位体積当たりの伝送電力)を高く採ることができ
るという利点がある。ただし、タイプBの場合は、回転
角度によって磁路長(あるいは磁気抵抗)が変化しない
ように同図に示したようにいずれか一方のコアに電気角
上のスキューをかけておく必要がある。同図では、内側
に挿入するコアにスキューを施している。
FIG. 2 is a diagram showing a specific configuration of the split type high-frequency transformer according to the present invention.
Type and the case of type B which is a rotary machine type. In the case of a pot type core (type A), the pot core 20 around which the primary winding 21 is wound and the pot core 20 around which the secondary winding 22 is wound are abutted at intervals to perform electromagnetic induction. Since this type has a flat shape in structure, it has little effect on the shape increase in the direction of the rotating shaft when it is housed in an electric motor or a reduction gear. Since the direction is the direction, the amount of magnetic flux passing therethrough tends to be limited from the upper limit of the magnetic flux density of the core material. On the other hand, type B is similar to the relationship between the rotor and the stator of the rotating machine,
This is a concentric type in which another core is inserted inside the cylindrical core, and the magnetic path is perpendicular to the rotation axis direction as shown in the figure. However, there is an advantage that the amount of magnetic flux passing per unit volume can be increased as in a normal electric motor, and a high overall power rate (transmission power per unit volume) can be obtained. However, in the case of the type B, it is necessary to apply a skew in electrical angle to one of the cores as shown in the figure so that the magnetic path length (or magnetic resistance) does not change depending on the rotation angle. In the figure, the core inserted inside is skewed.

【0009】いずれにしても、図1に示すように分割型
高周波変圧器Trの1次側(固定側)は高周波(正弦波
あるいは矩形波)インバータにより励磁され、僅かな間
隙をもって対向する2次側(回転部)に電磁誘導により
高周波の電圧を生じる。ここで分割型高周波変圧器Tr
の1次、2次磁性コア間の間隙は極力小さく採り、エア
ギャップの介在における損失を減らすようにする。
In any case, as shown in FIG. 1, the primary side (fixed side) of the split-type high-frequency transformer Tr is excited by a high-frequency (sinusoidal or rectangular) inverter, and is opposed to the secondary side with a small gap. A high-frequency voltage is generated on the side (rotating part) by electromagnetic induction. Here, the split type high-frequency transformer Tr
The gap between the primary and secondary magnetic cores is made as small as possible to reduce the loss due to the air gap.

【0010】また1次、2次コアは同軸上で相対的に回
転しても、その回転の等価電気的周波数が上述の高周波
励磁周波数以下であれば実質上磁界分布の乱れはないた
め、回転時も停止時も、電力伝送特性に変化を生じな
い。次に、本発明における無接触の信号伝送について説
明する。図3は電磁誘導を用いたものであり、図4は光
学式カップラを用いたものである。図3−Aは図2のタ
イプAと同じ構造であって、同形状のポットコア20
に、それぞれ送信巻線21を巻き付けた送信側と、受信
巻線22を巻き付けた受信側とを、僅かな間隙を設けて
突き合わせて電磁誘導を構成したもの(図3−B)であ
る。図4−Aは、回転部から固定部へ光学的に情報伝送
するもので、回転軸に取付けた回転円板40上に環状に
直列接続して配置した複数の発光素子群41と、前記回
転円板を囲む固定部に配置され、前記発光素子群41か
らの光を受光する1個の受光素子42とで構成される。
また図4−Bは、固定部から回転部へ光学的に情報伝送
するもので、固定部に環状に配置された複数の発光素子
群41と、回転軸に取付けた回転円板40上に配置さ
れ、前記発光素子群41からの光を受光する1個の受光
素子42とで構成される。そして、これら回転部の配線
は、回転軸中空部43を介して実施される。いずれのも
のも無接触で、しかも送信部と受信部とが相対的に高速
で回転運動をしていても、信号伝送が確実に行える。
Even if the primary and secondary cores rotate relative to each other on the same axis, as long as the equivalent electric frequency of the rotation is lower than the above-mentioned high frequency excitation frequency, there is substantially no disturbance in the magnetic field distribution. There is no change in the power transmission characteristics at both the time and the stop. Next, contactless signal transmission in the present invention will be described. FIG. 3 shows an example using electromagnetic induction, and FIG. 4 shows an example using an optical coupler. FIG. 3-A has the same structure as the type A of FIG.
In FIG. 3B, a transmission side on which the transmission winding 21 is wound and a reception side on which the reception winding 22 is wound are abutted to each other with a slight gap therebetween (FIG. 3-B). FIG. 4A is a diagram for optically transmitting information from a rotating unit to a fixed unit, and includes a plurality of light emitting element groups 41 arranged in series in a ring on a rotating disk 40 attached to a rotating shaft; It is arranged on a fixed portion surrounding the disk, and includes one light receiving element 42 for receiving light from the light emitting element group 41.
FIG. 4B is a diagram for optically transmitting information from the fixed portion to the rotating portion, and includes a plurality of light emitting element groups 41 arranged annularly in the fixed portion and a rotating disk 40 attached to a rotating shaft. And one light receiving element 42 for receiving light from the light emitting element group 41. The wiring of these rotating parts is performed via the rotating shaft hollow part 43. In any case, even if the transmitter and the receiver are rotating at a relatively high speed without any contact, signal transmission can be performed reliably.

