JP3176180B2 - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JP3176180B2
JP3176180B2 JP16127493A JP16127493A JP3176180B2 JP 3176180 B2 JP3176180 B2 JP 3176180B2 JP 16127493 A JP16127493 A JP 16127493A JP 16127493 A JP16127493 A JP 16127493A JP 3176180 B2 JP3176180 B2 JP 3176180B2
Authority
JP
Japan
Prior art keywords
optical
light
linearly polarized
polarized light
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16127493A
Other languages
Japanese (ja)
Other versions
JPH0720407A (en
Inventor
友幸 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP16127493A priority Critical patent/JP3176180B2/en
Publication of JPH0720407A publication Critical patent/JPH0720407A/en
Application granted granted Critical
Publication of JP3176180B2 publication Critical patent/JP3176180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザ及び、光フ
ァイバアンプを用いた光ファイバ通信等に用いて好適
な、偏光に対して依存性のない、いわゆる偏光無依存型
光アイソレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called polarization-independent optical isolator which has no polarization dependency and is suitable for use in semiconductor lasers and optical fiber communication using an optical fiber amplifier.

【0002】[0002]

【従来技術】半導体レーザを中心とする光通信や光計測
システムにおいて、高速・高密度信号伝送などの信頼性
の高い光通信や高精度の光計測を行うためには、レーザ
発振の誤動作の原因となる光学システムからの反射戻り
光を除去する光アイソレータが配置される。この光アイ
ソレータは、ある偏光面のみを通過させ、その偏光方向
と直交する偏光方向を遮断する機能を有する偏光子と、
通過する偏光を45°非可逆に回転させるファラデー回
転子と、ファラデー回転子を磁化する永久磁石と、通過
する偏光面が偏光子に対して45°傾いている検光子か
ら構成される。
2. Description of the Related Art In optical communication and optical measurement systems centered on semiconductor lasers, reliable optical communication such as high-speed and high-density signal transmission and high-precision optical measurement require a laser oscillation malfunction. An optical isolator for removing reflected return light from the optical system to be used is disposed. This optical isolator has a function of passing only a certain polarization plane and blocking a polarization direction orthogonal to the polarization direction,
It is composed of a Faraday rotator that rotates the passing polarized light irreversibly, a permanent magnet that magnetizes the Faraday rotator, and an analyzer that has a passing polarization plane inclined by 45 ° with respect to the polarizer.

【0003】また、最近、Erドープファイバを使用し
た光ファイバ増幅器が注目されているが、この場合でも
各光部品や接続点からの反射戻り光によりErドープフ
ァイバ内で発振し、それが雑音増加の原因となるため、
反射戻り光を除去する光アイソレータが必要となる。
Recently, an optical fiber amplifier using an Er-doped fiber has been attracting attention. Even in this case, oscillation occurs in the Er-doped fiber due to reflected light returned from each optical component or a connection point, which increases noise. Cause
An optical isolator for removing reflected return light is required.

【0004】一般に信号光がErドープファイバを伝送
する場合、信号光の偏光面は保存されないため、光ファ
イバ増幅器には信号光の偏光方向に依存しない偏光無依
存型光アイソレータが使用される。
In general, when signal light is transmitted through an Er-doped fiber, the polarization plane of the signal light is not preserved. Therefore, a polarization-independent optical isolator that does not depend on the polarization direction of the signal light is used for the optical fiber amplifier.

【0005】ここで、偏光無依存型光アイソレータの従
来例を図6〜図8に示し、各図において(a)は順方向
での偏光伝搬状態、(b)は逆方向での偏光伝搬状態を
表している。
Here, FIGS. 6 to 8 show a conventional example of a polarization-independent optical isolator. In each of the figures, (a) shows a polarized light propagation state in a forward direction, and (b) shows a polarized light propagation state in a reverse direction. Is represented.

【0006】図6の光アイソレータは、平板型複屈折結
晶3枚とファラデー回転子1枚により構成される。
The optical isolator shown in FIG. 6 includes three flat birefringent crystals and one Faraday rotator.

【0007】信号光が平板型複屈折結晶11を通過する
とき、平板型複屈折結晶11に対して、異常光方位とな
る直線偏光が変位するため、直交する2つの直線偏光
(常光、異常光)に分離され、ファラデー回転子12を
通過の際に直交する2つの直線偏光の偏光面は回転され
る。その後、平板型複屈折結晶13、平板型複屈折結晶
14を通過する際、それぞれの平板型複屈折結晶に対し
て異常光方位となる直線偏光は変位するため、平板型複
屈折結晶11で分離された2つの直線偏光は平板型複屈
折結晶14で直交合成される。
When the signal light passes through the plate-type birefringent crystal 11, the linearly polarized light having the extraordinary light direction is displaced with respect to the plate-type birefringent crystal 11. ), And upon passing through the Faraday rotator 12, the planes of polarization of two orthogonal linearly polarized lights are rotated. Thereafter, when the light passes through the plate-type birefringent crystal 13 and the plate-type birefringent crystal 14, the linearly polarized light having an extraordinary optical direction is displaced with respect to each of the plate-type birefringent crystals. The two linearly polarized light beams are orthogonally combined by the plate-type birefringent crystal 14.

【0008】図7の光アイソレータは、平板型複屈折結
晶3枚とファラデー回転子2枚で構成される。
The optical isolator shown in FIG. 7 comprises three flat birefringent crystals and two Faraday rotators.

