JP3136668B2 - Nickel hydroxide active material powder, nickel positive electrode and alkaline storage battery using the same - Google Patents

Nickel hydroxide active material powder, nickel positive electrode and alkaline storage battery using the same

Info

Publication number
JP3136668B2
JP3136668B2 JP03194931A JP19493191A JP3136668B2 JP 3136668 B2 JP3136668 B2 JP 3136668B2 JP 03194931 A JP03194931 A JP 03194931A JP 19493191 A JP19493191 A JP 19493191A JP 3136668 B2 JP3136668 B2 JP 3136668B2
Authority
JP
Japan
Prior art keywords
nickel
nickel hydroxide
active material
positive electrode
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03194931A
Other languages
Japanese (ja)
Other versions
JPH0521064A (en
Inventor
宗久 生駒
徳勝 阿久津
雅史 榎戸
史彦 吉井
英男 海谷
信吾 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03194931A priority Critical patent/JP3136668B2/en
Priority to US07/795,845 priority patent/US5700596A/en
Priority to DE69118525T priority patent/DE69118525T2/en
Priority to EP91120178A priority patent/EP0523284B1/en
Publication of JPH0521064A publication Critical patent/JPH0521064A/en
Application granted granted Critical
Publication of JP3136668B2 publication Critical patent/JP3136668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、正極にニッケル酸化
物、負極に電気化学的に水素の吸蔵放出反応が可能な水
素吸蔵合金、カドミウムあるいは亜鉛を用いたアルカリ
蓄電池に関し、詳しくはそのニッケル酸化物(水酸化ニ
ッケル)と正極特性の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery using nickel oxide for a positive electrode, a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen, cadmium or zinc for a negative electrode. (Nickel hydroxide) and the improvement of the positive electrode characteristics.

【0002】[0002]

【従来の技術】現在実用化されている鉛蓄電池やニッケ
ル・カドミウム蓄電池(以下、ニカド電池と記す)は、
ポ−タブル機器に幅広く使用されている。鉛蓄電池は安
価ではあるが、一般に単位重量当たりのエネルギ−密度
(Wh/kg)が低く、サイクル寿命等に課題があり、
小型軽量のポ−タブル機器の電源としては好適とは言え
ない。
2. Description of the Related Art Lead-acid batteries and nickel-cadmium batteries (hereinafter referred to as nickel-cadmium batteries) that are currently in practical use are:
Widely used in portable equipment. Although lead-acid batteries are inexpensive, they generally have low energy density per unit weight (Wh / kg) and have problems in cycle life and the like.
It is not suitable as a power source for small and lightweight portable devices.

【0003】一方、ニカド電池は、鉛蓄電池に比べ単位
重量および体積当たりのエネルギ−密度が高く、サイク
ル寿命等の信頼性に優れているため、種々のポ−タブル
機器用の電源として幅広く使用されている。しかしなが
ら、ポ−タブル機器の高付加価値に伴い電池への負荷
が増大するため、さらに高エネルギ−密度の二次電池が
ポ−タブル機器用の電源として切望されている。ニカド
電池の分野において、従来の焼結式ニッケル正極を用い
たニカド電池よりも30〜60%高容量であるニカド電
池が開発されている。また、ニカド電池よりもさらに高
容量である負極に水素吸蔵合金を用いたニッケル・水素
蓄電池(焼結式ニッケル正極を用いたニカド電池の2倍
以上)が開発されている。これらの高容量アルカリ蓄電
池は、正極のエネルギ−密度を向上させるために、高多
孔度(90%以上)の3次元の発泡ニッケル多孔体やニ
ッケル繊維多孔体に水酸化ニッケル粉末を充填してい
る。
On the other hand, nickel-cadmium batteries have a higher energy density per unit weight and volume than lead-acid batteries, and are superior in reliability such as cycle life. Therefore, nickel-cadmium batteries are widely used as power sources for various portable devices. ing. However, since the load on the battery increases with the added value of the portable device, a secondary battery with a higher energy density has been desired as a power source for the portable device. In the field of nickel-cadmium batteries, nickel-cadmium batteries having 30 to 60% higher capacity than conventional nickel-cadmium batteries using sintered nickel positive electrodes have been developed. A nickel-hydrogen storage battery using a hydrogen storage alloy for a negative electrode having a higher capacity than a nickel-cadmium battery (more than twice as large as a nickel-cadmium battery using a sintered nickel positive electrode) has been developed. In these high-capacity alkaline storage batteries, in order to improve the energy density of the positive electrode, nickel hydroxide powder is filled in a three-dimensional porous nickel foam or nickel fiber porous body having a high porosity (90% or more). .

【0004】その結果、従来の焼結式ニッケル正極のエ
ネルギ−密度が400〜450mAh/cm3であるの
に対し、前記ニッケル正極のそれは500mAh/cm
3 以上である。3次元多孔体に充填する水酸化ニッケル
粉末には、硫酸ニッケルとアルカリとで沈殿析出する水
酸化ニッケル微粉末を乾燥固化し、ついでこれを粉砕し
た角状態の粉末を使用している。ところが、このような
正極は焼結式ニッケル正極に比べエネルギ−密度が高い
が、サイクル寿命特性が低下するという問題がある。こ
の原因は充電時に高体積のγ−NiOOHが正極に生成
して正極を膨脹させ、セパレ−タ中に存在する電解液を
吸収し、電池の内部抵抗を上昇させて放電容量が低下す
るためである。この問題点を解決するために、以下の方
法が提案されている。 (1)水酸化ニッケル粉末に酸化カドミウム粉末を添加
し、γ−NiOOHの生成を抑制する方法。 (2)水酸化ニッケル粉末に亜鉛、酸化亜鉛、亜鉛化合
物の粉末を添加し充電時に生成するγ−NiOOHを抑
制する方法(特開昭59−112574号公報)。 (3)水酸化ニッケル粉末内部にカドミウム酸化物を含
有させる方法や、亜鉛やカドミウムを固溶体として3〜
10wt%添加し、且つ細孔半径が30Å以上の内部
細孔の発達を阻止し、さらに全空孔体積を0.05c
3/g以下に制御し、充電時に生成するγ−NiOO
Hを抑制する方法(特開昭61−104565号公報
特開平2−30061号公報、USP−4844999
)。
As a result, the energy density of the conventional sintered nickel positive electrode is 400 to 450 mAh / cm 3 , whereas that of the nickel positive electrode is 500 mAh / cm 3.
3 or more . As the nickel hydroxide powder to be filled in the three-dimensional porous body, nickel hydroxide fine powder precipitated and precipitated with nickel sulfate and an alkali is dried and solidified, and then a crushed powder is used. However, such a positive electrode has a higher energy density than a sintered nickel positive electrode, but has a problem in that cycle life characteristics are deteriorated. This is because a large volume of γ-NiOOH is generated on the positive electrode during charging to expand the positive electrode, absorb the electrolyte present in the separator, increase the internal resistance of the battery, and decrease the discharge capacity. is there. In order to solve this problem, the following methods have been proposed. (1) A method of adding cadmium oxide powder to nickel hydroxide powder to suppress generation of γ-NiOOH. (2) zinc nickel hydroxide powder, zinc oxide powder method was added to suppress the gamma-NiOOH generated during charging (JP 59-112574 JP) zinc compounds. (3) A method of containing cadmium oxide inside nickel hydroxide powder, or a method of using zinc or cadmium as a solid solution to form
Internal transition with 10wt% addition and pore radius of 30mm or more
Prevents the development of transfer pores, further 0.05c all pore volume
γ-NiOO controlled at m 3 / g or less and generated during charging
Method of inhibiting H (JP 61-104565, JP-
JP 2-30061 discloses, USP-4844999
No. ).

【0005】[0005]

【発明が解決しようとする課題】このような従来提案さ
れている方法では、角状態の水酸化ニッケル粉末を使用
しているため3次元多孔体中への充填密度をさらに増大
することが不可能である。
In such a conventionally proposed method, since the nickel hydroxide powder in the angular state is used, it is impossible to further increase the packing density in the three-dimensional porous body. It is.

【0006】その結果、正極のエネルギ−密度が限界に
達している。また、前記(1)および(2)の方法で
は、水酸化ニッケル粉末に酸化カドミウムや酸化亜鉛粉
末を添加することによりγ−NiOOHの生成を抑制
し、サイクル寿命特性を向上させているが、大幅には改
善されない。特に、電池容量が増大、すなわち正極のエ
ネルギ−密度が向上するにしたがい酸化カドミウムや酸
化亜鉛粉末の添加効果は減少する。この原因は、酸化カ
ドミウムや酸化亜鉛粉末を添加するだけでは、γ−Ni
OOHの生成を抑制することは困難であることを示唆し
ている。したがって、活物質粉末の粒子構造あるいは結
晶構造を改善する必要がある。
As a result, the energy density of the positive electrode has reached its limit. In the method of (1) and (2), to suppress the formation of gamma-NiOOH by adding cadmium oxide and zinc oxide powder to nickel hydroxide powder, but to improve the cycle life characteristics greatly not improve in. In particular, as the battery capacity increases, that is, as the energy density of the positive electrode increases, the effect of adding cadmium oxide or zinc oxide powder decreases. This is because cadmium oxide or zinc oxide powder alone can cause γ-Ni
This suggests that it is difficult to suppress the generation of OOH. Therefore, it is necessary to improve the particle structure or crystal structure of the active material powder.

【0007】また、前記(3)の方法では、従来から提
案されている方法と同様に、水酸化ニッケル粉末の結晶
内部にカドミウム酸化物、亜鉛やカドミウムを固溶体と
して存在させているため、酸化カドミウムや酸化亜鉛粉
末を水酸化ニッケルと混合する場合よりも充電時に生成
するγ−NiOOHは抑制され、サイクル寿命は向上す
る。しかし、30Å以上の内部遷移細孔の発達を阻止す
ることにより正極への充填密度を向上しているため、電
解液が水酸化ニッケルの粒子内部に浸入しにくく、充放
電初期の活物質利用率が70%程度と低い。また、電解
液が水酸化ニッケルの粒子内部に浸入しにくいため、水
酸化ニッケル粒子内部で電解液の不均一化がおこり局部
的に電流密度が増大し、γ−NiOOHが生成しやすく
なる。その結果、低温(0℃)雰囲気下でのサイクル寿
命は、300サイクル程度である。
In the method (3), cadmium oxide, zinc or cadmium is present as a solid solution inside the crystal of the nickel hydroxide powder, as in the conventionally proposed method. Γ-NiOOH generated during charging is suppressed as compared with the case where zinc oxide powder is mixed with nickel hydroxide, and the cycle life is improved. However, since the packing density in the positive electrode is improved by preventing the development of internal transition pores of 30 ° or more, the electrolyte does not easily enter the inside of the nickel hydroxide particles, and the active material utilization rate at the initial stage of charge and discharge is increased. Is as low as about 70%. In addition, since the electrolyte does not easily enter the inside of the nickel hydroxide particles, the electrolyte becomes uneven inside the nickel hydroxide particles, the current density locally increases, and γ-NiOOH is easily generated. As a result, the cycle life in a low temperature (0 ° C.) atmosphere is about 300 cycles.

【0008】また、このような水酸化ニッケルを製造す
る工程において、硫酸アンモニウムを使用しているた
め、水酸化ニッケル粉末に不純物としてアンモニウムが
存在し、このアンモニウムが電池の自己放電を促進させ
る。
Further, in the process of producing such nickel hydroxide, ammonium sulfate is used, so that ammonium is present as an impurity in the nickel hydroxide powder, and this ammonium promotes self-discharge of the battery.

【0009】本発明はこのような課題を解決するもの
で、簡単な構成により活物質の充填密度を向上させ、エ
ネルギ−密度が高く、しかもサイクル寿命特性に優れ
た、水酸化ニッケル活物質とニッケル正極およびこれを
用いたアルカリ蓄電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems. A nickel hydroxide active material and a nickel hydroxide having a high energy density and an excellent cycle life characteristic are provided with a simple structure to improve the packing density of the active material. It is an object to provide a positive electrode and an alkaline storage battery using the same.