【0011】図5は、本発明の1実施例の構成を図示し
たもので、主軸電動機(あるいはさらに広く一般の電動
機)筐体内に、電力伝送部および信号伝送部を組み込ん
だ例である。同図において、固定子53と回転子54で
構成される電動機の筐体内部には、軸受に近接して固定
側に配置される高周波電磁誘導コアの1次側コア51
と、これに対向してある間隙を経て、回転軸50に設け
た2次側コア52があり、この1次および2次コアが前
述の分割型高周波変圧器を形成している。1次側コア5
1の巻線はトルク(動力)伝達部の固定子53と同様
に、電力線を通して励磁され、2次側コアの巻線出力
は、回転軸50上の溝ないし中空部穴を通して配線した
電力取り出し線59を経て、回転軸先端へと取出される
(図13参照)。これら電力伝送部および動力伝達部
(一括してパワ伝送部)に対して、反負荷側には、軸受
を経て情報伝送部が配置される。55,56は、それぞ
れ信号伝送のための光あるいは高周波電磁誘導カップラ
を形成し、一方は固定側に、他方は回転軸側に設けら
れ、必要に応じて送信部あるいは受信部のいずれともな
り得る。また軸端に設けられる電気負荷との信号授受
は、回転軸上の溝ないし中空部穴を通して配線した信号
取出し線58を経て行われる(図13参照)。図5に
は、信号カップラ55,56が複数ペア設けられている
が、この場合には、それぞれのペアが他のペアからの光
信号、電磁誘導信号の漏れ(リーク)の影響を受けない
ように遮蔽を行う必要がある。特に、複数の光学的カッ
プラを用い、しかも個々のカップラの応答スペクトラム
のピーク波長がそれぞれ大きく異なる場合は、前記の遮
蔽を必要としない。また、電動機に内蔵されている従来
の電動機用センサ(例えば、位置検出用エンコーダ)5
7の電源は、先述の信号カップラの駆動電源として共用
することも可能であり、さらに、カップラ出力の波形整
形などの信号処理も従来のセンサの信号処理部で一括し
て行うこともできる。
FIG. 5 shows a configuration of an embodiment of the present invention, in which a power transmission unit and a signal transmission unit are incorporated in a main shaft motor (or a general motor). In the figure, a primary core 51 of a high-frequency electromagnetic induction core disposed on a fixed side close to a bearing is provided inside a housing of an electric motor composed of a stator 53 and a rotor 54.
And a secondary core 52 provided on the rotating shaft 50 through a gap opposed thereto, and the primary and secondary cores form the above-mentioned split type high-frequency transformer. Primary side core 5
Similarly to the stator 53 of the torque (power) transmission unit, the winding No. 1 is excited through a power line, and the winding output of the secondary side core is a power extraction line wired through a groove or a hollow hole on the rotating shaft 50. Through 59, it is taken out to the tip of the rotating shaft (see FIG. 13). With respect to the power transmission unit and the power transmission unit (collectively, the power transmission unit), an information transmission unit is disposed on the non-load side via a bearing. Numerals 55 and 56 respectively form optical or high-frequency electromagnetic induction couplers for signal transmission. One is provided on the fixed side and the other is provided on the rotating shaft side, and can be either a transmitting unit or a receiving unit as necessary. . Signal exchange with an electric load provided at the shaft end is performed via a signal extraction line 58 wired through a groove or a hollow hole on the rotating shaft (see FIG. 13). In FIG. 5, a plurality of pairs of signal couplers 55 and 56 are provided. In this case, each pair is not affected by leakage of an optical signal and an electromagnetic induction signal from another pair. Need to be shielded. In particular, when a plurality of optical couplers are used and the peak wavelengths of the response spectra of the individual couplers are significantly different from each other, the above-described shielding is not required. Also, a conventional motor sensor (for example, a position detection encoder) 5 built in the motor.
The power supply 7 can be shared as a drive power supply for the above-described signal coupler, and further, signal processing such as waveform shaping of the coupler output can be collectively performed by the signal processing unit of the conventional sensor.