【0009】信号光は平板型複屈折結晶15を通過する
とき、平板型複屈折結晶15に対して、異常光方位とな
る直線偏光が変位するため、直交する2つの直線偏光
(常光、異常光)に分離される。そしてファラデー回転
子16、17で直交する2つの直線偏光の偏光面は回転
される。平板型複屈折結晶18、平板型複屈折結晶19
に対して、異常光方位となる直線偏光が変位し、平板型
複屈折結晶15で分離された直線偏光は平板型複屈折結
晶19で直交合成される。
When the signal light passes through the plate-type birefringent crystal 15, the linearly polarized light having the extraordinary light direction is displaced with respect to the plate-type birefringent crystal 15. ). Then, the polarization planes of the two linearly polarized light beams orthogonal to each other are rotated by the Faraday rotators 16 and 17. Plate-type birefringent crystal 18, plate-type birefringent crystal 19
In contrast, the linearly polarized light having the extraordinary light direction is displaced, and the linearly polarized light separated by the flat birefringent crystal 15 is orthogonally synthesized by the flat birefringent crystal 19.

【0010】図8の光アイソレータは、楔型複屈折結晶
2枚とファラデー回転子1枚により構成される。光ファ
イバ21からの信号光はレンズ22を通過して、楔型複
屈折結晶23により、直交する2つの直線偏光(常光・
異常光)に分離され、ファラデー回転子24により各直
線偏光の偏光面は回転される。そして楔型複屈折結晶2
5により、2つの直線偏光は平行光となり、レンズ26
により平行光を光ファイバ27に集束させる。
The optical isolator shown in FIG. 8 includes two wedge-shaped birefringent crystals and one Faraday rotator. The signal light from the optical fiber 21 passes through the lens 22 and is converted by the wedge-shaped birefringent crystal 23 into two orthogonal linearly polarized lights (ordinary light and ordinary light).
The polarization plane of each linearly polarized light is rotated by the Faraday rotator 24. And a wedge-shaped birefringent crystal 2
5, the two linearly polarized lights become parallel lights, and the lens 26
Collimates the parallel light onto the optical fiber 27.

【0011】上記従来例の逆方向では、複屈折結晶偏光
子により直交する2つの直線偏光に分離された戻り光
は、ファラデー回転子の非相反作用のために光ファイバ
から離れる方向に変位するため、光ファイバに入射しな
い。よって、光アイソレータとしての機能を果たす。
In the opposite direction of the above conventional example, the return light separated into two orthogonal linearly polarized lights by the birefringent crystal polarizer is displaced in a direction away from the optical fiber due to the non-reciprocal action of the Faraday rotator. Does not enter the optical fiber. Therefore, it functions as an optical isolator.

【0012】[0012]

【発明が解決しようとする課題】一般に半導体レーザ直
前に使用される光アイソレータは、或る偏光面にしか有
効に作用しない。そのため偏光状態が温度、風、圧力、
振動のような環境条件で常に変化する通常の光ファイバ
間に、この光アイソレータが配置された場合、信号光は
偏光方向により大幅に損失するという欠点があった。
Generally, an optical isolator used immediately before a semiconductor laser effectively works only on a certain polarization plane. Therefore the polarization state is temperature, wind, pressure,
If this optical isolator is arranged between ordinary optical fibers that constantly change under environmental conditions such as vibration, there is a drawback that signal light is greatly lost depending on the polarization direction.

【0013】また、上記従来例で示した偏光無依存型光
アイソレータでは信号光が直交する2つの直線偏光に分
離・合成される過程において、直交する2つの直線偏光
間に光路長の差が生じる。この光路長差によって生ずる
偏波分散により信号光の劣化が生じ、特に長距離光通信
では大きな問題となる。
In the polarization-independent optical isolator shown in the above-mentioned conventional example, a difference in optical path length occurs between two orthogonal linearly polarized lights in the process of separating and combining signal light into two orthogonal linearly polarized lights. . Degradation of signal light is caused by polarization dispersion caused by the difference in optical path length, and this is a serious problem particularly in long-distance optical communication.

【0014】さらに、上記従来例の偏光無依存型光アイ
ソレータにおいて、戻り光はファラデー回転子の非相反
作用のために、順方向では直交する2つの直線偏光が分
離・合成するが、逆方向では直交する2つの直線偏光と
なる戻り光は、大きく分離して、光ファイバには入射し
ないために光アイソレータとしての機能を果たす。
Further, in the above-mentioned conventional polarization-independent optical isolator, two linearly polarized lights orthogonal to each other in the forward direction are separated and combined in the forward direction due to the non-reciprocal action of the Faraday rotator, but in the reverse direction. Return light that becomes two orthogonal linearly polarized lights is largely separated and does not enter the optical fiber, so that it functions as an optical isolator.

【0015】しかし、戻り光は吸収等により完全に遮断
されないために、組立て時において、戻り光が光ファイ
バに入射しないように光学系の位置調整することは大変
難しく、光アイソレータ構成素子、特に光学系のアライ
メントズレにより、アイソレーションが低下するという
欠点があった。
However, since the return light is not completely blocked by absorption or the like, it is very difficult to adjust the position of the optical system during the assembly so that the return light does not enter the optical fiber. There is a disadvantage that isolation is reduced due to misalignment of the system.

【0016】本発明は上述の点に鑑みてなされたもので
あり、その目的は長距離光通信に対応し、かつ、組立て
時の光学調整が容易な偏光無依存型光アイソレータを提
供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a polarization-independent optical isolator which is compatible with long-distance optical communication and which can easily perform optical adjustment at the time of assembly. is there.

【0017】[0017]

【課題を解決するための手段】上記問題点を解決するた
めに本発明は、入射光を直交する2つの直線偏光に分離
する複屈折素子と、分離した2つの直線偏光を合成する
複屈折素子と、偏光方向を45゜回転させ、かつ相反作
用を持つ旋光子と、偏光方向を45゜回転させ、かつ非
相反作用を持つファラデー回転子と、ファラデー回転子
に磁界を印加する永久磁石で構成される光アイソレータ
において、2つの直線偏光の光路長が等しくなる組合せ
で旋光子、ファラデー回転子を分離した各直線偏光の光
路にそれぞれ直列に配置していることを特徴とする光ア
イソレータである。
In order to solve the above-mentioned problems, the present invention provides a birefringent element for separating incident light into two orthogonal linearly polarized lights and a birefringent element for combining two separated linearly polarized lights. It consists of a rotator that rotates the polarization direction by 45 ° and has a reciprocal action, a Faraday rotator that rotates the polarization direction by 45 ° and has a nonreciprocal action, and a permanent magnet that applies a magnetic field to the Faraday rotator. The optical isolator is characterized in that the optical rotator and the Faraday rotator are arranged in series in the respective optical paths of the separated linearly polarized light in a combination in which the optical path lengths of the two linearly polarized light are equal.