【0010】また、充放電初期の水酸化ニッケル活物質
の利用率や自己放電特性にも優れた水酸化ニッケル活物
質とニッケル正極およびこれを用いたアルカリ蓄電池を
提供することを目的とする。
It is another object of the present invention to provide a nickel hydroxide active material and a nickel positive electrode which are excellent in nickel hydroxide active material utilization and self-discharge characteristics at the initial stage of charge and discharge, and an alkaline storage battery using the same.

【0011】[0011]

【課題を解決するための手段】この課題を解決するため
に本発明は、ニッケル正極に用いる水酸化ニッケル活物
質粉末は、カドミウム、カルシウム、亜鉛、マグネシウ
ム、鉄、コバルトおよびマンガンのうちの少なくとも一
種を水酸化ニッケル粉末中に1〜7wt%含有し、粒径
10〜30μmの球状または球状に類似した粒子と粒径
10μm以下の非球状粒子の混合物となるようにしたも
のである。この水酸化ニッケル粉末にコバルト、コバル
ト酸化物、酸化亜鉛、亜鉛、カドミウムおよび酸化カド
ミウムの少なくとも一種とを3次元多孔体または平板に
充填あるいは塗着したニッケル正極である。
According to the present invention, there is provided a nickel hydroxide active material powder for use in a nickel positive electrode, which comprises at least one of cadmium, calcium, zinc, magnesium, iron, cobalt and manganese. containing 1~7Wt% of nickel hydroxide powder, the particle size
Spherical or spherical-like particles and particle size of 10-30 μm
This is a mixture of non-spherical particles of 10 μm or less . This nickel hydroxide powder is a nickel positive electrode in which at least one of cobalt, cobalt oxide, zinc oxide, zinc, cadmium and cadmium oxide is filled or coated on a three-dimensional porous body or a flat plate.

【0012】さらに、ニッケル酸化物を主成分とするニ
ッケル正極と、電気化学的に水素の吸蔵放出反応が可能
な水素吸蔵合金を主体とする負極あるいは酸化カドミウ
ムを主体とする負極と、アルカリ電解液と、セパレ−タ
とからなるアルカリ蓄電池において、初充放電前に前記
ニッケル正極はカドミウム、カルシウム、亜鉛、マグネ
シウム、鉄、コバルトおよびマンガンの少なくとも一種
を水酸化ニッケル活物質粉末中に1〜7wt%含有し、
粒径10〜30μmの球状または球状に類似した粒子と
粒径10μm以下の非球状粒子の混合物である水酸化ニ
ッケル粉末にコバルト、コバルト酸化物、酸化亜鉛、亜
鉛、カドミウムおよび酸化カドミウムの少なくとも一種
と、これらの粉末を支持し、導電性を付与する3次元多
孔体あるいは平板から主に構成されるニッケル正極を用
い、アルカリ電解液の比重は1.231.4であり、
電池容量1Ah当たりの電解液量は1.0〜2.0cm
3/Ahである構成としたものである。
Further, a nickel positive electrode mainly composed of nickel oxide, a negative electrode mainly composed of a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen or a negative electrode mainly composed of cadmium oxide, and an alkaline electrolyte And an alkaline storage battery comprising a separator, before the first charge / discharge, the nickel positive electrode contains at least one of cadmium, calcium, zinc, magnesium, iron, cobalt and manganese in an amount of 1 to 7 wt% in the nickel hydroxide active material powder. Contains
Spherical or spherical-like particles with a particle size of 10-30 μm
At least one of cobalt, cobalt oxide, zinc oxide, zinc, cadmium, and cadmium oxide is added to nickel hydroxide powder, which is a mixture of non-spherical particles having a particle diameter of 10 μm or less, and these powders are supported to impart conductivity. A nickel positive electrode mainly composed of a two-dimensional porous body or a flat plate is used, and the specific gravity of the alkaline electrolyte is 1.23 to 1.4,
The amount of electrolyte per 1 Ah of battery capacity is 1.0 to 2.0 cm
3 / Ah.

【0013】[0013]

【作用】この構成により、すなわち、正極作時にカド
ミウム、カルシウム、亜鉛、マグネシウム、鉄、コバル
トおよびマンガンの少なくとも一種を水酸化ニッケル活
物質粉末中に1〜7wt%含有させ、粒径10〜30μ
mの球状または球状に類似した粒子と粒径10μm以下
非球状粒子との混合物とすることにより、充填密度と
サイクル寿命特性を向上させることができる。
By the action This arrangement, i.e., Seikyokusaku made sometimes cadmium, calcium, zinc, magnesium, iron, at least one of cobalt and manganese is contained 1~7Wt% to the nickel hydroxide active material powder, the particle size 10~30μ
m or spherical-like particles with a particle size of 10 μm or less
By using a mixture with the above non-spherical particles, the packing density and cycle life characteristics can be improved.

【0014】すなわち、粒径10〜30μmの球状また
は球状に類似した粒子と粒径10μm以下の非球状粒子
とを混合させることにより、粒子と粒子との隙間に効率
よく水酸化ニッケル粉末を存在させることができるた
め、前記のような混合粉末を用いて正極を作した場合
に、水酸化ニッケルの充填密度が向上することとなる。
カドミウム、カルシウム、亜鉛、マグネシウム、鉄、コ
バルトおよびマンガンのうちの少なくとも一種を水酸化
ニッケル活物質粉末中に1〜7wt%固溶体として含有
させることにより、過充電時にβ−NiOOHよりも体
積の大きいγ−NiOOHの生成が抑制される。その結
果、活物質や正極の膨脹が抑制され、サイクル寿命特性
が向上することとなる。
That is, by mixing spherical or spherical-like particles having a particle size of 10 to 30 μm with non-spherical particles having a particle size of 10 μm or less, the nickel hydroxide powder can be efficiently present in the gaps between the particles. it is possible, when created made a positive electrode using a mixed powder as described above, and thus to improve filling density of nickel hydroxide.
By including at least one of cadmium, calcium, zinc, magnesium, iron, cobalt, and manganese in the nickel hydroxide active material powder as a 1 to 7 wt% solid solution, γ having a larger volume than β-NiOOH during overcharge -The generation of NiOOH is suppressed. As a result, expansion of the active material and the positive electrode is suppressed, and the cycle life characteristics are improved.

【0015】また、ニッケル正極としては、本発明の水
酸化ニッケル粉末を用いて充填密度を向上させても実質
的なエネルギ−密度が低いという問題がある。そのため
にコバルトおよび水酸化コバルトを正極中に添加し、水
酸化ニッケル活物質の利用率を向上させる。その結果、
充填密度が増大した正極を用いても水酸化ニッケル活物
質の利用率が向上するために、実質的なエネルギ−密度
が充填密度に相当して得られることとなる。
Further, the nickel positive electrode has a problem that even if the packing density is improved by using the nickel hydroxide powder of the present invention, the substantial energy density is low. For this purpose, cobalt and cobalt hydroxide are added to the positive electrode to improve the utilization of the nickel hydroxide active material. as a result,
Even when a positive electrode with an increased packing density is used, the utilization rate of the nickel hydroxide active material is improved, so that a substantial energy density can be obtained corresponding to the packing density.

【0016】さらに酸化亜鉛、亜鉛、カドミウムおよび
酸化カドミウムを添加することで、過充電時に高体積の
γ−NiOOHの生成がさらに抑制される。その結果、
ニッケル正極の膨脹が抑制され充放電サイクル寿命が向
上する。
Further, by adding zinc oxide, zinc, cadmium and cadmium oxide, the generation of high volume γ-NiOOH during overcharge is further suppressed. as a result,
The expansion of the nickel positive electrode is suppressed, and the charge / discharge cycle life is improved.

【0017】したがって、本発明の水酸化ニッケル粉末
と前記の添加物とを3次元多孔体または平板に充填ある
いは塗着することにより、エネルギ−密度が高く、サイ
クル寿命特性に優れた正極が得られる。本発明の正極と
電気化学的に水素の吸蔵放出反応が可能な水素吸蔵合金
を主体とする負極あるいは酸化カドミウムを主体とする
負極と、アルカリ電解液と、セパレ−タとからなるアル
カリ蓄電池においては、アルカリ電解液の比重を1.2
3〜1.4にすることで水酸化ニッケルに対するプロト
ンの供給が容易になり、水酸化ニッケル活物質の利用率
が向上する。また、電解液量は(正極容量当たり)1.
0〜2.0cm3/Ahとすることにより、正極と負極
およびセパレ−タ中に電解液を適切に分布させることが
可能であり、優れたサイクル寿命を有するアルカリ蓄電
池が得られることとなる。
Therefore, by filling or applying the nickel hydroxide powder of the present invention and the above-mentioned additive to a three-dimensional porous body or a flat plate, a positive electrode having a high energy density and excellent cycle life characteristics can be obtained. . In an alkaline storage battery comprising the positive electrode of the present invention and a negative electrode mainly composed of a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen or a negative electrode mainly composed of cadmium oxide, an alkaline electrolyte, and a separator. , The specific gravity of the alkaline electrolyte is 1.2
By setting the ratio to 3 to 1.4, the supply of protons to nickel hydroxide is facilitated, and the utilization rate of the nickel hydroxide active material is improved. The amount of the electrolyte was (per positive electrode capacity) 1.
By setting the concentration to 0 to 2.0 cm 3 / Ah, the electrolyte can be appropriately distributed in the positive electrode, the negative electrode, and the separator, and an alkaline storage battery having excellent cycle life can be obtained.

【0018】[0018]

【実施例】以下、本発明をその実施例により説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0019】(実施例1) 本実施例に用いた水酸化ニッケル粉末は、以下のように
した。水酸化ニッケル粉末は水酸化ニッケル中に亜
鉛およびコバルトがそれぞれ3.7wt%および0.5
wt%含有した組成とした。硫酸ニッケルと硫酸コバル
トと硫酸亜鉛とを所定の割合で水に溶解させ、ニッケル
とコバルトと亜鉛の各イオンが溶解した混合水溶液を作
した。次に、この混合水溶液と水酸化ナトリウムを反
応槽に一定量供給しながら、反応槽での滞留時間を20
l/hr、温度を35℃、pHを11.3と水酸化ナト
リウム水溶液で一定に保ち激しく攪拌を行いながら、
0.1μm以下の一次粒子を生成させ、この粒子を核に
しながら亜鉛およびコバルトがそれぞれ3.7wt%お
よび0.5wt%含有した球状粒子と非球状粒子の混合
物からなる水酸化ニッケルを連続的に作した。本発明
で作した水酸化ニッケル粉末の粒子構造を図1に示し
た。図1から分かるように、約10〜30μmの粒子径
を有する粉末は球状であり、約10μm以下の粉末は非
球状である。前記のような製造条件、すなわち、反応温
度を35℃と比較的低温とし、反応pHを11.3と低い
pH条件下で反応させ、攪拌条件と反応槽での滞留時間を
制御することにより前記のような球状と非球状の混合粉
末を作することができる。比較例として、図2に示し
た硫酸ニッケルと高濃度アルカリ水溶液とで沈殿析出す
る水酸化ニッケル微粉末を乾燥固化し、ついでこれを粉
砕した角状態の粉末用いた。本発明と比較例の水酸化ニ
ッケル粉末の平均粒子径は、両方とも12μm程度であ
る。次に、本発明の水酸化ニッケル粉末と従来例の水酸
化ニッケル粉末の正極への充填性を調べるためにタップ
密度を測定した結果を(表1)に示した。タップ密度は
重量Agの20ccのメスシリンダ−に水酸化ニッケル粉
末を充填し、200回タッピング後、メスシリンダ−の
重量(水酸化ニッケル粉末を含む)Bgと水酸化ニッケ
ルの体積Dccを測定し、次式により求めた。
[0019] (Example 1) Nickel hydroxide powder used in this example was <br/> work made as follows. The nickel hydroxide powder contains 3.7 wt% and 0.5 wt% of zinc and cobalt in nickel hydroxide, respectively.
The composition contained wt%. Nickel sulfate, cobalt sulfate, and zinc sulfate are dissolved in water at a predetermined ratio to form a mixed aqueous solution in which nickel, cobalt, and zinc ions are dissolved.
Made . Next, while supplying the mixed aqueous solution and sodium hydroxide to the reaction tank in a fixed amount, the residence time in the reaction tank was set to 20 times.
1 / hr, the temperature was 35 ° C., the pH was kept constant at 11.3 and an aqueous sodium hydroxide solution, and the mixture was vigorously stirred.
Primary particles of 0.1 μm or less are generated, and nickel hydroxide composed of a mixture of spherical particles and non-spherical particles containing 3.7 wt% and 0.5 wt% of zinc and cobalt, respectively, is continuously formed while using these particles as nuclei. It was made of work. The work made grain structure of nickel hydroxide powder in the present invention shown in FIG. As can be seen from FIG. 1, powder having a particle size of about 10 to 30 μm is spherical, and powder having a particle size of about 10 μm or less is non-spherical. The production conditions as described above, ie, the reaction temperature was relatively low at 35 ° C., and the reaction pH was as low as 11.3.
reacted at pH conditions, it is possible to create made spherical and mixed powder of non-spherical, such as the by controlling the residence time in the stirring conditions reaction vessel. As a comparative example, nickel hydroxide fine powder precipitated and precipitated with nickel sulfate and a high-concentration alkaline aqueous solution shown in FIG. 2 was dried and solidified, and then ground and used in the form of angular powder. The average particle diameter of both the nickel hydroxide powder of the present invention and the comparative example is about 12 μm. Next, the results of measuring the tap density in order to examine the filling properties of the nickel hydroxide powder of the present invention and the nickel hydroxide powder of the conventional example into the positive electrode are shown in Table 1 below. The tap density is measured by filling a 20 cc graduated cylinder of nickel hydroxide powder with nickel hydroxide powder and tapping 200 times, then measuring the weight (including nickel hydroxide powder) Bg of the graduated cylinder and the volume Dcc of nickel hydroxide, It was determined by the following equation.