【0012】図6および図7は、同様な発想により減速
機筐体内に電力伝送部と信号伝送部を組み込んだ例であ
り、それぞれ入力軸と出力軸が同軸となっていない場合
(図6)と、入力軸が同軸配置になっている場合(図
7)である。図6について説明する。電動機67の回転
は、筐体内の歯車列61を介して出力軸62に減速して
伝達される。出力軸62は減速機筐体の両側部の軸受で
両持ち支持されており、その間に分割型高周波変圧器の
2次側コア64及び信号カップラの受信部66とが取付
けられ、それぞれの取出し線68,69は出力軸62上
の溝ないし中空部穴内に配線されて出力軸先端に設けら
れる電気負荷に向けて導出される。また筐体内面には、
分割型高周波変圧器の1次側コア63及び信号カップラ
の送信部65が、出力軸側の2次側コア64及び受信部
66に間隙を置いた位置に対向して取付けられている。
また図7については、入出力軸が同軸配置であること
と、変速段としてハーモニックギア(歳差歯車)を用い
たことが図6と相違するだけである。作用はいずれも電
動機に組み込んだ場合と同様で、出力軸上に電力伝送部
と信号伝送部が取付けられ、これらの配線58,59が
出力回転軸上の溝ないしは、中空部穴を通して先端に設
けた電気負荷に取出される。なお、電力伝送部と信号伝
送部の軸上位置の順序は入れ替えても構わない。
FIGS. 6 and 7 show an example in which the power transmission unit and the signal transmission unit are incorporated in the reduction gear casing based on the same idea, and the input shaft and the output shaft are not coaxial (FIG. 6). And the case where the input shafts are coaxially arranged (FIG. 7). Referring to FIG. The rotation of the electric motor 67 is transmitted to the output shaft 62 at a reduced speed via the gear train 61 in the housing. The output shaft 62 is supported at both ends by bearings on both sides of the reduction gear housing. Between the output shaft 62, the secondary core 64 of the split type high-frequency transformer and the receiving section 66 of the signal coupler are mounted. 68 and 69 are wired in grooves or hollow holes on the output shaft 62 and are led out to an electric load provided at the tip of the output shaft. Also, on the inside of the housing,
The primary core 63 of the split-type high-frequency transformer and the transmitting section 65 of the signal coupler are mounted to face the secondary core 64 and the receiving section 66 on the output shaft side with a gap therebetween.
FIG. 7 differs from FIG. 6 only in that the input and output shafts are coaxially arranged and that a harmonic gear (precession gear) is used as the speed change step. The operation is the same as in the case where the motor is incorporated into the motor. A power transmission unit and a signal transmission unit are mounted on the output shaft, and these wirings 58 and 59 are provided at the end through grooves or hollow holes on the output rotation shaft. Taken out of the electrical load. The order of the on-axis positions of the power transmission unit and the signal transmission unit may be interchanged.

【0013】このようにして形成した電力および信号の
出力軸端までの伝送が可能な電動機あるいは同様な効果
を有する減速機ユニットを使い、これらの回転出力軸端
にて電動機をはじめとする電気負荷に電力信号を伝送し
て、それらを駆動する方法は次のとおりである。電気的
な負荷として光や温度を発生させるものの場合は、いず
れも実効値負荷となるため、軸端部取出し高周波電圧を
そのまま負荷に供給すればよい。また、高周波電動機を
駆動する場合も軸端部取出し電圧をそのまま加えればよ
い。しかし一般の電動機負荷の場合は、直流ないしは、
より低周波領域で動作するため図8のように軸端の先に
高周波整流回路83(ダイオートおよびLCフィルタか
らなる)を挿入して一度直流電圧に変換する必要があ
る。その後この直流電圧から(1)直接直流電動機84
を電圧制御する、(2)トランジスタなどパワスイッチ
素子ブリッジ85を通して負荷86を制御するという形
が採られる。
An electric motor or a reduction gear unit having the same effect as described above, which can transmit electric power and signals to the output shaft end, uses an electric load such as a motor at these rotary output shaft ends. The method of transmitting power signals to the power supply and driving them is as follows. In the case of an electrical load that generates light or temperature, the load is an effective value load, and the high-frequency voltage extracted from the shaft end may be supplied to the load as it is. Also, when driving the high frequency motor, the shaft end take-out voltage may be applied as it is. However, in the case of a general motor load, DC or
In order to operate in a lower frequency region, it is necessary to insert a high frequency rectifier circuit 83 (comprising a diode and an LC filter) at the end of the shaft end as shown in FIG. Then, from this DC voltage, (1)
(2) controlling a load 86 through a power switch element bridge 85 such as a transistor.