【0018】さらに、組立て時に光学系の光軸調整を容
易にするために、前記旋光子とファラデー回転子の間に
偏光子を配置して、偏光子により戻り光である2つの直
線偏光の両方あるいは少なくとも一方を除去する光アイ
ソレータである。
Further, in order to facilitate the adjustment of the optical axis of the optical system at the time of assembly, a polarizer is arranged between the optical rotator and the Faraday rotator, and both polarizers return two linearly polarized lights. Alternatively, it is an optical isolator for removing at least one of them.

【0019】[0019]

【実施例】以下、本発明の参考例を図面に基づいて詳細
に説明する。図1は第1の参考例にかかる光アイソレー
タの概略構成図である。図1(a)は順方向の偏光伝播
状態、図1(b)は逆方向の偏光伝播状態を示してい
る。a,b,c,d,eで示す各構成素子通過時の偏光
の伝播状態は常に光ファイバ1から光ファイバ6を見た
ときの偏光方向である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of an optical isolator according to a first reference example. FIG. 1A shows the state of propagation of polarized light in the forward direction, and FIG. 1B shows the state of propagation of polarized light in the reverse direction. The propagation state of polarized light when passing through each of the constituent elements indicated by a, b, c, d, and e is always the direction of polarization when the optical fiber 6 is viewed from the optical fiber 1.

【0020】図1(a)より、光ファイバ1からレンズ
2を通過した伝搬状態aの信号光は複屈折結晶からなる
偏光子3により伝搬状態bのように直交する2つの直線
偏光に分離する。このとき、直交する2つの直線偏光
は、偏光子3の光学軸方位O1を示すベクトルと偏光子
3に入射した光の波動ベクトルとで張る主断面の法線ベ
クトルに平行な偏光方位を常光方位、直交する方位を異
常光方位とする(主断面に対し、垂直な偏光方位を常光
方位、常光方位に直交する偏光方位を異常光方位とす
る)。
From FIG. 1A, the signal light in the propagation state a passing through the lens 2 from the optical fiber 1 is separated into two orthogonal linearly polarized lights as in the propagation state b by a polarizer 3 made of a birefringent crystal. . At this time, the two orthogonal linearly polarized lights change the polarization direction parallel to the normal vector of the main section stretched by the vector indicating the optical axis direction O1 of the polarizer 3 and the wave vector of the light incident on the polarizer 3 to the ordinary light direction. The orthogonal direction is defined as the extraordinary light direction (the polarization direction perpendicular to the main section is defined as the ordinary light direction, and the polarization direction perpendicular to the ordinary light direction is defined as the extraordinary light direction).

【0021】偏光子3で分離された直交する2つの直線
偏光のうち、常光方位と一致する直線偏光の光路を8
、異常光方位と一致する直線偏光の光路を8とする
と、光路8上にはファラデー回転子F1、旋光子R
1、もう一方の光路8上には旋光子R2、ファラデー
回転子F2の順番で配置されている。
Of the two orthogonal linearly polarized light beams separated by the polarizer 3, the optical path of the linearly polarized light coinciding with the azimuth of ordinary light is set to 8
Assuming that the optical path of the linearly polarized light that coincides with the extraordinary light direction is 8, the Faraday rotator F1 and the rotator R
1. On the other optical path 8, an optical rotator R2 and a Faraday rotator F2 are arranged in this order.

【0022】ここで、順方向で光ファイバ1からみて、
偏光の進行方向に対して右回転を正とする。したがっ
て、光路8を通過する直線偏光の偏光方位はファラデ
ー回転子F1、旋光子R1により、それぞれ+45°回
転する。また、光路8を通過する直線偏光の偏光方位
は旋光子R2、ファラデー回転子F2により、それぞれ
+45°回転する。この時の伝搬状態はc,dに示す通
りである。
Here, when viewed from the optical fiber 1 in the forward direction,
The clockwise rotation with respect to the traveling direction of the polarized light is positive. Therefore, the polarization direction of the linearly polarized light passing through the optical path 8 is rotated by + 45 ° by the Faraday rotator F1 and the rotator R1. The polarization direction of the linearly polarized light passing through the optical path 8 is rotated by + 45 ° by the optical rotator R2 and the Faraday rotator F2. The propagation state at this time is as shown in c and d.

【0023】そのため、旋光子R1を通過した光路8
の直線偏光の偏光方位と、ファラデー回転子F2を通過
した光路8の直線偏光の偏光方位は、偏光子3から出
射されたときの偏光方位よりも+90°回転しており、
偏光子4は偏光子3の光学軸方位O1と同じ光学軸方位
O2をもつ複屈折結晶であるために、偏光子4に入射の
際は、光路8の直線偏光が異常光方位、光路8が常
光方位と一致するため、分離された2つの直交する直線
偏光は直交合成されて、レンズ5を通過し、光ファイバ
6へ入射する。以上の分離、合成で2つの直線偏光が辿
る光路8と光路8の光路長は等しい。
Therefore, the optical path 8 that has passed through the optical rotator R1
The polarization direction of the linearly polarized light and the polarization direction of the linearly polarized light in the optical path 8 that has passed through the Faraday rotator F2 are rotated by + 90 ° with respect to the polarization direction when emitted from the polarizer 3.
Since the polarizer 4 is a birefringent crystal having the same optical axis direction O2 as the optical axis direction O1 of the polarizer 3, when entering the polarizer 4, the linearly polarized light in the optical path 8 has an extraordinary optical direction and the optical path 8 has The two orthogonal linearly polarized lights separated from each other are orthogonally combined because they coincide with the direction of the ordinary light, pass through the lens 5, and enter the optical fiber 6. In the above separation and combination, the optical path 8 that the two linearly polarized light traces and the optical path 8 have the same optical path length.