【0020】タップ密度=(B−A)/D また、充填密度は、それぞれの水酸化ニッケル粉末を多
孔度95%、目付重量350g/m2の発泡状ニッケル
多孔体に充填し、一定のプレス条件でプレスした後、所
定の寸法に切断し厚みを測定することにより充填密度を
計算により求めた。(表1)に本発明と従来例の水酸化
ニッケルのタップ密度および充填密度の比較を示す。
Tap density = (BA) / D The packing density was determined by filling each nickel hydroxide powder into a foamed nickel porous material having a porosity of 95% and a basis weight of 350 g / m 2 , and pressing the same. After pressing under the conditions, it was cut into a predetermined size, and the thickness was measured to obtain the packing density by calculation. Table 1 shows a comparison between the tap density and the packing density of the nickel hydroxide of the present invention and the nickel hydroxide of the conventional example.

【0021】[0021]

【表1】 [Table 1]

【0022】(表1)のタップ密度と充填密度の比較か
ら明らかなように、本発明の水酸化ニッケル粉末は、比
較例の水酸化ニッケル粉末に比べタップ密度が高く、充
填密度に優れていることがわかる。これは、比較例の水
酸化ニッケル粉末は角状を有しているため粉末間の隙間
が球状粒子に比べて多く存在するため、タップ密度や充
填密度が向上しないこととなる。これに対して、本発明
の水酸化ニッケル粉末は球状と非球状の粒子の混合物で
あるため、球状の粒子間の隙間に非球状粒子が充填され
る。その結果、タップ密度が2.01g/ccで充填密
度が630mAh/ccと優れた特性を示すことが分か
る。
As is clear from the comparison between the tap density and the packing density in Table 1, the nickel hydroxide powder of the present invention has a higher tap density and a better packing density than the nickel hydroxide powder of the comparative example. You can see that. This is because the nickel hydroxide powder of the comparative example has a square shape, so that there are more gaps between the powders than the spherical particles, so that the tap density and the packing density are not improved. On the other hand, since the nickel hydroxide powder of the present invention is a mixture of spherical and non-spherical particles, gaps between the spherical particles are filled with non-spherical particles. As a result, it can be seen that the tap density is 2.01 g / cc and the packing density is 630 mAh / cc, exhibiting excellent characteristics.

【0023】次に、水酸化ニッケル活物質粉末の充放電
サイクル寿命特性を調べるために、ニッケル・水素蓄電
池を以下の方法で作した。正極は本発明の前記水酸化
ニッケル粉末とコバルト粉末と水酸化コバルト粉末を重
量比で100:7:5の割合で混合し、これに水を加え
て練合しペ−スト状にした後、支持体である多孔度95
%、面密度300g/m2の発泡状ニッケル多孔体へ充
填し、乾燥、加圧後、フッ素樹脂粉末が分散した水溶液
に浸漬した。この後再度乾燥後、所定の寸法に切断して
1400mAhの容量を有するニッケル正極を作
た。比較例として前記角状の水酸化ニッケル粉末を用い
て同様な方法でニッケル正極を作した。
Next, in order to examine the charge-discharge cycle life characteristics of the nickel hydroxide active material powder was manufactured create the nickel-hydrogen storage battery in the following manner. The positive electrode was prepared by mixing the nickel hydroxide powder, cobalt powder, and cobalt hydroxide powder of the present invention in a weight ratio of 100: 7: 5, adding water thereto, kneading the mixture, and forming a paste. Porosity 95 as support
%, A foamed nickel porous body having a surface density of 300 g / m 2 , dried, pressurized, and then immersed in an aqueous solution in which a fluororesin powder was dispersed. After again after drying this was cut into predetermined dimensions to create made a nickel positive electrode having a capacity of 1400mAh <br/>. It was created made of nickel positive electrode in a similar manner using the angle-shaped nickel hydroxide powder as a comparative example.

【0024】負極は以下の方法で作製した。合金組成は
MmNi3.6Co0.7Mn0.4Al0.3(Mm
はミッシュメタルで希土類元素の混合物)とした。希土
類元素の混合物であるミッシュメタルMmとNi,C
o,Mn,Alの各試料をア−ク炉に入れて、10-4
10-5torrまで真空状態にした後、アルゴンガス雰
囲気下の減圧状態でア−ク放電し、加熱溶解させた。試
料の均質化を図るために真空中、1050℃で6時間熱
処理を行った。得られた合金塊を粗粉砕後、湿式ボ−ル
ミルを用いて平均粒子径20μmの粉末を得た。この粉
末を80℃の7.2mol水酸化カリウム水溶液中で1
時間攪拌しながら処理を施した後、合金粉末から水酸化
カリウムを除去するために水洗を行い、乾燥することに
より負極に用いる水素吸蔵合金粉末を得た。この水素吸
蔵合金粉末に水とカルボキシメチルセルロ−ス(CM
C)を加えてペ−スト状にし、多孔度95%の発泡状
ニッケル多孔体へ充填、乾燥、加圧後、所定の寸法に切
断し、水素吸蔵合金負極を作製した。セパレ−タはポリ
プロピレンとポリエチレンとからなる不織布をスルホン
化したスルホン化セパレ−タを用いた。
The negative electrode was manufactured by the following method. The alloy composition MmNi3.6 Co0.7Mn0.4Al0.3 (Mm
Is misch metal and a mixture of rare earth elements). Misch metal Mm which is a mixture of rare earth elements and Ni, C
Each sample of o, Mn, and Al was put in an arc furnace, and 10 -4 ~
After reducing the pressure to 10 -5 torr, arc discharge was performed under reduced pressure in an argon gas atmosphere, and the mixture was heated and dissolved. In order to homogenize the sample, heat treatment was performed at 1050 ° C. for 6 hours in vacuum. After coarsely pulverizing the obtained alloy ingot, a powder having an average particle diameter of 20 μm was obtained using a wet ball mill. This powder was placed in a 7.2 mol aqueous potassium hydroxide solution at 80 ° C. for 1 hour.
After performing the treatment while stirring for a time, the alloy powder was washed with water to remove potassium hydroxide, and dried to obtain a hydrogen storage alloy powder used for the negative electrode. Water and carboxymethyl cellulose (CM) are added to this hydrogen storage alloy powder.
C) and the like to form a paste, filled into a foamed nickel porous body having a porosity of 95%, dried, pressurized, and cut into predetermined dimensions to produce a hydrogen storage alloy negative electrode. As the separator, a sulfonated separator obtained by sulfonating a nonwoven fabric made of polypropylene and polyethylene was used.

【0025】図3に示すように、上記で作製した負極
1、と正極2とをセパレ−タ3を介して渦巻き状に旋回
し、負極端子を兼ねるケ−ス4に挿入した。その後、比
重が1.30である水酸化カリウム水溶液中に水酸化リ
チウムを20g/l溶解したアルカリ電解液を2.8cm3
注液して、安全弁6を備えた封口板7によりケ−ス4を
封口し、正極で電池容量を規制した1400mAhの
容量をもつ4/5Aサイズの密閉形ニッケル・水素蓄
電池を構成した。
As shown in FIG . 3, the negative electrode 1 and the positive electrode 2 prepared as described above were swirled through a separator 3 and inserted into a case 4 also serving as a negative electrode terminal. Thereafter, 2.8 cm 3 of an alkaline electrolyte obtained by dissolving 20 g / l of lithium hydroxide in an aqueous solution of potassium hydroxide having a specific gravity of 1.30 was used.
And it poured, Quai by sealing plate 7 provided with a safety valve 6 - was sealed to scan 4, public 1400mAh that regulate battery capacity at the positive electrode
A 4/5 A size sealed nickel-metal hydride storage battery having a nominal capacity was constructed.

【0026】図3において、8は絶縁ガスケット、9は
正極2と封口板7とを電気的に接続する正極集電体を示
す。従来例の水酸化ニッケルからなる正極を用いた電池
も図3と同様な構成で作した。従来例の水酸化ニッケ
ルからなる正極は、充填密度が低いため電池容量は12
90mAhである。これらの電池を用いて、以下の条件
により充放電サイクル寿命試験を行った。充電は1/3
CmAで4.5時間行い、その後、放電は1CmAで
1.0Vまで行う充放電を1サイクルとし、0℃の雰囲
気下で充放電サイクルをくり返した。この結果を図4に
示した。本発明の水酸化ニッケルからなる正極を用いた
電池は、比較例に対し容量レベルが高く、500サイク
ルの充放電をくり返しても容量がほとんど低下しないこ
とがわかる。一方、比較例の水酸化ニッケルからなる正
極を用いた電池は、充放電初期の容量レベルが約8%低
く、充放電サイクルを200回くり返すと容量が低下す
ることがわかる。これは、本発明の水酸化ニッケル粉末
は球状と非球状の粒子の混合物からなるため容量密度が
高いことと、水酸化ニッケル粉末中に亜鉛とコバルトが
それぞれ3.7wt%,0.5wt%含有していこと
による。
In FIG . 3, reference numeral 8 denotes an insulating gasket, and 9 denotes a positive electrode current collector for electrically connecting the positive electrode 2 and the sealing plate 7. Battery using a positive electrode made of nickel hydroxide in the prior art was also created manufactured in the same configuration as FIG. The conventional positive electrode made of nickel hydroxide has a low packing density and thus has a battery capacity of 12
90 mAh. Using these batteries, a charge / discharge cycle life test was performed under the following conditions. Charge is 1/3
The charge / discharge cycle was performed at CmA for 4.5 hours, and then the discharge was performed at 1 CmA up to 1.0 V as one cycle, and the charge / discharge cycle was repeated in an atmosphere of 0 ° C. The result is shown in FIG. It can be seen that the battery using the nickel hydroxide positive electrode of the present invention has a higher capacity level than that of the comparative example, and the capacity hardly decreases even after repeated charge and discharge of 500 cycles. On the other hand, in the battery using the positive electrode made of nickel hydroxide of the comparative example, the capacity level at the initial stage of charge / discharge is lower by about 8%, and the capacity decreases when the charge / discharge cycle is repeated 200 times. This is because the nickel hydroxide powder of the present invention is composed of a mixture of spherical and non-spherical particles and therefore has a high capacity density, and contains 3.7 wt% and 0.5 wt% of zinc and cobalt, respectively, in the nickel hydroxide powder. and due to the fact that not.