【0014】このようにして直流電動機、同期電動機、
誘導電動機のいずれもが回転軸端より先にて制御される
が、特に従来からある電動機コントローラのすべてを軸
端に搭載する必要はない。それは先述のように信号伝送
(入力、および出力用)が電動機、減速機などの固定側
から無接触伝送により出力軸端までなされているためで
あり、例えば軸端より先に取付けられる電動機に搭載さ
れた検出器にて得られる位置情報、速度情報をこの伝送
チャネルにより固定側に返し、トルク指令情報を別の信
号伝送チャネルにより固定側から軸端側に与えれば、電
動機制御のうち位置および速度制御を固定側において行
い、トルク制御を軸端より先にて行うことができる。こ
のようにして、軸端より先に取付く制御部の重量や物理
的な大きさを減らす方法も採ることが可能となる。
Thus, the DC motor, the synchronous motor,
Although all of the induction motors are controlled before the end of the rotary shaft, it is not particularly necessary to mount all the conventional motor controllers at the end of the shaft. This is because the signal transmission (for input and output) is performed from the fixed side of the motor, speed reducer, etc. to the output shaft end by non-contact transmission as described above. For example, the signal is mounted on the motor mounted before the shaft end. If the position information and speed information obtained by the detected detector are returned to the fixed side by this transmission channel and the torque command information is given from the fixed side to the shaft end side by another signal transmission channel, the position and speed of the motor control Control can be performed on the fixed side, and torque control can be performed before the shaft end. In this way, it is also possible to adopt a method of reducing the weight and physical size of the control unit attached before the shaft end.

【0015】軸端より先の制御部および検出器の電源
は、先述の整流後の伝送電力から図9の形で自動電圧調
整器(AVR)93を通して安定化された後に供給され
る。以上は、軸端より先に電気負荷をとり、伝送電力を
用いて仕事をさせる場合を中心に、述べたものである
が、軸端より先に小電力を加え(あるいは場合によって
は電力を与えなくても)検出器を動作させ、この信号を
固定側に伝えるという限定した用途にも本発明は有効で
ある。この場合、先述の電力伝送部は極めて小さく(あ
るいは無く)することができる。
The power of the control unit and the detector before the shaft end is supplied after being stabilized from the rectified transmission power through the automatic voltage regulator (AVR) 93 in the form of FIG. The above description focuses on the case where an electric load is taken before the shaft end and work is performed using transmission power. However, a small amount of power is applied before the shaft end (or power may be supplied in some cases). The invention is also useful in limited applications where the detector is operated (even without it) and this signal is transmitted to the fixed side. In this case, the above-described power transmission unit can be extremely small (or eliminated).