【0024】また、図1(b)より、光ファイバ6から
の戻り光はレンズ5を通り、偏光子4で直交する2つの
直線偏光に分離され、伝搬状態dのように常光方位と一
致した直線偏光は光路8に、異常光方位と一致した直
線偏光は光路8を通る。
Further, from FIG. 1B, the return light from the optical fiber 6 passes through the lens 5 and is separated into two orthogonal linearly polarized lights by the polarizer 4, and coincides with the ordinary light direction as in the propagation state d. The linearly polarized light passes through the optical path 8, and the linearly polarized light that coincides with the extraordinary light direction passes through the optical path 8.

【0025】光路8を通る直線偏光は相反作用をもつ
旋光子R1により、偏光方向が−45°回転され、そし
て非相反作用をもつファラデー回転子F1により+45
゜回転される。一方、光路8を通る直線偏光は非相反
作用をもつファラデー回転子F2により偏光方向が+4
5°回転され、相反作用をもつ旋光子R2により−45
゜回転される。この伝搬状態はc,bの通りである。
The polarization direction of the linearly polarized light passing through the optical path 8 is rotated by -45 ° by the reciprocal rotator R1 and +45 degrees by the non-reciprocal Faraday rotator F1.
゜ It is rotated. On the other hand, the polarization direction of the linearly polarized light passing through the optical path 8 is +4 due to the Faraday rotator F2 having a nonreciprocal action.
Rotated by 5 °, -45 by the reciprocal rotator R2
゜ It is rotated. This propagation state is as shown in c and b.

【0026】よって、ファラデー回転子F1を通過した
光路8の直線偏光の偏光方位と旋光子R2を通過した
光路8の直線偏光の偏光方位は、偏光子4を通過した
ときの偏光方位と一致する。また、偏光子3に対して、
光路8の直線偏光の方位は異常光方位、光路8の直
線偏光の偏光方位は常光方位と一致する。したがって、
光路8の直線偏光は光ファイバ1と反対方向へ変位す
るため、光ファイバ1に入射しない。また、光路8の
直線偏光は変位せずそのまま直進するため、光ファイバ
1には入射しない。
Therefore, the polarization direction of the linearly polarized light in the optical path 8 that has passed through the Faraday rotator F1 and the polarization direction of the linearly polarized light in the optical path 8 that has passed through the optical rotator R2 match the polarization direction when the light has passed through the polarizer 4. . Further, for the polarizer 3,
The direction of the linearly polarized light in the optical path 8 coincides with the extraordinary light direction, and the linearly polarized light in the optical path 8 coincides with the ordinary light direction. Therefore,
The linearly polarized light in the optical path 8 is displaced in the opposite direction to the optical fiber 1 and does not enter the optical fiber 1. Further, since the linearly polarized light in the optical path 8 travels straight without being displaced, it does not enter the optical fiber 1.

【0027】図2は第2の参考例で、図1の構成を一体
化した例を示す概略構成図である。このように、構成素
子を一体化させても特性には何ら問題はない。
FIG. 2 is a schematic configuration diagram showing a second reference example in which the configuration of FIG. 1 is integrated. Thus, there is no problem in the characteristics even when the constituent elements are integrated.

【0028】図3は本発明の第3実施例を示す概略構成
図である。a,b,c,d,eで示す各構成素子通過時
の偏光の伝搬状態は常に光ファイバ1から光ファイバ6
を見たときの偏光の動作状況である。図3(a)より、
光ファイバ1を出射して、レンズ2を通過した伝搬状態
aの信号光は、複屈折結晶からなりO1で示す方向に結
晶光軸を有する偏光子3に入射すると、伝搬状態bで示
すように2つの直線偏光に分離される。ここで、順方向
で光ファイバ1からみて、偏光の進行方向に対して右回
転を正として、偏光子3で分離された直交する2つの直
線偏光のうち、常光方位と一致する直線偏光の光路を8
、異常光方位と一致する直線偏光の光路を8とする
と、光路8には偏光方向を+45°回転させるファラ
デー回転子F3と偏光方向を+45°回転させる旋光子
R3が、光路8には偏光方向を−45°回転させる旋
光子R4と偏光方向を−45°回転させるファラデー回
転子F4が、さらにファラデー回転子F3に磁界を印加
する永久磁石M1、ファラデー回転子F4に磁界を印加
させ、かつその磁界の印加方向が永久磁石M1と反対方
向である永久磁石M2が配置されている。
FIG. 3 is a schematic configuration diagram showing a third embodiment of the present invention. The propagation state of polarized light when passing through each of the constituent elements indicated by a, b, c, d, and e is always from the optical fiber 1 to the optical fiber 6.
This is the operation state of polarized light when seeing FIG. From FIG. 3 (a),
The signal light in the propagation state a, which has been emitted from the optical fiber 1 and passed through the lens 2, is incident on the polarizer 3 made of a birefringent crystal and having a crystal optical axis in the direction indicated by O1, as shown in the propagation state b. It is separated into two linearly polarized lights. Here, as viewed from the optical fiber 1 in the forward direction, the optical path of the linearly polarized light that coincides with the ordinary light direction among the two orthogonal linearly polarized lights separated by the polarizer 3 with the right rotation being positive with respect to the traveling direction of the polarized light. 8
Assuming that the optical path of the linearly polarized light coincident with the extraordinary light direction is 8, the optical path 8 includes a Faraday rotator F3 that rotates the polarization direction by + 45 ° and an optical rotator R3 that rotates the polarization direction by + 45 °. The optical rotator R4 for rotating −45 ° and the Faraday rotator F4 for rotating the polarization direction by −45 ° further apply a magnetic field to the permanent magnet M1 and the Faraday rotator F4 for applying a magnetic field to the Faraday rotator F3, and A permanent magnet M2 whose magnetic field is applied in a direction opposite to that of the permanent magnet M1 is arranged.