【0027】(実施例2) 水酸化ニッケル粉末中に含有するカドミウム、カルシウ
ム、亜鉛、マグネシウム、鉄、コバルトおよびマンガン
の効果を調べるために実施例1と同様な方法で水酸化ニ
ッケル粉末を作した。作した粉末は図1に示した球
状または球状に類似した粒子と非球状粒子との混合物で
ある。作した粉末の組成を(表2)および(表3)に
示す。
[0027] (Example 2) cadmium contained in the nickel hydroxide powder, calcium, zinc, magnesium, iron, create manufactured nickel hydroxide powder in the same manner as in Example 1 to examine the effect of cobalt and manganese did. Created manufactured powder is a mixture of similar particles with non-spherical particles spherical or spherical as shown in FIG. The composition of the work made by powder shown in (Table 2) and (Table 3).

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】表中のNo.1〜11の水酸化ニッケル粉末
のタップ密度は1.92〜2.15g/cm3であり、
平均粒子径は9〜15μmである。正極を作する場合
に、充填密度を向上させるためには、タップ密度が1.
9g/cm3以上必要である。また、水酸化ニッケルの
平均粒子径は正極を作する場合の充填性と水酸化ニッ
ケルと水を混合した場合のペ−ストの流動性の観点から
7〜20μmの範囲が好ましい。次に、これらの水酸化
ニッケルの寿命特性を調べるために、実施例1と同様な
方法で正極および電池を構成し、試験を行った結果を図
5、図6に示した。
The tap densities of the nickel hydroxide powders Nos. 1 to 11 in the table are 1.92 to 2.15 g / cm 3 ,
The average particle size is 9 to 15 μm. When manufactured create the positive electrode, in order to improve the packing density, tap density 1.
9 g / cm 3 or more is required. The average particle diameter of the nickel hydroxide Bae when mixed with nickel hydroxide and water and the filling of the case of steel work the cathode - range in terms of strike flowable 7~20μm is preferred. Next, in order to examine the life characteristics of these nickel hydroxides, a positive electrode and a battery were constructed in the same manner as in Example 1, and the results of tests were shown in FIGS. 5 and 6.

【0031】図5および図6に示したように、本発明の
水酸化ニッケルを用いた電池No.2〜11は充放電サ
イクルを500回くり返してもほとんど容量が低下しな
いことがわかる。一方、No.1の電池は、亜鉛やコバ
ルトが含有されていないため250回の充放電の繰り返
しにより容量が低下することがわかる。
As shown in FIGS. 5 and 6, a battery No. using the nickel hydroxide of the present invention was used. 2 to 11 show that the capacity hardly decreases even if the charge / discharge cycle is repeated 500 times. On the other hand, No. It can be seen that the battery No. 1 does not contain zinc or cobalt, and its capacity is reduced by repeating charging and discharging 250 times.

【0032】図5から、No.2の電池は亜鉛とコバル
トを1.3wt%含有しているが、500回の充放電の
繰り返しで初期容量の75%程度の容量に低下してい
る。したがって、亜鉛等の添加量は1wt%以上必要と
考えられる。また、添加量が7wt%以上になると容量
密度が低下するため、7wt%以下の添加量が好まし
い。また、コバルトの添加量については、1wt%以上
になると高率放電時の電圧低下が著しいため、1wt%
以下の添加量が好ましい。水酸化ニッケル中におけるカ
ドミウム、カルシウム、亜鉛、マグネシウム、鉄、コバ
ルトおよびマンガンは、水酸化ニッケルのニッケルの一
部と置換した固溶体、または水酸化物の状態で存在して
いるものと考えられる。
From FIG. Battery No. 2 contained 1.3 wt% of zinc and cobalt, but the capacity was reduced to about 75% of the initial capacity by repeating charge and discharge 500 times. Therefore, it is considered that the addition amount of zinc or the like is required to be 1 wt% or more. When the addition amount is 7 wt% or more, the capacity density is reduced. Therefore, the addition amount of 7 wt% or less is preferable. Further, when the addition amount of cobalt is 1 wt% or more, the voltage drop at the time of high rate discharge is remarkable.
The following addition amounts are preferred. Cadmium, calcium, zinc, magnesium, iron, cobalt and manganese in nickel hydroxide are considered to exist as a solid solution or a hydroxide in which nickel hydroxide has been partially substituted for nickel.

【0033】(実施例3) 実施例1と同様な方法で、水酸化ニッケル粉末の生成反
応の反応pHを11.0から11.6まで変化させて、
亜鉛が3.7wt%およびコバルトが0.5wt%含有
した種々の球状または球状に類似した粒子と非球状粒子
との混合物を作した。種々のpH条件で作製した水酸
化ニッケル粉末の物性を(表4)に示す。
(Example 3) In the same manner as in Example 1, the reaction pH of the reaction for producing nickel hydroxide powder was changed from 11.0 to 11.6.
Zinc was made create a mixture of similar particles and non-spherical particles in the various spherical or spherical 3.7 wt% and cobalt contained 0.5 wt%. Table 4 shows the physical properties of the nickel hydroxide powders prepared under various pH conditions.

【0034】[0034]

【表4】 [Table 4]

【0035】(表4)の空間体積比は細孔半径が10〜
200Åの全空間体積に対する30Å以上の空間体積の
割合である(窒素ガスの吸着側の吸着等温線より計
算)。なお、10Å以下の細孔分布は窒素ガスによる方
法では測定が困難であり、実際には10Å以下の細孔を
有する空間は存在するものと考えられる。
The spatial volume ratio in Table 4 is such that the pore radius is 10
It is the ratio of the space volume of 30 ° or more to the total space volume of 200 ° (calculated from the adsorption isotherm on the nitrogen gas adsorption side). Note that it is difficult to measure the pore distribution of 10 ° or less by a method using nitrogen gas, and it is considered that a space having pores of 10 ° or less actually exists.

【0036】次に、(表4)のA〜Eの水酸化ニッケル
粉末を用いて実施例1と同様な1400mAhの公称
量をもつ4/5Aサイズの密閉形ニッケル・水素蓄電池
をそれぞれ構成した。これらの電池を用いて、以下の条
件により正極活物質である水酸化ニッケルの活物質利用
率の試験を行った。20℃の環境下で0.1CmAの充
電電流で正極容量すなわち水酸化ニッケル活物質から計
算される理論容量の150%充電し、1時間休止を行
い、0.2CmA一定の放電電流で1.0Vまで連続放
電を行った。この方法で充放電を5回繰り返し、各サイ
クルにおける活物質利用率を算出した。活物質利用率は
次式で計算した。
Next, a 4/5 A size sealed nickel-hydrogen storage battery having a nominal capacity of 1400 mAh similar to that of Example 1 using the nickel hydroxide powders A to E in Table 4 was used. , Respectively. Using these batteries, an active material utilization test of nickel hydroxide, which was a positive electrode active material, was performed under the following conditions. In a 20 ° C. environment, the battery was charged at a charging current of 0.1 CmA at a charging current of 0.1 CmA, that is, 150% of the theoretical capacity calculated from the nickel hydroxide active material, paused for 1 hour, and discharged at a constant discharging current of 0.2 CmA at 1.0 V. Until a continuous discharge. Charge / discharge was repeated 5 times by this method, and the active material utilization rate in each cycle was calculated. The active material utilization was calculated by the following equation.

【0037】活物質利用率=(1.0Vまでの放電容量
/水酸化ニッケル理論容量)×100 (表5)にA〜Eの水酸化ニッケルを用いた電池で活物
質利用率を調べた結果を示す。
Active material utilization rate = (discharge capacity up to 1.0 V / theoretical nickel hydroxide capacity) × 100 The results of examining the active material utilization rate in the batteries using nickel hydroxides A to E in Table 5 Is shown.

【0038】[0038]

【表5】 [Table 5]

【0039】(表5)から明らかなようにNo.Aの水
酸化ニッケルの利用率は、1サイクル目が80%であ
り、5サイクルの充放電をくり返した後の利用率は85
%である。この原因は30Å以上の細孔半径を有する空
間体積が全空間体積に対して17%である。このことは
比表面積が8.6m2/gで全空間体積が0.01m2
gと小さいことに相関している。したがって、水酸化ニ
ッケル粒子の細孔内部への電解液侵入が困難であり、そ
の結果、充放電反応に関与する有効な水酸化ニッケルが
減少するため、利用率が80〜85%と低い。No.E
の水酸化ニッケル粉末はタップ密度が1.8g/cm3
と低い。タップ密度が低い原因は、比表面積と全空間体
積が大きく、平均粒子径が小さいことによる。この水酸
化ニッケルは利用率には優れているが、タップ密度が低
いために高密度充填が困難である。本発明のNo.B,
C,Dの水酸化ニッケルの利用率は、1サイクル目が9
0〜93%であり、5サイクル経過後も95〜98%と
優れた値を示す。
As is clear from (Table 5), no. The utilization rate of nickel hydroxide of A is 80% in the first cycle, and the utilization rate after repeated charge and discharge of 5 cycles is 85%.
%. This is because the space volume having a pore radius of 30 ° or more is 17% of the total space volume. This is 0.01m is the total spatial volume with a specific surface area of 8.6m 2 / g 2 /
It is correlated with g and small. Therefore, it is difficult for the electrolytic solution to penetrate the inside of the pores of the nickel hydroxide particles, and as a result, the effective nickel hydroxide involved in the charge / discharge reaction is reduced, and the utilization factor is as low as 80 to 85%. No. E
Nickel hydroxide powder has a tap density of 1.8 g / cm 3
And low. The reason why the tap density is low is that the specific surface area and the total space volume are large and the average particle size is small. Although this nickel hydroxide has an excellent utilization factor, it is difficult to fill it at high density due to its low tap density. No. of the present invention. B,
The utilization rate of C and D nickel hydroxide was 9 in the first cycle.
0 to 93%, which is an excellent value of 95 to 98% even after 5 cycles.

【0040】以上のことから、反応pHを11.3±
0.2の範囲に制御することにより利用率に優れた水酸
化ニッケル粉末を得ることができる。なお、全空間体積
は利用率とタップ密度の観点から、0.015〜0.0
4cm3/gの範囲であることが好ましい。30Å以上
の細孔半径を有する空間体積が全空間体積に対して20
%以上であることが好ましい。比表面積は、利用率と充
填性から10〜20m2/gの範囲が好ましい。
From the above, the reaction pH was adjusted to 11.3 ±
By controlling the ratio to 0.2, it is possible to obtain a nickel hydroxide powder having an excellent utilization factor. In addition, the total space volume is 0.015 to 0.0 from the viewpoint of the utilization rate and the tap density.
It is preferably in the range of 4 cm 3 / g. A space volume having a pore radius of 30 ° or more is 20% of the total space volume.
% Is preferable. The specific surface area is preferably in the range of 10 to 20 m 2 / g from the viewpoint of utilization and filling.