【0016】また図5、図6および図7では高周波誘導
電力伝送は、単相によって行われているが、これを
(1)伝送電力増大のため、(2)高周波電動機やステ
ッピング電動機などの直接制御のため、(3)整流回路
の負担を減らすため、のいずれか、あるいは複数の理由
によりこれを多相化することも有効である。以上のよう
な電力および信号伝送要素を電動機あるいは減速機内に
組み込んで一体化し、(1)軸受け間にこれら回転部分
(特に重量の重い電力伝送部)を組み入れることによっ
て出力軸回転振れの発生を抑え、(2)無接触電力伝送
部における間隙の管理および、間隙の雰囲気管理(ゴミ
などの介在防止)をしやすくし、(3)特に、光カップ
ラによる信号伝送部も従来の光学式エンコーダと同様な
形で雰囲気管理し、(4)電動機に組み込む場合は従来
の電動機のトルク発生部と上述の電力伝送部を一括して
パワ伝達部としてまとめ、従来の電動機の光学式エンコ
ーダなどセンサ部と上述の信号伝送部を一括して雰囲気
管理することにより合理的な構成が実現できる。
In FIG. 5, FIG. 6 and FIG. 7, the high-frequency induction power transmission is performed in a single phase. However, this is performed by (1) increasing the transmission power, and (2) directly using a high-frequency motor or a stepping motor. For control, (3) to reduce the load on the rectifier circuit, it is also effective to increase the number of phases for one or more reasons. The power and signal transmission elements as described above are integrated into a motor or a speed reducer, and (1) the rotation of the output shaft (particularly heavy power transmission) is interposed between the bearings to suppress the output shaft rotation runout. (2) It facilitates the management of the gap in the contactless power transmission section and the management of the atmosphere in the gap (prevention of the inclusion of dust and the like). (3) Especially, the signal transmission section using the optical coupler is the same as the conventional optical encoder (4) When incorporating into a motor, the torque generation section of the conventional motor and the above-described power transmission section are collectively integrated as a power transmission section, and the sensor section such as the optical encoder of the conventional motor and A rational configuration can be realized by collectively managing the atmosphere of the signal transmission units.

【0017】本発明の実施例は、上述のようなロボット
アーム各軸関節や工作機械(特に主軸先端の駆動)など
精密な電動機制御応用分野のみに留まらず、回転部分を
経た電力供給や情報授受を必要とするあらゆる分野で、
従来から有線方式やスリップリングを用いて疲労や摩耗
などの問題を生じていた総てアプリケーションをも含
む。
The embodiment of the present invention is not limited to the precise motor control application field such as the above-described joints of the robot arm and the machine tool (particularly, the driving of the tip of the spindle), as well as power supply and information exchange via rotating parts. In every field that needs
This includes all applications that have traditionally caused problems such as fatigue and wear using wired systems or slip rings.

【0018】[0018]

【発明の効果】本発明により、従来できなかった回転部
を経由した電力伝送や信号伝送が可能となり、しかもそ
のための無接触伝送部を電動機や減速機の中に取込み
(特に電動機に内蔵する場合)従来の動力伝達部と電力
伝送部とを一括してパワ伝送部の形で扱い、センサ部と
信号伝送部を一括して情報伝送部の形で扱うことによっ
て、回転部の機構を安定化するとともに、これら伝送部
を外部環境から絶縁して間隙および雰囲気管理ができる
ようになる。
According to the present invention, power transmission and signal transmission via a rotating part, which could not be performed conventionally, can be performed, and a non-contact transmission part for that purpose is incorporated in a motor or a speed reducer (particularly when the motor is built in the motor). ) Stabilizes the mechanism of the rotating unit by treating the conventional power transmission unit and power transmission unit collectively as a power transmission unit and treating the sensor unit and signal transmission unit collectively as an information transmission unit. At the same time, the transmission section is insulated from the external environment and the gap and atmosphere can be managed.

【0019】また出力軸の溝部あるいは中空部穴を通し
て電力伝送、情報伝送の配線を行うことにより配線処理
が動力伝送に影響を与えることなく行えるとともに、軸
受を経て接地されている出力軸によるシールド効果も期
待でき、外部に放出するノイズおよび外部から受けるノ
イズの影響を飛躍的に下げられる。また本発明を用いれ
ば、回転部を経由して軸端から検出器情報も得ることが
できるため、従来のメカニカルな動力伝達(例えば図1
2)と組み合わせ、その制御にも使うこともできる。
Wiring for power transmission and information transmission through the groove or the hole of the output shaft can be performed without affecting the power transmission, and the shielding effect of the output shaft grounded via the bearing is achieved. Can be expected, and the effects of noise emitted to the outside and noise received from the outside can be drastically reduced. Further, according to the present invention, since the detector information can be obtained from the shaft end via the rotating part, the conventional mechanical power transmission (for example, FIG.
It can also be used in combination with 2) for its control.

【0020】以上の効果により、本発明のようにして構
成した電力および信号伝送機構内蔵の電動機あるいは減
速機を複数組み合わせて用いれば、容易に配線が無くか
つ各軸毎が簡単に着脱、交換可能な機械(工作機、ロボ
ット)が構成できる。
According to the above effects, if a plurality of electric motors or reduction gears having a built-in power and signal transmission mechanism configured as in the present invention are used in combination, there is no wiring and each axis can be easily attached and detached and replaced. Machine (machine tool, robot) can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における無接触の電力伝送の原理を示す
図。
FIG. 1 is a diagram showing the principle of contactless power transmission in the present invention.