【0029】今、光ファイバ1からの信号光は偏光子3
で伝搬状態bのように直交する2つの直線偏光に分離さ
れ、その分離された各直線偏光は伝搬状態c,dのよう
に光路8の直線偏光及び光路8の直線偏光が逆方向
に回転される。したがって、偏光子4の光学軸O2に対
して光路8の直線偏光が異常光方位と一致して変位
し、光路8の直線偏光が常光方位と一致して直進され
て偏光子4で直交合成し、レンズ5で集光されて光ファ
イバ6に入射する。以上の分離、合成で2つの直線偏光
が辿る光路8と光路8の光路長は等しい。
Now, the signal light from the optical fiber 1 is
Are separated into two orthogonal linearly polarized lights as in the propagation state b, and the separated linearly polarized lights are obtained by rotating the linearly polarized light in the optical path 8 and the linearly polarized light in the optical path 8 in opposite directions as in the propagation states c and d. You. Accordingly, the linearly polarized light in the optical path 8 is displaced with respect to the optical axis O2 of the polarizer 4 in accordance with the extraordinary light direction, and the linearly polarized light in the optical path 8 is straightly moved in accordance with the ordinary light direction and orthogonally combined by the polarizer 4. Are condensed by the lens 5 and enter the optical fiber 6. In the above separation and combination, the optical path 8 that the two linearly polarized light traces and the optical path 8 have the same optical path length.

【0030】また、図3(b)より、光ファイバ6から
の戻り光は、偏光子4で直交する2つの直線偏光に分離
され、偏光子4に対して常光方位と一致した直線偏光は
光路8に、異常光方位と一致した直線偏光は光路8
を通る。ファラデー回転子F3を通過した8の直線偏
光は偏光子3に対して、異常光方位となるために、光フ
ァイバ1と反対方向に変位し、光ファイバ1には入射し
ない。旋光子4を通過した8の直線偏光は偏光子3に
対して常光方位となるため、そのまま直進し、光ファイ
バ1には入射しない。
From FIG. 3B, the return light from the optical fiber 6 is split into two linearly polarized lights orthogonal to each other by the polarizer 4, and the linearly polarized light that coincides with the ordinary light direction with respect to the polarizer 4 has an optical path. 8, the linearly polarized light coincident with the extraordinary light direction
Pass through. The eight linearly polarized lights that have passed through the Faraday rotator F3 are displaced in the opposite direction to the optical fiber 1 because they have an extraordinary optical direction with respect to the polarizer 3, and do not enter the optical fiber 1. Since the eight linearly polarized lights that have passed through the optical rotator 4 have an ordinary light direction with respect to the polarizer 3, they go straight as they are and do not enter the optical fiber 1.

【0031】図4は本発明の実施例にかかる光アイソレ
ータの概略構成図である。図4(a)は順方向の偏光伝
播状態、図4(b)は逆方向の偏光伝播状態を示してい
る。a,b,c,d,eで示す各構成素子通過時の偏光
の伝播状態は常に光ファイバ1から光ファイバ6を見た
ときの偏光の動作状況である。
FIG. 4 is a schematic configuration diagram of an optical isolator according to an embodiment of the present invention. FIG. 4A shows the state of propagation of polarized light in the forward direction, and FIG. 4B shows the state of propagation of polarized light in the reverse direction. The propagation state of polarized light when passing through each of the constituent elements indicated by a, b, c, d, and e is the operation state of polarized light when the optical fiber 6 is always viewed from the optical fiber 1.

【0032】図4(a)より、光ファイバ1からレンズ
2を通過した伝搬状態aの信号光は複屈折結晶からなる
偏光子3により、直交する2つの直線偏光に伝搬状態b
のように分離する。
As shown in FIG. 4A, the signal light in the propagation state a passing through the lens 2 from the optical fiber 1 is converted into two orthogonal linearly polarized lights b by the polarizer 3 made of a birefringent crystal.
Separate as

【0033】偏光子3で分離された直交する2つの直線
偏光のうち、常光の光路を8、異常光の光路を8と
すると、光路8上には旋光子R5、ファラデー回転子
F5、もう一方の光路8上にはファラデー回転子F
6、旋光子R6の順番で配置され、各直線偏光の光路上
の旋光子、ファラデー回転子間には、偏光子7が両光路
上に共通に配置されている。
Assuming that the optical path of ordinary light is 8 and the optical path of extraordinary light is 8 among the two orthogonal linearly polarized lights separated by the polarizer 3, the optical rotator R5, the Faraday rotator F5 and the other are disposed on the optical path 8. Faraday rotator F on the optical path 8
6, the optical rotator R6 is arranged in this order, and between the optical rotator and the Faraday rotator on the optical path of each linearly polarized light, the polarizer 7 is commonly arranged on both optical paths.

【0034】偏光子7としては、不要成分の偏光を反射
させ、それと直交する偏光を透過する誘電体多層膜を施
した偏光子や不要成分の偏光を吸収し、それと直交する
偏光を透過する偏光子があるが、本明細書実施例におい
て、偏光子7は後者のタイプの偏光子とする。
The polarizer 7 is a polarizer provided with a dielectric multilayer film that reflects polarized light of unnecessary components and transmits polarized light orthogonal to the polarized light, or a polarizer that absorbs polarized light of unnecessary components and transmits polarized light perpendicular thereto. Although there is a polarizer, in the present embodiment, the polarizer 7 is the latter type of polarizer.