【0041】次に、水酸化ニッケル中にアンモニアが残
留した場合にNo.Cと同様な構成の電池の自己放電特
性がどのように変化するか調べるために、電池内にアン
モニアを水酸化ニッケルに対して0.05wt%と0.
01wt%を含有するNo.C−1とC−2の電池をそ
れぞれ作した。この他は実施例1のNo.Cと同様な
電池構成条件とした。自己放電特性は以下の条件で試験
を行った。20℃の雰囲気下で充電を0.1CmAで1
5時間行い、1時間休止した後、0.2CmAの放電電
流で1.0Vまで放電を行い、放電容量(A)を計算に
より求めた。次に、20℃の雰囲気下で充電を0.1C
mAで15時間行い、充電状態で45℃の環境下に14
日間放置し、その後、20℃の雰囲気下で0.2CmA
の放電電流で1.0Vまで放電を行い、放電容量(B)
を計算により求めた。次に、自己放電特性を表す容量維
持率を次式により求めた。
Next, when ammonia remains in the nickel hydroxide, no. In order to examine how the self-discharge characteristic of a battery having the same configuration as that of C changes, ammonia was added to nickel hydroxide in the battery in an amount of 0.05 wt% and 0.1 wt%.
No. 1 containing 0.1% by weight. C-1 and C-2 of the battery were each work made. Other than the above, No. 1 of Example 1 was used. Battery configuration conditions similar to C were set. The self-discharge characteristics were tested under the following conditions. Charge at 0.1 CmA under 20 ° C atmosphere
After performing for 5 hours and suspending for 1 hour, discharging was performed to 1.0 V with a discharging current of 0.2 CmA, and the discharging capacity (A) was obtained by calculation. Next, charge at 0.1C in an atmosphere of 20 ° C.
15 hours at 45 mA in a charged state.
Let stand for 20 days, then 0.2CmA under 20 ° C atmosphere
At a discharge current of 1.0 V to discharge capacity (B)
Was calculated. Next, a capacity retention ratio representing a self-discharge characteristic was obtained by the following equation.

【0042】容量維持率(%)=放電容量(B)/放電
容量(A)×100 (表6)に本発明のNo.Cと比較例のNo.C−1,
C−2の自己放電特性を示す。
Capacity maintenance rate (%) = discharge capacity (B) / discharge capacity (A) × 100 (Table 6) C and No. of Comparative Example. C-1,
4 shows the self-discharge characteristics of C-2.

【0043】[0043]

【表6】 [Table 6]

【0044】(表6)の結果から明らかなように、アン
モニアを含有した場合、高温で放置した場合の容量維持
率は低下する。したがって、アンモニアの錯体を作製し
て水酸化ニッケルを製造する場合、水洗を十分におこな
ってもアンモニアが水酸化ニッケル粉末中に残留するた
め自己放電特性は低下する。一方、本発明の水酸化ニッ
ケル粉末は製造過程においてアンモニアを含有しないた
め優れた自己放電特性を示すこととなる。
As is evident from the results in Table 6, when ammonia is contained, the capacity retention rate when left at a high temperature decreases. Therefore, in the case of producing nickel hydroxide by preparing a complex of ammonia, the self-discharge characteristic is lowered because ammonia remains in the nickel hydroxide powder even if washing is performed sufficiently. On the other hand, the nickel hydroxide powder of the present invention does not contain ammonia in the production process, and thus exhibits excellent self-discharge characteristics.

【0045】(実施例4) 実施例1の同様な本発明の水酸化ニッケル粉末を用い、
各添加物(表7)に示した組成(重量比)で正極を作
した。正極も実施例1と同様な方法で作した。
Example 4 Using the same nickel hydroxide powder of the present invention as in Example 1,
The positive electrode was created Ltd. <br/> each additive compositions shown in Table 7 (weight ratio). The positive electrode was also created manufactured in the same manner as in Example 1.

【0046】[0046]

【表7】 [Table 7]

【0047】次に、No.F〜Iの正極を用い実施例1
で用いた負極と組合せ、実施例1と同じ電池を作
た。これらの電池を用いて、以下の条件により正極活物
質である水酸化ニッケル粉末の活物質利用率と充放電サ
イクル寿命の試験を行った。活物質利用率は、20℃の
環境下で0.1CmAの充電電流で正極容量すなわち水
酸化ニッケル活物質から計算される理論容量の150%
充電し、1時間休止を行い、0.2CmA一定の放電電
流で1.0Vまで連続放電を行った。この方法で充放電
を2回繰り返し、2サイクル目における活物質利用率を
算出した。活物質利用率は次式で計算した。
Next, No. Example 1 using positive electrodes F to I
In the negative electrode and the combination used, the same battery as in Example 1 was then created made <br/>. Using these batteries, a test of the active material utilization rate and the charge / discharge cycle life of nickel hydroxide powder as a positive electrode active material was performed under the following conditions. The active material utilization rate is 150% of the positive electrode capacity, that is, the theoretical capacity calculated from the nickel hydroxide active material, at a charging current of 0.1 CmA in an environment of 20 ° C.
The battery was charged, suspended for 1 hour, and continuously discharged to 1.0 V at a constant discharge current of 0.2 CmA. The charge / discharge was repeated twice by this method, and the active material utilization rate in the second cycle was calculated. The active material utilization was calculated by the following equation.

【0048】活物質利用率=(1.0Vまでの放電容量
/水酸化ニッケル理論容量)×100 充放電サイクル寿命は、0℃の環境下で1CmAの充電
電流で1.3時間充電し、その後1CmAの放電電流で
1.0Vまで連続放電を行った。この条件で充放電を繰
り返し、初期の連続放電時間に対して60%まで放電時
間が低下した時点をサイクル寿命とした。(表8)にN
o.F〜Iの活物質利用率とサイクル寿命の結果を示
す。
Active material utilization rate = (discharge capacity up to 1.0 V / theoretical nickel hydroxide capacity) × 100 The charge / discharge cycle life was 1.3 hours at a charge current of 1 CmA in an environment of 0 ° C. Continuous discharge was performed up to 1.0 V at a discharge current of 1 CmA. The charge / discharge was repeated under these conditions, and the point at which the discharge time was reduced to 60% of the initial continuous discharge time was defined as the cycle life. (Table 8) shows N
o. The results of the active material utilization rates and the cycle life of FI are shown.

【0049】[0049]

【表8】 [Table 8]

【0050】実施例1で示した本発明の水酸化ニッケル
粉末を用いた場合においても、(表7)に示した正極組
成により活物質利用率や充放電サイクル寿命特性が異な
る。No.Fの本発明の水酸化ニッケル粉末のみで正極
を構成した場合、活物質利用率は82.3%と低い。一
方、本発明の正極No.G〜Iを用いた場合、活物質利
用率は94.8〜95.5%と優れた特性を示すことが
わかる。本発明の水酸化ニッケル粉末を用いた場合、利
用率を向上させるためにはコバルトあるいは水酸化コバ
ルトを水酸化ニッケルと共存させることが必要である。
なお、コバルトと水酸化コバルトの添加量は、実質的な
放電容量の点から水酸化ニッケル粉末100重量部に対
してそれぞれ4〜18重量部、0〜10重量部の範囲が
好ましい。
Even when the nickel hydroxide powder of the present invention shown in Example 1 was used, the active material utilization and the charge / discharge cycle life characteristics differed depending on the positive electrode composition shown in (Table 7). No. When the positive electrode is composed only of the nickel hydroxide powder of the present invention F, the utilization ratio of the active material is as low as 82.3%. On the other hand, the positive electrode No. When G to I are used, the active material utilization is 94.8 to 95.5%, which indicates excellent characteristics. When the nickel hydroxide powder of the present invention is used, it is necessary to make cobalt or cobalt hydroxide coexist with nickel hydroxide in order to improve the utilization factor.
The addition amounts of cobalt and cobalt hydroxide are preferably in the range of 4 to 18 parts by weight and 0 to 10 parts by weight, respectively, with respect to 100 parts by weight of nickel hydroxide powder from the viewpoint of substantial discharge capacity.

【0051】すなわち、コバルトが4重量部より低下す
ると利用率が低下し、実質的な放電容量が低下する。ま
た、18重量部よりコバルト添加量が増大すると活物質
利用率は95%以上と良好であるが、充填密度が低下す
るため実質的な放電容量が低下する。水酸化コバルトの
添加量も同様な傾向を示すため、前記の範囲が好まし
い。充放電サイクル寿命はNo.F〜Iの正極組成であ
れば、0℃の雰囲気下においても500回以上の充放電
サイクルが可能である。酸化亜鉛を含有したNo.Iの
正極を用いた場合、サイクル寿命特性は750サイクル
と非常に良好である。
That is, when the content of cobalt is less than 4 parts by weight, the utilization rate is reduced, and the substantial discharge capacity is reduced. When the added amount of cobalt is more than 18 parts by weight, the utilization rate of the active material is as good as 95% or more, but the packing density is reduced, so that the substantial discharge capacity is reduced. The above range is preferable since the amount of cobalt hydroxide added shows a similar tendency. The charge and discharge cycle life was No. With a positive electrode composition of F to I, 500 or more charge / discharge cycles are possible even in an atmosphere of 0 ° C. No. 1 containing zinc oxide When the positive electrode of I was used, the cycle life characteristics were as good as 750 cycles.

【0052】したがって、さらに優れた寿命特性を有す
るためには酸化亜鉛を本発明による水酸化ニッケル粉末
と共存させることが必要である。その添加量は、水酸化
ニッケル100重量部に対して0〜10重量部が適切で
あり、10重量部以上添加すると活物質利用率が90%
以下に低下する。なお、酸化カドミウム・カドミウム・
亜鉛等もサイクル寿命を向上させる同様な効果を示し、
これらの添加量は、0〜10重量部の範囲が好ましい。
Therefore, it is necessary to make zinc oxide coexist with the nickel hydroxide powder according to the present invention in order to have more excellent life characteristics. The addition amount is suitably from 0 to 10 parts by weight with respect to 100 parts by weight of nickel hydroxide.
It falls below. In addition, cadmium oxide, cadmium,
Zinc and the like show a similar effect of improving cycle life,
These addition amounts are preferably in the range of 0 to 10 parts by weight.

【0053】本実施例では、支持体に面密度が300g
/m2の発泡状のニッケル多孔体を用いたが、面密度が
200〜700g/m2の範囲であれば同様な効果を示
す。また、発泡状ニッケル多孔体の他に、3次元多孔体
の一種であるパンチングメタルや平板を用いても同様な
効果を示す。
In this embodiment, the support has an areal density of 300 g.
/ M 2 of was used foamed nickel porous body, showing a similar effect so long as the surface density of 200 to 700 g / m 2. Similar effects can be obtained by using punched metal or a flat plate, which is a kind of three-dimensional porous body, in addition to the foamed nickel porous body.

【0054】(実施例5) 施例4のNo.Iの正極を用い、電解液の比重と量を
変化させて、実施例1と同様な電池を作した。作
た電池のNo.と電解液の比重と量との関係を(表9)
に示す。これらの電池を用いて実施例3と同じ条件で利
用率およびサイクル寿命試験を行った結果もあわせて
(表9)に示した。
[0054] (Example 5) real施例4 No. Using the positive electrode of the I, by changing the specific gravity and the amount of the electrolytic solution was manufactured create the same cell as in Example 1. No. of work made by <br/> was battery Table 9 shows the relationship between specific gravity and amount of electrolyte
Shown in The results obtained by performing a utilization factor and a cycle life test under the same conditions as in Example 3 using these batteries are also shown in (Table 9).