【図2】本発明における無接触で電力伝送する分割型高
周波変圧器の構成を示す図。
FIG. 2 is a diagram showing a configuration of a split-type high-frequency transformer for transmitting electric power in a contactless manner in the present invention.

【図3】本発明における無接触で信号伝送する電磁誘導
式の構成を示す図。
FIG. 3 is a diagram showing a configuration of an electromagnetic induction type for transmitting signals without contact in the present invention.

【図4】本発明における無接触で信号伝送する光学式カ
ップラの構成を示す図。
FIG. 4 is a diagram showing a configuration of an optical coupler for transmitting a signal without contact according to the present invention.

【図5】本発明の1実施例の構成を示す図。FIG. 5 is a diagram showing a configuration of one embodiment of the present invention.

【図6】本発明の別の実施例の構成を示す図。FIG. 6 is a diagram showing a configuration of another embodiment of the present invention.

【図7】本発明の別の実施例の構成を示す図。FIG. 7 is a diagram showing a configuration of another embodiment of the present invention.

【図8】本発明の実施例を適用した場合の電気回路図。FIG. 8 is an electric circuit diagram when the embodiment of the present invention is applied.

【図9】本発明の実施例を適用した場合の電気回路図。FIG. 9 is an electric circuit diagram when an embodiment of the present invention is applied.

【図10】主軸電動機先端における刃物台位置決めの様
子を示す図。
FIG. 10 is a view showing the state of tool post positioning at the tip of the spindle motor.

【図11】主軸電動機軸端でのワークチャッキングの様
子を示す図。
FIG. 11 is a diagram showing a state of work chucking at a spindle motor shaft end.

【図12】同軸シャフトを用いた機械動力伝達機構を示
す図。
FIG. 12 is a diagram showing a mechanical power transmission mechanism using a coaxial shaft.

【図13】回転軸上の溝および中空部穴内の配線の様子
を示す断面図。
FIG. 13 is a sectional view showing a state of a groove on a rotating shaft and wiring in a hollow hole.

【符号の説明】[Explanation of symbols]

Tr 分割型高周波変圧器 10 高周波電圧発生機 11,51,63,73,81 1次側 12,52,64,74,82 2次側 20 高周波磁性体コア 21,22 巻線 30 高周波磁性体コア 31 送信側 32 受信側 41 発行素子群 42 受光素子 55,56:65,66:75,76 信号伝送カッ
プラ 58,68,78 信号取出し線 59,69,79 電力取出し線
Tr Divided high-frequency transformer 10 High-frequency voltage generator 11, 51, 63, 73, 81 Primary 12, 52, 64, 74, 82 Secondary 20 High-frequency magnetic core 21, 22 Winding 30 High-frequency magnetic core 31 Transmitting side 32 Receiving side 41 Issuing element group 42 Light receiving element 55, 56: 65, 66: 75, 76 Signal transmission coupler 58, 68, 78 Signal extraction line 59, 69, 79 Power extraction line