【0035】ここで、順方向で光ファイバ1からみて、
偏光の進行方向に対して右回転を正とすると、光路8
を通過する直線偏光の偏光方位は旋光子R5により−4
5°回転し、光路8を通過する直線偏光の偏光方位は
ファラデー回転子F6によって、+45°回転すること
により伝搬状態cのようになり、両光路上の直線偏光の
偏光方位は偏光子7の偏光透過方向と一致する。そのた
め偏光子7を通過した際の吸収による損失はない。
Here, when viewed from the optical fiber 1 in the forward direction,
If the clockwise rotation is positive with respect to the direction of polarization, the light path 8
Is -4 due to the optical rotator R5.
The polarization direction of the linearly polarized light that rotates by 5 ° and passes through the optical path 8 becomes like the propagation state c by rotating by + 45 ° by the Faraday rotator F6, and the polarization direction of the linearly polarized light on both optical paths is It matches the polarization transmission direction. Therefore, there is no loss due to absorption when passing through the polarizer 7.

【0036】偏光子7を通過した、光路8の直線偏光
の偏光方位はファラデー回転子F5により−45°回転
し、光路8の直線偏光の偏光方位は旋光子R6により
+45°回転するため、伝搬状態eに示すように偏光子
3から出射されたときの偏光方位よりも+90°回転し
たことになる。
The polarization direction of the linearly polarized light in the optical path 8 having passed through the polarizer 7 is rotated by -45 ° by the Faraday rotator F5, and the polarization direction of the linearly polarized light in the optical path 8 is rotated by + 45 ° by the optical rotator R6. As shown in the state e, the light is rotated by + 90 ° from the polarization direction when emitted from the polarizer 3.

【0037】偏光子4も偏光子3と同じ光学軸方位O2
をもつ複屈折結晶であるために、偏光子4に入射の際
は、光路8の直線偏光が異常光、光路8の直線偏光
が常光となるため、分離された2つの直交する直線偏光
は伝搬状態fのように直交合成されて、レンズ5を通過
し、光ファイバ6へ入射する。以上の分離、合成で2つ
の直線偏光が辿る光路8と光路8の光路長は等し
い。
The polarizer 4 also has the same optical axis direction O2 as the polarizer 3.
When the light enters the polarizer 4, the linearly polarized light in the optical path 8 becomes extraordinary light, and the linearly polarized light in the optical path 8 becomes ordinary light. The light is orthogonally combined as in the state f, passes through the lens 5, and enters the optical fiber 6. In the above separation and combination, the optical path 8 that the two linearly polarized light traces and the optical path 8 have the same optical path length.

【0038】また、図4(b)より、光ファイバ6から
の戻り光はレンズ5を通り、偏光子4で直交する2つの
直線偏光の常光と異常光に分離され、常光となった直線
偏光は光路8に、異常光となった直線偏光は光路8
を通る。
As shown in FIG. 4B, the return light from the optical fiber 6 passes through the lens 5 and is separated by the polarizer 4 into two orthogonal linearly polarized ordinary lights and extraordinary lights. Is the optical path 8, and the linearly polarized light that has become the extraordinary light is the optical path 8.
Pass through.

【0039】光路8を通る直線偏光は非相反作用をも
つファラデー回転子F5により、偏光方向が−45°回
転され、そのため偏光子7の偏光吸収方位と一致し、こ
の直線偏光は吸収される。
The polarization direction of the linearly polarized light passing through the optical path 8 is rotated by -45 ° by the Faraday rotator F5 having a nonreciprocal action, so that the linearly polarized light coincides with the polarization absorption direction of the polarizer 7, and the linearly polarized light is absorbed.

【0040】光路8を通る直線偏光は相反作用をもつ
旋光子R6により偏光方向が−45°回転する。この偏
光方向は偏光子7の偏光透過方位と一致するため、偏光
子7では吸収されずにそのままの偏光方位で通過して、
ファラデー回転子F6に入射する。ファラデー回転子F
6は非相反作用をもつので偏光方位が+45°回転され
る。したがって、偏光子3の常光方位と一致する。その
ため、この直線偏光は偏光子3では変位せずに通過し、
光ファイバ1に入射しない。
The polarization direction of the linearly polarized light passing through the optical path 8 is rotated by -45 ° by the optical rotator R6 having a reciprocal action. Since this polarization direction matches the polarization transmission direction of the polarizer 7, the polarization direction is not absorbed by the polarizer 7 and passes through the polarization direction as it is,
The light enters the Faraday rotator F6. Faraday rotator F
6 has a nonreciprocal action, so that the polarization direction is rotated by + 45 °. Therefore, it matches the ordinary light direction of the polarizer 3. Therefore, this linearly polarized light passes through the polarizer 3 without being displaced,
It does not enter the optical fiber 1.

【0041】図5は本発明の第2実施例を示す概略構成
図である。a,b,c,d,eで示す各構成素子通過時
の偏光の伝播状態は常に光ファイバ1から光ファイバ6
を見たときの偏光の動作状況である。
FIG. 5 is a schematic structural view showing a second embodiment of the present invention. The propagation state of polarized light when passing through each of the constituent elements indicated by a, b, c, d, and e is always from the optical fiber 1 to the optical fiber 6.
This is the operation state of polarized light when seeing FIG.