【0055】[0055]

【表9】 [Table 9]

【0056】No.Jの電池は電解液比重が1.20と
低い場合、利用率は88.2%となり電池容量が低下す
る。また、電解液比重が1.43と高いNo.Nの場
合、サイクル寿命が450サイクルと低下する。一方、
No.K〜Mの場合は利用率が93.5〜96%であ
り、サイクル寿命は650〜770サイクルと優れた特
性を示すことがわかる。したがって、電解液比重はN
o.K〜Mの電池の1.23〜1.40の範囲が最適で
ある。電解液量が1.3ccであるNo.Oの電池は、
本発明の水酸化ニッケルに対して液不足であるため、利
用率およびサイクル寿命とも低下する。また、電解液量
が3.0ccであるNo.Sの電池は利用率が95%と
良好であるがサイクル寿命が2.8ccの場合よりも低
下する。これは、電解液量が多量であるため1CmAの
電流値で充電した場合、過充電時に正極から発生する酸
素ガスの負極での吸収反応が低下し、安全弁からガスや
電解液が漏液しサイクル寿命が低下する。No.P〜R
の電池容量は1.4AhであるからAh当たりの電解液
量はそれぞれ1.0,1.43,2.0である。以上の
ことから、アルカリ電解液の比重は1.23〜1.40
であり、電解液量は1.0〜2.0cm3/Ahである
ことが好ましい。なお、電解液中に含有する水酸化リチ
ウム(LiOH)は10g/l以下になると、放電電圧
が著しく低下することから10g/l以上含有すること
が好ましい。本実施例では、負極にAB5系水素吸蔵合
金を用いた場合を示したがチタン系等のAB,AB2
水素吸蔵合金やカドミウム負極、亜鉛負極を用いても同
様な効果が得られる。
No. In the case of the battery of J, when the specific gravity of the electrolyte is as low as 1.20, the utilization factor is 88.2%, and the battery capacity is reduced. In addition, the electrolyte having a specific gravity of 1.43, which is high, had a specific gravity of 1.43. In the case of N, the cycle life is reduced to 450 cycles. on the other hand,
No. In the case of K to M, the utilization rate is 93.5 to 96%, and the cycle life is 650 to 770 cycles, indicating excellent characteristics. Therefore, the specific gravity of the electrolyte is N
o. The range of 1.23 to 1.40 for batteries KM is optimal. No. 1 having an electrolyte volume of 1.3 cc. O battery is
Since the amount of the nickel hydroxide of the present invention is insufficient, both the utilization factor and the cycle life decrease. In addition, in the case of No. 3 in which the amount of the electrolytic solution was 3.0 cc. The battery of S has a good utilization rate of 95%, but has a lower cycle life than that of 2.8 cc. This is because when the battery is charged with a current value of 1 CmA because of the large amount of electrolyte, the absorption reaction of oxygen gas generated from the cathode during overcharge at the anode decreases at the anode, and the gas and electrolyte leak from the safety valve. The life is shortened. No. P to R
Is 1.4 Ah, and the amount of electrolyte per Ah is 1.0, 1.43, and 2.0, respectively. From the above, the specific gravity of the alkaline electrolyte is 1.23 to 1.40.
, And the amount of the electrolytic solution is preferably 1.0 to 2.0 cm 3 / Ah. In addition, when the amount of lithium hydroxide (LiOH) contained in the electrolytic solution is 10 g / l or less, the discharge voltage is significantly reduced. Therefore, it is preferable to contain 10 g / l or more. In this embodiment, the case where an AB 5 -based hydrogen storage alloy is used for the negative electrode is shown. However, similar effects can be obtained by using an AB or AB 2 -based hydrogen storage alloy such as titanium, a cadmium negative electrode, or a zinc negative electrode.

【0057】[0057]

【発明の効果】以上のように、本発明によればニッケル
正極に用いる水酸化ニッケル活物質粉末は、カドミウ
ム、亜鉛、カルシウム、マグネシウム、鉄、コバルトお
よびマンガンの少なくとも一種を前記水酸化ニッケル活
物質粉末中に1〜7wt%含有し、粒径10〜30μm
球状または球状に類似した粒子と粒径10μm以下の
非球状粒子との混合物としたものである。
As described above, according to the present invention, the nickel hydroxide active material powder used for the nickel positive electrode comprises at least one of cadmium, zinc, calcium, magnesium, iron, cobalt and manganese. 1 to 7 wt% contained in powder, particle size 10 to 30 μm
<br/> follows spherical or spherical similar particles with a particle size 10μm of is obtained by a mixture of non-spherical particles.

【0058】さらに、水酸化ニッケル粉末を主成分と
し、前記水酸化ニッケル粉末を支持し、導電性を付与す
る3次元多孔体あるいは平板からなるニッケル正極にお
いて、カドミウム、カルシウム、亜鉛、マグネシウム、
鉄、コバルトおよびマンガンの少なくとも一種を水酸化
ニッケル活物質粉末中に1〜7wt%含有し、粒径10
〜30μmの球状または球状に類似した粒子と粒径10
μm以下の非球状粒子との混合物である水酸化ニッケル
粉末とコバルト、水酸化コバルト、酸化亜鉛、亜鉛、カ
ドミウムおよび酸化カドミウムの少なくとも一種とから
構成されているニッケル正極としたものである。また、
ニッケル酸化物を主成分とするニッケル正極と、電気化
学的に水素の吸蔵放出反応が可能な水素吸蔵合金を主体
とする負極あるいは酸化カドミウムを主体とする負極
と、アルカリ電解液と、セパレ−タとこれらを挿入する
ケ−スと安全弁を備えた封口板からなるアルカリ蓄電池
において、初充放電前に前記ニッケル正極は、カドミウ
ム、カルシウム、亜鉛、マグネシウム、鉄、コバルトお
よびマンガンの少なくとも一種を水酸化ニッケル活物質
粉末中に1〜7wt%含有し、粒径10〜30μmの
状または球状に類似した粒子と粒径10μm以下の非球
状粒子との混合物である水酸化ニッケル粉末にコバル
ト、水酸化コバルト、酸化亜鉛、亜鉛、カドミウムおよ
び酸化カドミウムの少なくとも一種とこれらの粉末を支
持し、導電性を付与する3次元多孔体あるいは平板から
主に構成されるニッケル正極を用い、アルカリ電解液の
比重は1.23〜1.4であり、電池容量1Ah当たり
の電解液量は1.0〜2.0cm3/Ahをとしたアル
カリ蓄電池である。以上のような簡単な構成により、水
酸化ニッケル活物質充填密度が高くエネルギ−密度に優
れ、さらに利用率と低温のサイクル寿命が向上した水酸
化ニッケル、ニッケル正極およびアルカリ蓄電池を提供
することが可能になる。また、粉末作製時にアンモニア
等を使用しないため、自己放電特性に優れたアルカリ蓄
電池を提供することが可能になる。
Further, in a nickel positive electrode comprising a nickel hydroxide powder as a main component, a three-dimensional porous body or a flat plate which supports the nickel hydroxide powder and imparts conductivity, cadmium, calcium, zinc, magnesium,
At least one of iron, cobalt and manganese is contained in the nickel hydroxide active material powder in an amount of 1 to 7% by weight, and the particle size is 10 %.
Similar to spherical or spherical ~30μm particles and particle size 10
This is a nickel positive electrode composed of nickel hydroxide powder, which is a mixture with non-spherical particles of μm or less, and at least one of cobalt, cobalt hydroxide, zinc oxide, zinc, cadmium and cadmium oxide. Also,
A nickel positive electrode mainly composed of nickel oxide, a negative electrode mainly composed of a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen or a negative electrode mainly composed of cadmium oxide, an alkaline electrolyte, and a separator And an alkaline storage battery comprising a case into which these are inserted and a sealing plate provided with a safety valve, the nickel positive electrode hydrates at least one of cadmium, calcium, zinc, magnesium, iron, cobalt and manganese before the first charge and discharge. Nickel hydroxide powder which is a mixture of spherical or spherical particles having a particle diameter of 10 to 30 μm and non-spherical particles having a particle diameter of 10 μm or less, which is contained in a nickel active material powder at 1 to 7 wt%. Provides conductivity by supporting at least one of cobalt, cobalt hydroxide, zinc oxide, zinc, cadmium and cadmium oxide and their powder That mainly using nickel positive electrode composed of a three-dimensional porous body or a flat plate, the specific gravity of the alkaline electrolyte is from 1.23 to 1.4, the amount of electrolyte per battery capacity 1Ah is 1.0~2.0cm 3 / Ah. With the simple configuration as described above, it is possible to provide a nickel hydroxide, a nickel positive electrode, and an alkaline storage battery having a high nickel hydroxide active material filling density, excellent energy density, and improved utilization and low-temperature cycle life. become. Further, since ammonia or the like is not used at the time of powder production, an alkaline storage battery having excellent self-discharge characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で作製した球状と非球状との混合物であ
る水酸化ニッケル粉末の粒子構造を示す電子顕微鏡写真
FIG. 1 is an electron micrograph showing the particle structure of a nickel hydroxide powder which is a mixture of spherical and non-spherical particles produced in the present invention.

【図2】比較例の角状水酸化ニッケルの粒子構造を示す
電子顕微鏡写真
FIG. 2 is an electron micrograph showing a particle structure of a square nickel hydroxide of a comparative example.

【図3】本発明で作製したニッケル・水素蓄電池の断面
FIG. 3 is a cross-sectional view of a nickel-metal hydride storage battery manufactured by the present invention.

【図4】本発明と比較例の水酸化ニッケルを用いた電池
のサイクル寿命の結果を示す図
FIG. 4 is a diagram showing the results of cycle life of batteries using nickel hydroxide of the present invention and a comparative example.

【図5】種々の組成の水酸化ニッケルを用いた電池のサ
イクル寿命の結果を示す図
FIG. 5 is a diagram showing the results of the cycle life of batteries using nickel hydroxide of various compositions.

【図6】種々の組成の水酸化ニッケルを用いた電池のサ
イクル寿命の結果を示す図
FIG. 6 is a diagram showing the results of cycle life of batteries using nickel hydroxide of various compositions.

【符号の説明】[Explanation of symbols]

1 負極 2 正極 3 セパレ−タ 4 ケ−ス 6 安全弁 7 封口板 DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Positive electrode 3 Separator 4 Case 6 Safety valve 7 Sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉井 史彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 海谷 英男 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 津田 信吾 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平3−78965(JP,A) 特開 平2−30061(JP,A) 特開 平2−109261(JP,A) 特開 平1−267957(JP,A) 特開 平1−260762(JP,A) 特開 平1−187768(JP,A) 特開 平4−368777(JP,A) 特開 平4−167364(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/36 - 4/62 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Fumihiko Yoshii 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Shingo Tsuda 1006 Kadoma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-3-78965 (JP, A) JP-A-2-30061 (JP, A) JP-A-2-109261 (JP, A) JP-A-1-267957 (JP, A) JP-A-1-260762 (JP, A) JP-A-1-187768 (JP, A) JP-A-4-368777 (JP, A) JP-A-4-167364 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/36-4/62