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分割型高周波変圧器の1次コイルと2次
コイルが、それぞれ固定部側と回転軸側に間隙を設けて
対向配置されてあり、信号伝送カップラの発信部と受信
部の何れか一方が固定部側に、他方が回転軸側に間隙を
設けて対向配置されてあり、前記2次コイルの電力取り
出し線、前記発信部と前記受信部の何れか一方の信号取
り出し線となる配線を回転装置の回転軸上の溝または中
空部穴内に設けてあり、前記回転軸の端部に設けた電気
負荷への電力および信号の伝送機構を内蔵する回転装置
において、 前記回転装置が電動機であって、軸受で両端支持される
回転軸の軸受間に前記分割型高周波変圧器の1次コイル
に対向するように2次コイルを設け、軸受間の外側に前
記信号伝送カップラの送信部に対向するように受信部を
設けてあることを特徴とする電力および信号の伝送機構
を内蔵する回転装置。
1. A primary coil and a secondary coil of a split-type high-frequency transformer
The coil has a gap between the fixed part side and the rotating shaft side.
Opposed to transmit and receive signal transmission coupler
One of the parts has a gap on the fixed part side and the other has a gap on the rotating shaft side.
And the power supply of the secondary coil
Outgoing line, signal acquisition of one of the transmitting unit and the receiving unit
In a rotating device in which a wiring serving as a lead wire is provided in a groove or a hollow hole on the rotating shaft of the rotating device, and a mechanism for transmitting power and a signal to an electric load provided at an end of the rotating shaft is built in, The rotating device is an electric motor, and a secondary coil is provided between bearings of a rotating shaft supported at both ends by bearings so as to face a primary coil of the split high-frequency transformer, and the signal transmission is provided outside between the bearings. A rotating device having a built-in power and signal transmission mechanism, wherein a receiving unit is provided to face a transmitting unit of the coupler.
【請求項2】 分割型高周波変圧器の1次コイルと2次
コイルが、それぞれ固定部側と回転軸側に間隙を設けて
対向配置されてあり、信号伝送カップラの発信部と受信
部の何れか一方が固定部側に、他方が回転軸側に間隙を
設けて対向配置されてあり、前記2次コイルの電力取り
出し線、前記発信部と前記受信部の何れか一方の信号取
り出し線となる配線を回転装置の回転軸上の溝または中
空部穴内に設けてあり、前記回転軸の端部に設けた電気
負荷への電力および信号の伝送機構を内蔵する回転装置
において、 前記回転装置が変速機であって、軸受で両端支持される
変速出力軸の軸受間に前記分割型高周波変圧器の1次コ
イルに対向するように2次コイルを設けると共に、前記
信号伝送カップラの送信部に対向するように受信部を設
けてあることを特徴とする電力および信号の伝送機構を
内蔵する回転装置。
2. A primary coil and a secondary coil of a split type high frequency transformer.
The coil has a gap between the fixed part side and the rotating shaft side.
Opposed to transmit and receive signal transmission coupler
One of the parts has a gap on the fixed part side and the other has a gap on the rotating shaft side.
And the power supply of the secondary coil
Outgoing line, signal acquisition of one of the transmitting unit and the receiving unit
In a rotating device in which a wiring serving as a lead wire is provided in a groove or a hollow hole on the rotating shaft of the rotating device, and a mechanism for transmitting power and a signal to an electric load provided at an end of the rotating shaft is built in, The rotating device is a transmission, and a secondary coil is provided between bearings of a transmission output shaft supported at both ends by bearings so as to face a primary coil of the split-type high-frequency transformer. A rotating device having a built-in power and signal transmission mechanism, characterized in that a receiving unit is provided to face the transmitting unit.
JP18830692A 1992-06-18 1992-07-15 Rotating device with built-in power and signal transmission mechanism Expired - Lifetime JP3259919B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP18830692A JP3259919B2 (en) 1992-07-15 1992-07-15 Rotating device with built-in power and signal transmission mechanism
US08/193,009 US5637973A (en) 1992-06-18 1993-06-08 Noncontacting electric power transfer apparatus, noncontacting signal transfer apparatus, split-type mechanical apparatus employing these transfer apparatus and a control method for controlling same
DE69321325T DE69321325T2 (en) 1992-06-18 1993-06-18 CONTACTLESS POWER TRANSMISSION DEVICE, CONTACTLESS SIGNAL TRANSMISSION, MACHINE WITH SEPARATE PARTS FOR THEIR USE AND THEIR CONTROL METHOD
EP98101895A EP0851441A1 (en) 1992-06-18 1993-06-18 Noncontacting signal transfer apparatus
EP98101896A EP0845794A1 (en) 1992-06-18 1993-06-18 Noncontacting signal transfer apparatus
KR1019940700474A KR100309240B1 (en) 1992-06-18 1993-06-18 Contactless power transmission device, contactless signal transmission device and separate mechanical device using them and control method
EP93913542A EP0598924B1 (en) 1992-06-18 1993-06-18 Non-contact power transmission apparatus, non-contact signal transmitter, separation type machine using them and control method thereof
PCT/JP1993/000822 WO1993026020A1 (en) 1992-06-18 1993-06-18 Non-contact power transmission apparatus, non-contact signal transmitter, separation type machine using them and control method thereof
JP06501340A JP3142570B2 (en) 1992-06-18 1993-06-18 Non-contact power transmission device, non-contact signal transmission device, separated type mechanical device using the same, and control method thereof
EP98101894A EP0845793A1 (en) 1992-06-18 1993-06-18 Noncontacting signal transfer apparatus
EP98101897A EP0844627A3 (en) 1992-06-18 1993-06-18 Method for the correction of the wave surface of an optical beam by means of a deformable mirror and mirror used in this method
US08/674,858 US5798622A (en) 1992-06-18 1996-07-03 Noncontacting electric power transfer apparatus, noncontacting signal transfer apparatus, split-type mechanical apparatus employing these transfer apparatus, and a control method for controlling same
US08/725,171 US5770936A (en) 1992-06-18 1996-10-03 Noncontacting electric power transfer apparatus, noncontacting signal transfer apparatus, split-type mechanical apparatus employing these transfer apparatus, and a control method for controlling same
US08/762,427 US5818188A (en) 1992-06-18 1996-12-09 Noncontacting electric power transfer apparatus, noncontacting signal transfer apparatus, split-type mechanical apparatus employing these transfer apparatus, and a control method for controlling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18830692A JP3259919B2 (en) 1992-07-15 1992-07-15 Rotating device with built-in power and signal transmission mechanism

Publications (2)

Publication Number Publication Date
JPH0636940A JPH0636940A (en) 1994-02-10
JP3259919B2 true JP3259919B2 (en) 2002-02-25

Family

ID=16221308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18830692A Expired - Lifetime JP3259919B2 (en) 1992-06-18 1992-07-15 Rotating device with built-in power and signal transmission mechanism

Country Status (1)

Country Link
JP (1) JP3259919B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023146056A1 (en) * 2022-01-27 2023-08-03 이주열 Non-contact rotary transformer and motor comprising same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193725B1 (en) * 2000-03-08 2009-06-24 The Furukawa Electric Co.,Ltd. Method for diagnosing abnormal condition of isolation transformer and device therefor
DE102006049275B4 (en) * 2006-10-19 2022-11-17 Zf Friedrichshafen Ag Transmission device with at least one switching element that can be actuated via an actuator system having at least one electrical component
JP4762201B2 (en) * 2007-06-26 2011-08-31 リズム時計工業株式会社 Drive device
JP2009231803A (en) * 2008-02-29 2009-10-08 Seiko Epson Corp Rotating device and robot arm device
JP2010054399A (en) * 2008-08-29 2010-03-11 Mori Seiki Co Ltd Noncontact measuring device and on-machine measuring system
JP2012209747A (en) * 2011-03-29 2012-10-25 Seiko Epson Corp Non-contact communication device, communication method, and robot device
KR102492225B1 (en) * 2022-05-19 2023-01-26 대진대학교 산학협력단 Wireless power transfer apparatus for single-phase power applicable to yawing driving part and wind power generation system using thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023146056A1 (en) * 2022-01-27 2023-08-03 이주열 Non-contact rotary transformer and motor comprising same
KR20230115813A (en) * 2022-01-27 2023-08-03 이주열 Non-contact rotary transformer and Motor including the same.
KR102684789B1 (en) 2022-01-27 2024-07-11 이주열 Non-contact rotary transformer and Motor including the same.

Also Published As

Publication number Publication date
JPH0636940A (en) 1994-02-10

Similar Documents

Publication Publication Date Title
JP3142570B2 (en) Non-contact power transmission device, non-contact signal transmission device, separated type mechanical device using the same, and control method thereof
US5304886A (en) Printed circuit motor
US6258007B1 (en) Multi-sensor harmonic drive actuator arrangement assembly
US6759759B2 (en) Rotary contactless connector and non-rotary contactless connector
JP3259919B2 (en) Rotating device with built-in power and signal transmission mechanism
JPH07100786A (en) Wireless robot
US10141823B2 (en) Motor, gimbal, and mechanical arm having the same
EP3386074A1 (en) Motor, and pan-tilt and robotic arm having same
US6118201A (en) Resolver with leakage flux absorber
JP3097319B2 (en) Non-contact power supply control method for electric motor, separated control electric motor by the method, and mechanical device using the separated control electric motor
EP0390036B1 (en) Motor-driving circuit and wire-bonding apparatus
JP3724516B2 (en) Contactless motion transmission device
US6822349B2 (en) Linear motor
US3375383A (en) Magnetic drive device
GB2056725A (en) Generator output regulator
US11572920B2 (en) Electric machine control using long cables
JP4070869B2 (en) Servo motor device
JPH02254954A (en) Slot motor
SU978242A1 (en) Supporting-dividing device drive
US20230192440A1 (en) Device for winding or unwinding a line
JP2006333652A (en) Linear motor and precision rotary table
US4493997A (en) Fiber optic sensor for shaft state
JP2001178095A (en) Rotary transformer
SU1444919A1 (en) Electric machine with torque meter
KR870003576Y1 (en) A rail transferor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11