【0042】図5(a)より、光ファイバ1を出射して
レンズ2を通過した伝搬状態aの信号光は、結晶光軸方
位O1を有する複屈折結晶から成る偏光子3に入射さ
れ、伝搬状態bで示すように2つの直線偏光に分離され
る。ここで常光方位の光路を8、異常光方位の光路を
8とすると、光路8には偏光方向を−45°回転さ
せる旋光子R7と、偏光方向を−45°回転させるファ
ラデー回転子F7を、一方、光路8には偏光方向を+
45°回転させる旋光子R8と、偏光方向を+45°回
転させるファラデー回転子F8を配置する。したがっ
て、伝搬状態cに示すように、光路8の直線偏光は旋
光子R7で−45°回転され、逆に光路8の直線偏光
は旋光子R8で+45°回転されて、偏光方向が吸収型
の偏光子7の偏光通過方向に一致する。また、偏光子7
を通過した各直線偏光は偏光の伝搬状態dに示すように
bの状態のままで通過する。次に、光路8の直線偏光
はファラデー回転子F5で−45°回転され、逆に光路
8の直線偏光は+45°回転されるので、偏光の伝搬
状態bから90°回転されたeの状態になる。このた
め、偏光子4では光路8の直線偏光が異常光方位とな
るので屈折し、光路8が常光方位となり直進する。し
たがって、光路8、8に分離されていた各直線偏光
は偏光子4で直交合成され、レンズ5で集光されて光フ
ァイバ6に入射する。以上の説明からも分かるように、
2つの直線偏光の分離から合成までの光路長は等しい。
As shown in FIG. 5A, the signal light in the propagation state a, which has exited the optical fiber 1 and passed through the lens 2, is incident on the polarizer 3 made of a birefringent crystal having the crystal optical axis direction O1, and propagates. The light is separated into two linearly polarized lights as shown in a state b. Here, assuming that the optical path of the ordinary azimuth is 8 and the optical path of the extraordinary azimuth is 8, an optical rotator R7 for rotating the polarization direction by −45 ° and a Faraday rotator F7 for rotating the polarization direction by −45 ° are provided in the optical path 8. On the other hand, the polarization direction is +
An optical rotator R8 for rotating by 45 ° and a Faraday rotator F8 for rotating the polarization direction by + 45 ° are arranged. Therefore, as shown in the propagation state c, the linearly polarized light in the optical path 8 is rotated by −45 ° by the optical rotator R7, and conversely, the linearly polarized light in the optical path 8 is rotated by + 45 ° by the optical rotator R8, and the polarization direction is changed to the absorption type. It coincides with the polarized light passing direction of the polarizer 7. In addition, the polarizer 7
The linearly polarized light that has passed through passes through the state of b as shown in the propagation state d of the polarized light. Next, the linearly polarized light in the optical path 8 is rotated by -45 ° by the Faraday rotator F5, and conversely, the linearly polarized light in the optical path 8 is rotated by + 45 °. Become. For this reason, in the polarizer 4, the linearly polarized light in the optical path 8 has an extraordinary optical direction and is refracted, and the optical path 8 has an ordinary optical direction and travels straight. Accordingly, the linearly polarized lights separated into the optical paths 8 and 8 are orthogonally combined by the polarizer 4, condensed by the lens 5, and incident on the optical fiber 6. As can be seen from the above description,
The optical path lengths from separation of two linearly polarized lights to synthesis are equal.

【0043】さらに、図5(b)より、光ファイバ6か
らの戻り光は偏光子4で直交する2つの直線偏光に分離
され、常光となった直線偏光は光路8に、異常光とな
った直線偏光は光路8を通り、それぞれファラデー回
転子F8、ファラデー回転子F7により、光路8の直
線偏光は−45°、光路8の直線偏光は+45°それ
ぞれ回転されるので、各偏光方向は偏光子7の偏光吸収
方位と等しくなり、戻り光は偏光子7に吸収されて完全
に除去される。これにより、光アイソレータ組立時にお
ける光学調整が大変容易になる。
Further, as shown in FIG. 5B, the return light from the optical fiber 6 is split into two orthogonal linearly polarized lights by the polarizer 4, and the linearly polarized light that has become ordinary light becomes abnormal light in the optical path 8. The linearly polarized light passes through the optical path 8, and the Faraday rotator F8 and the Faraday rotator F7 rotate the linearly polarized light of the optical path 8 by -45 ° and the linearly polarized light of the optical path 8 by + 45 °, respectively. 7, the return light is absorbed by the polarizer 7 and completely removed. Thereby, optical adjustment at the time of assembling the optical isolator becomes very easy.

【0044】上述のように図4、図5の説明をしたが、
小型化等の理由により光アイソレータの各構成素子を一
体化させる事は当然である。
4 and 5 have been described above,
It is natural that the components of the optical isolator are integrated for reasons such as miniaturization.

【0045】また、上述の図4の第4実施例、図5の第
5実施例は共に、偏光子7を取り除いた状態でも、順方
向の光は偏光子4で合成され、逆方向の戻り光は光路8
の直線偏光は異常光方位なので変位し、光路8の直
線偏光は常光方位となって直進するので、図1から図3
に示した実施例と同等の光アイソレータとして動作す
る。
In both the fourth embodiment shown in FIG. 4 and the fifth embodiment shown in FIG. 5, even when the polarizer 7 is removed, the light in the forward direction is synthesized by the polarizer 4 and the light is returned in the reverse direction. Light is optical path 8
Since the linearly polarized light of the optical path 8 is displaced because of the extraordinary azimuth, the linearly polarized light of the optical path 8 travels straight with the ordinary azimuth, so that FIGS.
Operates as an optical isolator equivalent to the embodiment shown in FIG.

【0046】以上、詳細に説明したが、本発明は上述の
実施例に限定されるものではなく、相反素子と非相反素
子の配置と各偏光回転方向の組合せなど、種々の変更が
可能である。
Although the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various changes can be made such as the arrangement of the reciprocal element and the non-reciprocal element and the combination of each polarization rotation direction. .

【0047】[0047]

【発明の効果】以上詳細に説明したように、本発明にか
かる分離・合成タイプの光アイソレータは、信号光が2
つの直線偏光に分離して合成されるまでの各光路長を等
しくできるため、長距離光通信に問題となる偏波分散に
おける信号光の劣化がない。
As described in detail above, the separation / combination type optical isolator according to the present invention has two signal lights.
Since each optical path length until the light is separated into two linearly polarized lights and combined can be made equal, there is no deterioration of the signal light due to polarization dispersion which is a problem in long-distance optical communication.

【0048】また、本発明にかかる光アイソレータで
は、戻り光が一光線、もしくは完全に遮断されるため、
光アイソレータ組立の際に、光学系のアライメントズレ
によるアイソレーションの低下を低減でき、かつ光学系
の位置調整を大変容易にできる。
Further, in the optical isolator according to the present invention, since the return light is one light beam or completely blocked,
At the time of assembling the optical isolator, it is possible to reduce a decrease in isolation due to misalignment of the optical system, and it is possible to very easily adjust the position of the optical system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の参考例にかかる光アイソレータを示す
概略構成図である。
FIG. 1 is a schematic configuration diagram showing an optical isolator according to a reference example of the present invention.