Claims (41)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電池に用いる水酸化ニッケル活物質粉末
であって、正極作製時にカドミウム、カルシウム、亜
鉛、マグネシウム、鉄、コバルトおよびマンガンからな
る群のうちの少なくとも一種を前記水酸化ニッケル活物
質粉末中に1〜7wt%含有し、粒径10〜30μmの
球状または球状に類似した粒子と粒径10μm以下の
球状粒子との混合物であることを特徴とする水酸化ニッ
ケル活物質粉末。
1. A nickel hydroxide active material powder used in the battery, the nickel hydroxide active at least one of the group consisting of cadmium, calcium, zinc, magnesium, iron, cobalt Contact and manganese at the cathode prepared Nickel hydroxide containing 1 to 7 wt% in a material powder, and a mixture of spherical or spherical-like particles having a particle size of 10 to 30 µm and non-spherical particles having a particle size of 10 µm or less. Active material powder.
【請求項2】 水酸化ニッケル活物質粉末は、0.1μ
m以下の一粒子が集合したものである請求項1記載の
水酸化ニッケル活物質粉末。
2. The nickel hydroxide active material powder has a particle size of 0.1 μm.
nickel hydroxide active material powder according to claim 1, wherein m or less of the primary particles is that combined current.
【請求項3】 カドミウム、カルシウム、亜鉛、マグネ
シウム、鉄、コバルトおよびマンガンからなる群のうち
の少なくとも一種は水酸化ニッケル活物質粉末の結晶内
部に固溶体(固溶体とはカドミウム、カルシウム、亜
鉛、マグネシウム、鉄、コバルトおよびマンガンのうち
の少なくとも一種が水酸化ニッケルのニッケルの一部と
置換されたもの、またはカドミウム、カルシウム、亜
鉛、マグネシウム、鉄、コバルトおよびマンガンのうち
の少なくとも一種の水酸化物と水酸化ニッケルとの混晶
を意味する)である請求項1記載の水酸化ニッケル活物
質粉末。
3. At least one of the group consisting of cadmium, calcium, zinc, magnesium, iron, cobalt and manganese is a solid solution in the crystal of the nickel hydroxide active material powder (solid solution is cadmium, calcium, zinc, magnesium, Iron, cobalt and manganese in which at least one of nickel hydroxide is replaced by a part of nickel, or hydroxide and water of at least one of cadmium, calcium, zinc, magnesium, iron, cobalt and manganese The nickel hydroxide active material powder according to claim 1, which means a mixed crystal with nickel oxide).
【請求項4】 活物質粉末は、亜鉛を3〜6.9wt
%、コバルトを1.0〜0.1wt%含有している請求
項1記載の水酸化ニッケル活物質粉末。
4. The active material powder contains zinc in an amount of 3 to 6.9 wt.
The nickel hydroxide active material powder according to claim 1, which contains 1.0 to 0.1 wt% of cobalt.
【請求項5】 活物質粉末は、平均粒子径は7〜20μ
mであり、タップ密度が1.9g/cm3以上である請
求項1記載の水酸化ニッケル活物質粉末。
5. The active material powder has an average particle diameter of 7 to 20 μm.
2. The nickel hydroxide active material powder according to claim 1, wherein the powder has a tap density of 1.9 g / cm 3 or more.
【請求項6】 活物質粉末は、窒素ガスの吸着により測
定されるBET比表面積が10〜20m2/gである請
求項1記載の水酸化ニッケル活物質粉末。
6. The nickel hydroxide active material powder according to claim 1, wherein the active material powder has a BET specific surface area of 10 to 20 m 2 / g measured by nitrogen gas adsorption.
【請求項7】 活物質粉末は、細孔の空間体積が0.0
15〜0.04cm3/g(窒素ガス吸着により測
定)である請求項1記載の水酸化ニッケル活物質粉末。
7. The active material powder has a pore volume of 0.0
15~0.04cm 3 / g nickel hydroxide active material powder according to claim 1, wherein the (nitrogen determined by gas adsorption).
【請求項8】 活物質粉末は、30Å以上の細孔半径を
有する空間体積が全空間体積に対して20%以上(窒素
ガスの吸着側の吸着等温線から計算)である請求項1記
載の水酸化ニッケル活物質粉末。
8. The active material powder according to claim 1, wherein a space volume having a pore radius of 30 ° or more is at least 20% of the total space volume (calculated from an adsorption isotherm on the nitrogen gas adsorption side). Nickel hydroxide active material powder.
【請求項9】 水酸化ニッケル活物質の生成において、
硫酸ニッケルとカドミウム、カルシウム、亜鉛、マグネ
シウム、鉄、コバルトおよびマンガンのうちの少なくと
も一種の硫酸塩または硝酸塩との混合水溶液と水酸化ナ
トリウムを反応槽に供給しながら反応pHと反応温度を
制御し、攪拌して得られたものである請求項1記載の水
酸化ニッケル活物質粉末。
9. In the production of a nickel hydroxide active material,
Nickel sulfate and cadmium, calcium, zinc, magnesium, iron, and controls the cobalt and at least one reaction temperature and pH while supplying into the reaction vessel mixture aqueous solution with sodium hydroxide and sulfate or nitrate of manganese The nickel hydroxide active material powder according to claim 1, which is obtained by stirring .
【請求項10】 反応pHが11.3±0.2、反応温
度が30〜40℃である請求項9記載の水酸化ニッケル
活物質粉末。
10. The nickel hydroxide active material powder according to claim 9, wherein the reaction pH is 11.3 ± 0.2 and the reaction temperature is 30 to 40 ° C.
【請求項11】 水酸化ニッケル粉末を主成分とし、前
記水酸化ニッケル粉末を支持し、導電性を付与する3次
元多孔体あるいは平板からなるニッケル正極において、
カドミウム、カルシウム、亜鉛、マグネシウム、鉄、コ
バルトおよびマンガンの少なくとも一種を水酸化ニッケ
ル粉末中に1〜7wt%固溶体として含有する粒径10
〜30μmの球状または球状に類似した粒子と粒径10
μm以下の非球状粒子との混合物からなる水酸化ニッケ
ル粉末、コバルト、コバルト酸化物、酸化亜鉛、亜
鉛、カドミウムおよび酸化カドミウムの少なくとも一種
とから構成されていることを特徴とするニッケル正極。
11. A nickel positive electrode comprising a nickel hydroxide powder as a main component, a three-dimensional porous body or a flat plate supporting the nickel hydroxide powder and imparting conductivity.
Particle diameter 10 containing at least one of cadmium, calcium, zinc, magnesium, iron, cobalt and manganese in a nickel hydroxide powder as a 1 to 7 wt% solid solution
Similar to spherical or spherical ~30μm particles and particle size 10
a nickel hydroxide powder comprising a mixture of a μm or less of non-spherical particles, cobalt, cobalt oxide, nickel positive electrode which is characterized by being composed of zinc oxide, zinc, and at least one of cadmium and cadmium oxide.
【請求項12】 ニッケル正極は重量比で水酸化ニッケ
ル:コバルト:水酸化コバルト:酸化亜鉛および/また
は酸化カドミウム:カドミウムおよび/または亜鉛=1
00:4〜18:0〜10:0〜10:0〜10の割合
である請求項11記載のニッケル正極。
12. The nickel positive electrode has a weight ratio of nickel hydroxide: cobalt: cobalt hydroxide: zinc oxide and / or cadmium oxide: cadmium and / or zinc = 1.
The nickel positive electrode according to claim 11, wherein the ratio is from 00: 4 to 18: 0 to 10: 0 to 10: 0-10.
【請求項13】 3次元多孔体は発泡状ニッケル多孔体
あるいはパンチングメタルである請求項11記載のニッ
ケル正極。
13. The nickel positive electrode according to claim 11, wherein the three-dimensional porous body is a foamed nickel porous body or a punching metal.
【請求項14】 水酸化ニッケル粉末は、0.1μm以
下の一次粒子が集合したものである請求項11記載のニ
ッケル正極。
14. Nickel hydroxide powders, nickel positive electrode according to claim 11, wherein 0.1μm or less of the primary particles is that combined current.
【請求項15】 水酸化ニッケル活物質粉末は、亜鉛が
3〜6.9wt%、コバルトが1〜0.1wt%である
請求項11記載のニッケル正極。
15. The nickel positive electrode according to claim 11, wherein the nickel hydroxide active material powder contains 3 to 6.9 wt% of zinc and 1 to 0.1 wt% of cobalt.
【請求項16】 水酸化ニッケル粉末は、平均粒子径が
7〜20μmであり、タップ密度が1.9g/cm3
上である請求項11記載のニッケル正極。
16. The nickel positive electrode according to claim 11, wherein the nickel hydroxide powder has an average particle diameter of 7 to 20 μm and a tap density of 1.9 g / cm 3 or more.
【請求項17】 水酸化ニッケル粉末は、窒素ガスの吸
着により測定されるBET比表面積が10〜20m2
gである請求項11記載のニッケル正極。
17. The nickel hydroxide powder has a BET specific surface area of 10 to 20 m 2 / s measured by adsorption of nitrogen gas.
The nickel positive electrode according to claim 11, which is g.
【請求項18】 水酸化ニッケル粉末は、細孔の空間体
積が0.015〜0.04cm3/g(窒素ガス吸着
により測定)である請求項11記載のニッケル正極。
18. The nickel hydroxide powder, the nickel positive electrode according to claim 11 wherein the space volume of the pores is 0.015~0.04cm 3 / g (measured by adsorption of nitrogen gas).
【請求項19】 水酸化ニッケル粉末は、30Å以上の
細孔半径を有する空間体積が全空間体積に対して20%
以上(窒素ガスの吸着側の吸着等温線から計算)である
請求項11記載のニッケル正極。
19. The nickel hydroxide powder has a space volume having a pore radius of 30 ° or more of 20% of the total space volume.
The nickel positive electrode according to claim 11, which is the above (calculated from the adsorption isotherm on the nitrogen gas adsorption side).
【請求項20】 水酸化ニッケル活物質の生成におい
て、硫酸ニッケルと,カドミウム、カルシウム、亜鉛、
マグネシウム、鉄、コバルトおよびマンガンうちの少な
くとも一種の硫酸塩または硝酸塩との混合水溶液の供給
量と水酸化ナトリウムにより反応pHと反応温度を制御
して得られたものである請求項11記載のニッケル正
極。
20. In the production of a nickel hydroxide active material, nickel sulfate, cadmium, calcium, zinc,
The nickel positive electrode according to claim 11, which is obtained by controlling a reaction pH and a reaction temperature with a supply amount of a mixed aqueous solution of at least one sulfate or nitrate of magnesium, iron, cobalt and manganese and sodium hydroxide. .
【請求項21】 反応pHが11.3±0.2、反応温
度が30〜40℃である請求項20記載のニッケル正
極。
21. The nickel positive electrode according to claim 20 , wherein the reaction pH is 11.3 ± 0.2 and the reaction temperature is 30 to 40 ° C.
【請求項22】 撥水性を有する粉末を含有した請求項
11記載のニッケル正極。
22. The nickel positive electrode according to claim 11, containing a powder having water repellency.
【請求項23】 ニッケル酸化物を主成分とするニッケ
ル正極と、電気化学的に水素の吸蔵放出反応が可能な水
素吸蔵合金を主体とする負極あるいは酸化カドミウムを
主体とする負極と、アルカリ電解液と、セパレ−タとこ
れらを挿入するケ−スと安全弁を備えた封口板からなる
アルカリ蓄電池において、初充放電前に前記ニッケル正
極は、カドミウム、カルシウム、亜鉛、マグネシウム、
鉄、コバルトおよびマンガンの少なくとも一種を水酸化
ニッケル粉末中に1〜7wt%固溶体として含有する粒
径10〜30μmの球状または球状に類似した粒子と
0μm以下の非球状の粒子との混合物である水酸化ニッ
ケル粉末と、コバルト、コバルト酸化物、酸化亜鉛、亜
鉛、カドミウムおよび酸化カドミウムの少なくとも一種
とこれらの粉末を支持し、導電性を付与する3次元多孔
体あるいは平板から主に構成されるニッケル正極を用
たものであることを特徴とするアルカリ蓄電池。
23. A nickel positive electrode mainly composed of nickel oxide, a negative electrode mainly composed of a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen or a negative electrode mainly composed of cadmium oxide, and an alkaline electrolyte. And an alkaline storage battery comprising a separator, a case into which these are inserted, and a sealing plate provided with a safety valve, wherein the nickel positive electrode is made of cadmium, calcium, zinc, magnesium, before the first charge and discharge.
Particles containing at least one of iron, cobalt and manganese as a 1 to 7 wt% solid solution in nickel hydroxide powder
Spherical or spherical-like particles having a diameter of 10 to 30 μm and 1
Nickel hydroxide powder , which is a mixture of non-spherical particles of 0 μm or less, and at least one of cobalt, cobalt oxide, zinc oxide, zinc, cadmium and cadmium oxide, and a support for these powders and imparting conductivity 3 Medical use mainly composed of nickel positive electrode of dimensional porous body or a flat plate
Alkaline storage battery, characterized in that those were.
【請求項24】 アルカリ電解液の比重は1.23〜24. The specific gravity of the alkaline electrolyte is from 1.23 to
1.4であり、電池容量1Ah当たりの電解液量は1.1.4, and the amount of electrolyte per 1 Ah of battery capacity was 1.
0〜2.0cm0-2.0cm 3Three /Ahである請求項23記載のアルカ24. The alka according to claim 23, which is / Ah.
リ蓄電池。Rechargeable battery.
【請求項25】 ニッケル正極は重量比で水酸化ニッケ
ル:コバルト:水酸化コバルト:酸化亜鉛および/また
は酸化カドミウム:カドミウムおよび/または亜鉛=1
00:4〜18:0〜10:0〜10:0〜10の割合
である請求項23記載のアルカリ蓄電池。
25. The nickel positive electrode has a weight ratio of nickel hydroxide: cobalt: cobalt hydroxide: zinc oxide and / or cadmium oxide: cadmium and / or zinc = 1.
The alkaline storage battery according to claim 23 , wherein the ratio is 00: 4 to 18: 0 to 10: 0 to 10: 0 to 10.
【請求項26】 3次元多孔体は発泡状のニッケル多孔
体あるいはパンチングメタルである請求項23記載のア
ルカリ蓄電池。
26. The alkaline storage battery according to claim 23, wherein the three-dimensional porous body is a foamed nickel porous body or a punched metal.
【請求項27】 水酸化ニッケル粉末は、0.1μm以
下の一次粒子が集合したものである請求項23記載のア
ルカリ蓄電池。
27. The nickel hydroxide powder, an alkaline storage battery according to claim 23, wherein 0.1μm or less of the primary particles is that combined current.
【請求項28】 ニッケル正極が撥水性を有する粉末を
含有する請求項23記載のアルカリ蓄電池。
28. A nickel positive electrode comprising a powder having water repellency.
The alkaline storage battery according to claim 23, comprising:
【請求項29】 水酸化ニッケル活物質粉末は、亜鉛を
3〜6.9wt%、コバルトを1〜0.1wt%を含む
請求項23記載のアルカリ蓄電池。
29. The alkaline storage battery according to claim 23 , wherein the nickel hydroxide active material powder contains 3 to 6.9 wt% of zinc and 1 to 0.1 wt% of cobalt.
【請求項30】 水酸化ニッケル粉末は、平均粒子径が
7〜20μmであり、タップ密度が1.9g/cm3
上である請求項23記載のアルカリ蓄電池。
30. The alkaline storage battery according to claim 23 , wherein the nickel hydroxide powder has an average particle diameter of 7 to 20 μm and a tap density of 1.9 g / cm 3 or more.
【請求項31】 水酸化ニッケル粉末は、窒素ガスの吸
着により測定されるBET比表面積が10〜20m2
gである請求項23記載のアルカリ蓄電池。
31. The nickel hydroxide powder has a BET specific surface area of 10 to 20 m 2 / m 2 measured by adsorption of nitrogen gas.
The alkaline storage battery according to claim 23, wherein g is g.
【請求項32】 水酸化ニッケル粉末は、細孔の空間体
積が0.015〜0.04cm3/g(窒素ガスの吸着
により測定)である請求項23記載のアルカリ蓄電池。
32. The alkaline storage battery according to claim 23 , wherein the nickel hydroxide powder has a pore volume of 0.015 to 0.04 cm 3 / g (measured by adsorption of nitrogen gas).
【請求項33】 水酸化ニッケル粉末は、30Å以上の
細孔半径を有する空間体積が全空間体積に対して20%
以上(窒素ガスの吸着側の吸着等温線から計算)である
請求項23記載のアルカリ蓄電池。
33. The nickel hydroxide powder has a space volume having a pore radius of 30 ° or more of 20% of the total space volume.
24. The alkaline storage battery according to claim 23, which is the above (calculated from the adsorption isotherm on the nitrogen gas adsorption side).
【請求項34】 水酸化ニッケル活物質の生成におい
て、硫酸ニッケルと少なくとも一種のカドミウム、カル
シウム、亜鉛、マグネシウム、鉄、コバルトおよびマン
ガンの硫酸塩または硝酸塩との混合水溶液と水酸化ナト
リウムを反応槽に 供給しながら反応pHと反応温度を制
御し、攪拌して得られたものである請求項23記載のア
ルカリ蓄電池。
34. A product of the nickel hydroxide active material, at least one of cadmium, calcium, zinc, magnesium, iron, reaction vessel and sodium hydroxide mixed aqueous solution of cobalt and manganese sulfate or nitrate and nickel sulfate controlling the reaction pH and reaction temperature while supplying the alkaline storage battery of claim 23 is obtained by stirring.
【請求項35】 反応pHが11.3±0.2、反応温
度が30〜40℃である請求項34記載のアルカリ蓄電
池。
35. The alkaline storage battery according to claim 34 , wherein the reaction pH is 11.3 ± 0.2 and the reaction temperature is 30 to 40 ° C.
【請求項36】 アルカリ電解液が、水酸化カリウムと
水酸化ナトリウムの少なくとも1種と水酸化リチウムと
からなる請求項23記載のアルカリ蓄電池。
36. The alkaline storage battery according to claim 23 , wherein the alkaline electrolyte comprises at least one of potassium hydroxide and sodium hydroxide and lithium hydroxide.
【請求項37】 水酸化リチウムが電解液中に10g/
l以上含有されている請求項23記載のアルカリ蓄電
池。
37. Lithium hydroxide contained in the electrolyte at a rate of 10 g /
The alkaline storage battery according to claim 23 , wherein the alkaline storage battery contains 1 or more.
【請求項38】 アルカリ電解液中に亜鉛酸イオンが存
在する請求項23記載のアルカリ蓄電池。
38. The alkaline storage battery according to claim 23 , wherein zincate ions are present in the alkaline electrolyte.
【請求項39】 セパレ−タはスルホン化処理を施した
不織布である請求項23記載のアルカリ蓄電池。
39. The alkaline storage battery according to claim 23, wherein the separator is a non-woven fabric subjected to a sulfonation treatment.
【請求項40】 正極作製時にカドミウム、カルシウ40. Cadmium and calcium in the preparation of the positive electrode
ム、亜鉛、マグネシウム、鉄、コバルトおよびマンガン, Zinc, magnesium, iron, cobalt and manganese
からなる群のうちの少なくとも一種を前記水酸化ニッケAt least one of the group consisting of
ル活物質粉末中に1〜7wt%含有させ、粒径が10〜1 to 7 wt% in the active material powder, and the particle size is 10
30μmの球状または球状に類似した粒子と粒径が1030 μm spherical or spherical-like particles and a particle size of 10
μm以下の非球状粒子との混合物を得る電池用の水酸化Hydroxidation for batteries to obtain a mixture with non-spherical particles smaller than μm
ニッケル活物質粉末の製造法であって、前記水酸化ニッA method for producing a nickel active material powder, comprising:
ケル活物質の生成において、硫酸ニッケルとカドミウNickel sulfate and cadmium
ム、カルシウム、亜鉛、マグネシウム、鉄、コバルトおCalcium, zinc, magnesium, iron, cobalt
よびマンガンのうちの少なくとも一種の硫酸塩または硝At least one sulfate or nitrate of manganese
酸塩との混合水溶液と水酸化ナトリウムを反応槽に供給Aqueous solution mixed with acid salt and sodium hydroxide are supplied to the reaction tank
しながら、反応pHを11.3±0.2、反応温度を3While the reaction pH was 11.3 ± 0.2 and the reaction temperature was 3
0〜40℃に制御して攪拌することを特徴とする水酸化Hydroxidation characterized by stirring at a controlled temperature of 0 to 40 ° C
ニッケル活物質粉末の製造法。Method for producing nickel active material powder.
【請求項41】 水酸化ニッケル活物質粉末は、0.141. The nickel hydroxide active material powder has a content of 0.1%.
μm以下の一次粒子が集合したものである請求項40記41. The primary particle according to claim 40, wherein the primary particles are not larger than μm.
載の水酸化ニッケル活物質粉末の製造法。Production method of nickel hydroxide active material powder described above.
JP03194931A 1991-07-08 1991-07-08 Nickel hydroxide active material powder, nickel positive electrode and alkaline storage battery using the same Expired - Lifetime JP3136668B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP03194931A JP3136668B2 (en) 1991-07-08 1991-07-08 Nickel hydroxide active material powder, nickel positive electrode and alkaline storage battery using the same
US07/795,845 US5700596A (en) 1991-07-08 1991-11-21 Nickel hydroxide active material powder and nickel positive electrode and alkali storage battery using them
DE69118525T DE69118525T2 (en) 1991-07-08 1991-11-26 Active material made of nickel hydroxide powder, positive nickel electrode, and its use in an alkaline storage battery
EP91120178A EP0523284B1 (en) 1991-07-08 1991-11-26 Nickel hydroxide active material powder and nickel positive electrode and alkali storage battery using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03194931A JP3136668B2 (en) 1991-07-08 1991-07-08 Nickel hydroxide active material powder, nickel positive electrode and alkaline storage battery using the same

Publications (2)

Publication Number Publication Date
JPH0521064A JPH0521064A (en) 1993-01-29
JP3136668B2 true JP3136668B2 (en) 2001-02-19

Family

ID=16332726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03194931A Expired - Lifetime JP3136668B2 (en) 1991-07-08 1991-07-08 Nickel hydroxide active material powder, nickel positive electrode and alkaline storage battery using the same

Country Status (1)

Country Link
JP (1) JP3136668B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506076A (en) * 1993-06-30 1996-04-09 Toshiba Battery Co., Ltd. Alkali secondary battery
JP3151340B2 (en) * 1993-08-19 2001-04-03 東芝電池株式会社 Alkaline storage battery
US5674643A (en) * 1995-02-14 1997-10-07 Sanyo Electric Co., Ltd. Non-sintered nickel electrode for alkaline storage cell
EP0801431A4 (en) * 1995-11-22 1999-02-24 Matsushita Electric Ind Co Ltd Nickel hydroxide active material for alkaline storage battery and positive plate
EP1195824B1 (en) 1996-09-20 2011-10-05 Panasonic Corporation Positive electrode active material for alkaline storage batteries
JP3389252B2 (en) * 1997-01-09 2003-03-24 三洋電機株式会社 Alkaline storage battery and charging method thereof
JP3489960B2 (en) * 1997-04-01 2004-01-26 松下電器産業株式会社 Alkaline storage battery
JP3568408B2 (en) 1998-03-16 2004-09-22 三洋電機株式会社 Positive electrode active material for alkaline secondary batteries and alkaline secondary batteries
JP4049484B2 (en) 1999-08-02 2008-02-20 三洋電機株式会社 Sealed alkaline storage battery
JP2001266931A (en) 2000-03-23 2001-09-28 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
CN1233055C (en) 2000-06-16 2005-12-21 松下电器产业株式会社 Anode active material for alkali storage battery, anode including samd, and alkali storage battery
JP4330832B2 (en) 2001-12-07 2009-09-16 パナソニック株式会社 Positive electrode active material for alkaline storage battery, positive electrode and alkaline storage battery
TW201236978A (en) * 2011-01-10 2012-09-16 Basf Se Process for preparing transition metal hydroxides
CN114864965A (en) * 2022-05-27 2022-08-05 四川华能氢能科技有限公司 Positive pole slurry pulling method for preparing hydrogen fuel cell

Also Published As

Publication number Publication date
JPH0521064A (en) 1993-01-29

Similar Documents

Publication Publication Date Title
EP0523284B1 (en) Nickel hydroxide active material powder and nickel positive electrode and alkali storage battery using them
JP3097347B2 (en) Nickel-metal hydride battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3136668B2 (en) Nickel hydroxide active material powder, nickel positive electrode and alkaline storage battery using the same
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JP3092222B2 (en) Nickel hydroxide active material and nickel positive electrode and alkaline storage battery using the same
JP3505953B2 (en) Active material for nickel electrode and nickel positive electrode for alkaline storage battery using the same
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JP3344234B2 (en) Paste-type nickel positive electrode for alkaline storage battery and its manufacturing method
US6608465B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP3198896B2 (en) Nickel-metal hydride battery
JPH09204930A (en) Nickel hydrogen storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP3012658B2 (en) Nickel hydride rechargeable battery
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3685643B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery using the electrode
Chen et al. The effect of Zn (OH) 2 addition on the electrode properties of nickel hydroxide electrodes
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JPH03285270A (en) Alkaline storage battery
JP2001266860A (en) Nickel hydrogen storage battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JPH10172559A (en) Nickel active material for alkaline storage battery and manufacture thereof
JPH04328252A (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11