【図2】本発明の参考例にかかる光アイソレータを示す
概略構成図である。
FIG. 2 is a schematic configuration diagram showing an optical isolator according to a reference example of the present invention.

【図3】本発明の参考例にかかる光アイソレータを示す
概略構成図である。
FIG. 3 is a schematic configuration diagram showing an optical isolator according to a reference example of the present invention.

【図4】本発明の第1実施例にかかる光アイソレータを
示す概略構成図である。
FIG. 4 is a schematic configuration diagram showing an optical isolator according to a first example of the present invention.

【図5】本発明の第2実施例にかかる光アイソレータを
示す概略構成図である。
FIG. 5 is a schematic configuration diagram showing an optical isolator according to a second embodiment of the present invention.

【図6】第1従来技術を示す光アイソレータを示す概略
図である。
FIG. 6 is a schematic diagram showing an optical isolator showing a first conventional technique.

【図7】第2従来技術を示す光アイソレータを示す概略
図である。
FIG. 7 is a schematic diagram showing an optical isolator showing a second conventional technique.

【図8】第3従来技術を示す光アイソレータを示す概略
図である。
FIG. 8 is a schematic diagram showing an optical isolator showing a third conventional technique.

【符号の説明】[Explanation of symbols]

1,6 光ファイバ 2,5 レンズ 3,4 偏光子(複屈折結晶) 7 吸収型偏光子 F1〜F8 ファラデー回転子(非相反素子) R1〜R8 旋光子(相反素子) M,M1,M2 永久磁石 1,6 Optical fiber 2,5 Lens 3,4 Polarizer (birefringent crystal) 7 Absorption polarizer F1-F8 Faraday rotator (non-reciprocal element) R1-R8 Optical rotator (reciprocal element) M, M1, M2 Permanent magnet

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】入射光が直交する2つの直線偏光に分離さ
れる第1の複屈折素子と、直交する2つの直線偏光を合
成する第2の複屈折素子との間に、前記分離された2つ
の直線偏光が伝播する第1光路と第2光路の各光路上
に、偏光方向を45°回転する非相反素子と相反素子を
配設し、前記第1の複屈折素子で分離された順方向光が
前記第2の複屈折素子で合成され、逆方向からの前記第
2の複屈折素子で分離された戻り光が前記第1の複屈折
素子に入射して前記順方向の光の入射位置から離れた位
置に出射されるように、前記非相反素子と相反素子の配
列順序並びに各偏光回転方向を設定するとともに、前記
非相反素子と相反素子との間に共通の偏光子を配設した
ことを特徴とする光アイソレータ。
A first birefringent element that separates incident light into two orthogonal linearly polarized lights; and a second birefringent element that combines two orthogonal linearly polarized lights. A non-reciprocal element and a reciprocal element that rotate the polarization direction by 45 ° are disposed on each of the first optical path and the second optical path through which two linearly polarized light propagates, and are arranged in the order separated by the first birefringent element. Directional light is synthesized by the second birefringent element, and return light separated by the second birefringent element from the reverse direction is incident on the first birefringent element and the forward light is incident. The arrangement order of the non-reciprocal elements and the reciprocal elements and the respective polarization rotation directions are set so that the light is emitted to a position away from the position, and a common polarizer is disposed between the non-reciprocal elements and the reciprocal elements. An optical isolator characterized by:
JP16127493A 1993-06-30 1993-06-30 Optical isolator Expired - Fee Related JP3176180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16127493A JP3176180B2 (en) 1993-06-30 1993-06-30 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16127493A JP3176180B2 (en) 1993-06-30 1993-06-30 Optical isolator

Publications (2)

Publication Number Publication Date
JPH0720407A JPH0720407A (en) 1995-01-24
JP3176180B2 true JP3176180B2 (en) 2001-06-11

Family

ID=15731993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16127493A Expired - Fee Related JP3176180B2 (en) 1993-06-30 1993-06-30 Optical isolator

Country Status (1)

Country Link
JP (1) JP3176180B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4794056B2 (en) * 2001-02-26 2011-10-12 京セラ株式会社 Optical device
JP6681320B2 (en) 2016-12-05 2020-04-15 信越化学工業株式会社 Polarization-independent optical isolator
WO2019078695A1 (en) * 2017-10-20 2019-04-25 주식회사 엘지화학 Light isolation device

Also Published As

Publication number Publication date
JPH0720407A (en) 1995-01-24

Similar Documents

Publication Publication Date Title
US5319483A (en) Polarization independent low cross-talk optical circulator
US20020005987A1 (en) Polarization beam splitter or combiner
EP3330778B1 (en) Polarization independent optical isolator
EP0488211B1 (en) Polarization independent optical device
JP3176180B2 (en) Optical isolator
JP3161885B2 (en) Optical isolator
JPH07151555A (en) Optical fiber gyro taking out signal from light source
CN111552099B (en) Polarization-dependent reflective optical isolator
US20030184861A1 (en) Optical isolator
JPH0477713A (en) Optical isolator independent of polarization
GB2143337A (en) Optical isolator
JPH07248422A (en) Optical waveguide type polarization eliminator
JPS6230607B2 (en)
JP2989984B2 (en) Polarization-independent optical isolator
JP2861316B2 (en) Optical isolator
JP2989983B2 (en) Optical isolator
JP2002250897A (en) Optical device
JPH04102821A (en) Polarization nondependent type optical isolator
JPH11311754A (en) Optical circulator
JPS5944606B2 (en) light switch
JPH05188322A (en) Optical isolator
JP2818757B2 (en) Optical isolator
JPH116984A (en) Polarization splitting type circulator
JP2005265901A (en) Optical component
JPH06258599A (en) Three-port type optical circulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees