JP3132960B2 - Ammonia decomposition catalyst - Google Patents

Ammonia decomposition catalyst

Info

Publication number
JP3132960B2
JP3132960B2 JP06125992A JP12599294A JP3132960B2 JP 3132960 B2 JP3132960 B2 JP 3132960B2 JP 06125992 A JP06125992 A JP 06125992A JP 12599294 A JP12599294 A JP 12599294A JP 3132960 B2 JP3132960 B2 JP 3132960B2
Authority
JP
Japan
Prior art keywords
catalyst
ammonia
powder
ammonia decomposition
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06125992A
Other languages
Japanese (ja)
Other versions
JPH07328438A (en
Inventor
野島  繁
耕三 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP06125992A priority Critical patent/JP3132960B2/en
Priority claimed from US08/472,057 external-priority patent/US5679313A/en
Priority to US08/472,057 priority patent/US5679313A/en
Priority to CA002151229A priority patent/CA2151229C/en
Priority to AT95108809T priority patent/ATE235301T1/en
Priority to EP95108809A priority patent/EP0686423B1/en
Priority to DE1995630024 priority patent/DE69530024T2/en
Publication of JPH07328438A publication Critical patent/JPH07328438A/en
Publication of JP3132960B2 publication Critical patent/JP3132960B2/en
Application granted granted Critical
Priority to US10/052,225 priority patent/USRE39041E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/364

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は各種排ガス等に含まれる
アンモニアを無害な窒素に分解する触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for decomposing ammonia contained in various kinds of exhaust gas into harmless nitrogen.

【0002】[0002]

【従来の技術】アンモニアは肥料や硝酸の製造原料、冷
媒、排ガス中の窒素酸化物除去用還元剤等幅広い分野で
使用されている。したがって、各種化学品製造工場、冷
凍機等の廃棄物処理工場あるいは燃焼排ガス処理施設等
からは多量のアンモニアが排出される。アンモニアは特
異な刺激臭を有する気体であり大気中への放出は極力抑
える必要がある。しかし、生物の腐敗によるアンモニア
の生成や廃棄物中の冷媒からのアンモニアの放散、さら
に煙道排ガス中の窒素酸化物の還元に用いられるアンモ
ニアが未反応のまま大気放出される等、多くの場所でア
ンモニアが大気放出されているのが現状である。
2. Description of the Related Art Ammonia is used in a wide variety of fields such as raw materials for producing fertilizers and nitric acid, refrigerants, and reducing agents for removing nitrogen oxides from exhaust gas. Therefore, a large amount of ammonia is discharged from various chemical manufacturing plants, a waste treatment plant such as a refrigerator, or a combustion exhaust gas treatment facility. Ammonia is a gas having a peculiar pungent odor, and its release into the atmosphere must be minimized. However, in many places, such as the production of ammonia due to the decay of organisms, the emission of ammonia from refrigerants in waste, and the release of ammonia used for the reduction of nitrogen oxides in flue gas without being reacted to the atmosphere At present, ammonia is released to the atmosphere.

【0003】[0003]

【発明が解決しようとする課題】アンモニアの大気放出
を防ぐ方法の一つとしてアルミナやシリカ−アルミナ系
担体に酸化鉄や酸化ニッケルを担持させた触媒を利用し
て次の反応式によりアンモニアを無害な窒素に分解する
方法が知られている。 2NH3 + 3/2O2 → N2 + 3H2 O ところが、従来の触媒では前記反応以外に次のような副
反応によりNO,NO 2 ,N2 O等の生成が認められ、
新たに大気汚染を生じる恐れがあった。 2NH3 + 5/2O2 → 2NO + 3H2 O 2NH3 + 7/2O2 → 2NO2 + 3H2 O 2NH3 + 2O2 → N2 O + 3H2
SUMMARY OF THE INVENTION Ammonia release to the atmosphere
Alumina or silica-alumina type
Utilize a catalyst with iron oxide or nickel oxide supported on a carrier
Decomposes ammonia into harmless nitrogen by the following reaction formula
Methods are known. 2NHThree+ 3 / 2OTwo → NTwo+ 3HTwoO However, in the conventional catalyst, in addition to the above reaction,
NO, NO by reaction Two, NTwoO and the like are recognized,
There was a risk of new air pollution. 2NHThree+ 5 / 2OTwo → 2NO + 3HTwoO 2NHThree+ 7 / 2OTwo → 2NOTwo+ 3HTwoO 2NHThree+ 2OTwo → NTwoO + 3HTwoO

【0004】これまで、NOx生成機能(第一成分)と
脱硝機能(第二成分)を兼ね備えた触媒が特開平5−1
46634号公報等において提案されているが、第1成
分と第2成分が混練されて共存しているか、又は第2成
分の上層に第1成分が担持されているために、必ずしも
十分にアンモニアを無害なN2 に転換することができな
かった。本発明の目的は前記従来技術の問題点を解決
し、大気汚染のもととなる窒素酸化物を副生する恐れが
なく、高い収率でアンモニアを分解除去することのでき
るアンモニア分解触媒を提供することにある。
A catalyst having both a NOx generation function (first component) and a denitration function (second component) has been disclosed in Japanese Unexamined Patent Publication No. 5-1.
No. 46634, etc., the first component and the second component are kneaded and coexist, or the first component is supported on an upper layer of the second component, so that the ammonia is not always sufficient. No conversion to harmless N 2 was possible. An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an ammonia decomposition catalyst capable of decomposing and removing ammonia in a high yield without the risk of by-producing nitrogen oxides that cause air pollution. Is to do.

【0005】[0005]

【課題を解決するための手段】本発明は表Aに示される
特定のX線回折パターンを有し、脱水された状態におい
て酸化物のモル比で表わして、(1±0.8)R2 O・
〔aM2 3 ・bM′O・cAl2 3 〕・ySiO2
(上記式中、R:アルカリ金属イオン及び/又は水素イ
オン、M:VIII族元素、希土類元素、チタン、バナジウ
ム、クロム、ニオブ、アンチモン、ガリウム、M′:マ
グネシウム、カルシウム、ストロンチウム、バリウム、
a≧0、20>b≧0、a+c=1、3000>y>1
1)なる結晶性シリケートの多孔質物質を担体として、
活性金属として白金、パラジウム、ロジウム及びルテニ
ウムよりなる群から選ばれた少なくとも1種の貴金属を
有する触媒Aの上層にチタン、バナジウム、タングステ
ン及びモリブデンからなる群から選ばれた1種以上の元
素を有する触媒Bを被覆させた層状触媒よりなるアンモ
ニア分解用触媒である。前記触媒を構成する結晶性シリ
ケートは下記表Aに示すようなX線回折パターンを示す
結晶構造を有するのが特徴である。
The present invention has the specific X-ray diffraction pattern shown in Table A and, in the dehydrated state, expressed as (1 ± 0.8) R 2 O ・
[AM 2 O 3 · bM'O · cAl 2 O 3 ] · ySiO 2
(In the above formula, R: alkali metal ion and / or hydrogen ion, M: group VIII element, rare earth element, titanium, vanadium, chromium, niobium, antimony, gallium, M ′: magnesium, calcium, strontium, barium,
a ≧ 0, 20> b ≧ 0, a + c = 1, 3000>y> 1
The porous material 1) becomes crystalline Shirike DOO as a carrier,
The catalyst A having at least one noble metal selected from the group consisting of platinum, palladium, rhodium and ruthenium as the active metal has at least one element selected from the group consisting of titanium, vanadium, tungsten and molybdenum on the upper layer. This is an ammonia decomposition catalyst comprising a layered catalyst coated with catalyst B. The crystalline silicate constituting the catalyst is characterized by having a crystal structure showing an X-ray diffraction pattern as shown in Table A below.

【0006】[0006]

【表2】 [Table 2]

【0007】[0007]

【作用】本発明を構成する触媒Aはアンニニアを低温に
て分解する能力を有しているが、NOxを副生する不具
合点も有しているため、本発明目的を満たす性能ではな
い。従って、この触媒Aの上層に一般の脱硝触媒成分で
ある触媒Bをコートすることにより、NOxの副生を防
ぎ、NH3 からのN2 への選択的転換する作用を促進す
る。すなわち、副生したNOxは触媒Bにより下記反応
によりN2 へ転換する効果を有する。 4NH3 +4NO+O2 → 4N2 +6H2 O 本発明触媒は必要によりアルミナゾル、シリカゾルなど
のバインダ成分やコージェライト等の基材を使用し、ウ
ォッシュコート法又はソリッド法によりハニカム化して
使用するのが好ましい。
The catalyst A of the present invention has the ability to decompose annonia at a low temperature, but also has the disadvantage of producing NOx as a by-product. Therefore, by coating the upper layer of the catalyst A with the catalyst B, which is a general denitration catalyst component, the by-product of NOx is prevented and the action of selectively converting NH 3 to N 2 is promoted. That is, the by-produced NOx has an effect of being converted into N 2 by the following reaction by the catalyst B. 4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 O The catalyst of the present invention preferably uses a binder component such as alumina sol or silica sol or a base material such as cordierite as necessary, and is preferably used in a honeycomb form by a wash coat method or a solid method.

【0008】本発明触媒を構成する触媒Aと触媒Bのハ
ニカム基材への担持モデルを図1に示す。図1の下層の
触媒Aで副生したNOxが拡散して脱離する際、上層の
触媒B上において吸着NH3 との脱硝反応が生じNOx
が除去される。触媒Aと触媒Bの含有比率は重量比にお
いて、1:99〜99:1の広範囲において構成され
る。
FIG. 1 shows a model for supporting the catalyst A and the catalyst B constituting the catalyst of the present invention on a honeycomb substrate. When NOx by-produced by the lower catalyst A in FIG. 1 is diffused and desorbed, a denitration reaction with the adsorbed NH 3 occurs on the upper catalyst B and NOx
Is removed. The content ratio of the catalyst A to the catalyst B is constituted in a wide range from 1:99 to 99: 1 by weight.

【0009】触媒Aにおいて、活性金属として白金、パ
ラジウム、ロジウム及びルテニウムよりなる群から選ば
れた少なくとも1種の貴金属を各種担体に担持させる方
法としては、イオン交換法により、これらの貴金属イオ
ンを含有させるか、または塩化物等の貴金属塩水溶液を
含浸させる含浸法により含有させることができる。担持
する活性金属(貴金属)は0.002wt%以上で十分
に活性が発現し、好ましくは0.02wt%以上で高い
活性を有する。さらに、本発明の層状触媒はSO2 が共
存する排ガスにおいても、アンモニア分解活性が低下す
ることなく安定なアンモニア分解性能を保つ。また、S
2 をSO3 へ酸化させる能力は低いため酸性硫酸アン
モニウム生成の不具合点も見られない。さらに、また、
アンモニアを含有するガスを、100〜600℃の温度
で前記本発明層状触媒に接触させることにより、ガス中
のアンモニアは窒素に分解される。この分解反応は選択
的に進行し、NO、NO2 、N2 O等の有害ガスが副生
することはない。
In the catalyst A, at least one noble metal selected from the group consisting of platinum, palladium, rhodium and ruthenium as an active metal is supported on various supports by an ion-exchange method. Or an impregnation method of impregnating with an aqueous solution of a noble metal salt such as chloride. The active metal (noble metal) to be supported exhibits sufficient activity at 0.002 wt% or more, and preferably has high activity at 0.02 wt% or more. Further, the layered catalyst of the present invention maintains a stable ammonia decomposition performance without reducing the ammonia decomposition activity even in an exhaust gas in which SO 2 coexists. Also, S
Since the ability to oxidize O 2 to SO 3 is low, there is no problem in producing acidic ammonium sulfate. In addition,
By bringing the gas containing ammonia into contact with the layered catalyst of the present invention at a temperature of 100 to 600 ° C., the ammonia in the gas is decomposed into nitrogen. This decomposition reaction proceeds selectively, and no harmful gas such as NO, NO 2 , N 2 O is produced as a by-product.

【0010】[0010]

【実施例】以下、本発明の実施例をあげ、本発明触媒の
効果を明らかにする。 (実施例1) 触媒Aに属する粉末触媒1〜29の調製 〇 粉末触媒1の調製 水ガラス1号(SiO2 :30%):5616gを水:
5429gに溶解し、この溶液を溶液Aとした。一方、
水:4175gに硫酸アルミニウム:718.9g、塩
化第二鉄:110g、酢酸カルシウム:47.2g、塩
化ナトリウム:262g及び濃塩酸:2020gを混合
して溶解し、この溶液を溶液Bとした。溶液Aと溶液B
を一定割合で供給して沈殿を生成させ、十分攪拌してp
H=8.0のスラリを得る。このスラリを20リットル
のオートクレーブに仕込み、さらにテトラプロピルアン
モニウムブロマイドを500g添加し、160℃にて7
2時間水熱合成を行い、合成後水洗して乾燥させ、さら
に500℃、3時間焼成させ結晶性シリケート1を得
た。この結晶性シリケート1は酸化物のモル比で(結晶
水を省く)下記の組成式で表され、結晶構造はX線回折
で前記表Aにて表示されるものであった。 0.5Na2 O・0.5H2 O・〔0.8Al2 3
0.2Fe2 3 ・0.25CaO〕・25SiO2 上記結晶性シリケート1を4NのNH4 Cl水溶液40
℃に3時間攪拌してNH4 イオン交換を実施した。イオ
ン交換後洗浄して100℃、24時間乾燥させた後、4
00℃、3時間焼成してH型の結晶性シリケート1を得
た。このH型の100gの結晶性シリケート1を塩化白
金酸水溶液(H2 PtCl 6 ・6H2 O:0.15g/
100cc:水)に浸漬し、十分混練した後、200℃
で蒸発乾固を行った。次いで500℃で窒素雰囲気で1
2時間パージ処理を行い、粉末触媒1を得た。
EXAMPLES Examples of the present invention will be described below to illustrate the catalyst of the present invention.
Clarify the effect. (Example 1) Preparation of powder catalysts 1 to 29 belonging to catalyst A 調製 Preparation of powder catalyst 1 Water glass No. 1 (SiOTwo: 30%): 5616 g of water:
The solution was dissolved in 5429 g, and this solution was designated as solution A. on the other hand,
Water: 4175 g, aluminum sulfate: 718.9 g, salt
Ferric chloride: 110 g, calcium acetate: 47.2 g, salt
Mix 262 g of sodium chloride and 2020 g of concentrated hydrochloric acid
This solution was used as solution B. Solution A and Solution B
Is supplied at a constant rate to produce a precipitate,
A slurry of H = 8.0 is obtained. 20 liters of this slurry
Into an autoclave and add
Add 500 g of monium bromide and add 7 g at 160 ° C.
Perform hydrothermal synthesis for 2 hours, wash with water, dry after synthesis, and further
Is fired at 500 ° C. for 3 hours to obtain crystalline silicate 1.
Was. This crystalline silicate 1 has a molar ratio of oxide (crystal
Water is omitted) is represented by the following composition formula, and the crystal structure is X-ray diffraction
In the above Table A. 0.5NaTwoO ・ 0.5HTwoO · [0.8AlTwoOThree
0.2FeTwoOThree・ 0.25CaO] ・ 25SiOTwo The above crystalline silicate 1 is converted to 4N NHFourCl aqueous solution 40
Stir for 3 hours atFourIon exchange was performed. Io
After washing and drying at 100 ° C for 24 hours,
Baking at 00 ° C. for 3 hours to obtain H-type crystalline silicate 1
Was. 100 g of this crystalline H-type crystalline silicate 1
Gold acid aqueous solution (HTwoPtCl 6・ 6HTwoO: 0.15 g /
100 cc: water) and thoroughly kneaded, then 200 ° C
And evaporated to dryness. Then at 500 ° C in a nitrogen atmosphere
Purge treatment was performed for 2 hours to obtain powder catalyst 1.

【0011】〇 粉末触媒2〜15の調製 上記粉末触媒1の調製での結晶性シリケート1の合成法
において、塩化第二鉄の代わりに塩化コバルト、塩化ル
テニウム、塩化ロジウム、塩化ランタン、塩化セリウ
ム、塩化チタン、塩化バナジウム、塩化クロム、塩化ア
ンチモン、塩化ガリウム及び塩化ニオブを各々酸化物換
算でFe2 3 と同じモル数だけ添加した以外は結晶性
シリケート1と同様の操作を繰り返して結晶性シリケー
ト2〜12を調製した。これらの結晶性シリケートの結
晶構造はX線回折で前記表Aに表示されるものであり、
その組成は酸化物のモル比(脱水された形態)で表わし
て0.5Na2 O・0.5H2 O・(0.2M2 3
0.8Al2 3 ・0.25CaO)・25SiO2
ある。ここでMはCo,Ru,Rh,La,Ce,T
i,V,Cr,Sb,Ga,Nbである。
(2) Preparation of Powdered Catalysts 2 to 15 In the method for synthesizing the crystalline silicate 1 in the preparation of the powdered catalyst 1 described above, instead of ferric chloride, cobalt chloride, ruthenium chloride, rhodium chloride, lanthanum chloride, cerium chloride, The same operation as that of crystalline silicate 1 was repeated except that titanium chloride, vanadium chloride, chromium chloride, antimony chloride, gallium chloride and niobium chloride were each added in the same mole number as Fe 2 O 3 in terms of oxide. 2-12 were prepared. The crystal structures of these crystalline silicates are those shown in Table A above by X-ray diffraction,
Its composition is expressed as a molar ratio of oxide (dehydrated form) of 0.5Na 2 O · 0.5H 2 O · (0.2M 2 O 3.
It is a 0.8Al 2 O 3 · 0.25CaO) · 25SiO 2. Where M is Co, Ru, Rh, La, Ce, T
i, V, Cr, Sb, Ga, Nb.

【0012】さらに、結晶性シリケート1の合成法にお
いて、酢酸カルシウムの代わりに酢酸マグネシウム、酢
酸ストロンチウム、酢酸バリウムを各々酸化物換算でC
aOと同じモル数だけ添加した以外は結晶性シリケート
1と同様の操作を繰り返して結晶性シリケート13〜1
5を調製した。これらの結晶性シリケートの結晶構造は
X線回折で前記表Aに表示されるものであり、その組成
は酸化物のモル比(脱水された形態)で表わして0.5
Na2 O・0.5H2 O・(0.2Fe2 3・0.8
Al2 3 ・0.25MeO)・25SiO2 である。
ここでMeはMg,Sr,Baである。
Further, in the method for synthesizing the crystalline silicate 1, magnesium acetate, strontium acetate, and barium acetate are used in place of calcium acetate in terms of oxides, respectively.
The same operation as that of the crystalline silicate 1 was repeated except that the same mole number as that of the aO was added, and the crystalline silicates 13 to 1 were added.
5 was prepared. The crystal structures of these crystalline silicates are shown in Table A above by X-ray diffraction, and their compositions are expressed in terms of a molar ratio of oxides (dehydrated form) of 0.5.
Na 2 O · 0.5H 2 O · (0.2Fe 2 O 3 · 0.8
Al 2 O 3 · 0.25MeO) · 25SiO 2 .
Here, Me is Mg, Sr, and Ba.

【0013】上記結晶性シリケート2〜15を用いて粉
末触媒1と同様の方法でH型の結晶性シリケート2〜1
5を得、このシリケートを塩化白金酸水溶液に浸漬し、
粉末触媒1と同様に粉末触媒2〜15を得た。以上の粉
末触媒1〜15の性状を下記表Bにまとめて示す。
Using the above crystalline silicates 2 to 15, the H-type crystalline silicates 2 to 1 are prepared in the same manner as the powder catalyst 1.
5 was obtained, and this silicate was immersed in an aqueous solution of chloroplatinic acid,
Powdered catalysts 2 to 15 were obtained in the same manner as in powdered catalyst 1. The properties of the above powder catalysts 1 to 15 are summarized in Table B below.

【0014】[0014]

【表3】 [Table 3]

【0015】[0015]

【0016】[0016]

【0017】[0017]

【0018】(実施例2) 触媒Bに属する粉末触媒
6〜18の調製 ○粉末触媒16の調製 メタチタン酸スラリ(TiO2 含有量:30wt%、S
4 :8wt%):670gにパラタングステン酸アン
モニウム{(NH4 1010・W1266・6H2 O}:
36g及びメタバナジン酸アンモニウム:13gを加
え、混練しながら200℃で加熱して水を蒸発させた。
次に550℃で3時間空気焼成を行い、Ti−W−Vの
脱硝触媒粉末33を得た。この触媒の組成はTi:W:
V=91:5:4(原子比)である。
Example 2 Powder Catalyst 1 belonging to Catalyst B
Preparation of 6 to 18 ○ Preparation of powder catalyst 16 Metatitanate slurry (TiO 2 content: 30 wt%, S
O 4: 8wt%): 670g of ammonium paratungstate {(NH 4) 10 H 10 · W 12 O 66 · 6H 2 O}:
36 g and 13 g of ammonium metavanadate were added, and the mixture was heated at 200 ° C. while kneading to evaporate water.
Next, air calcination was performed at 550 ° C. for 3 hours to obtain a denitration catalyst powder 33 of Ti-WV. The composition of this catalyst is Ti: W:
V = 91: 5: 4 (atomic ratio).

【0019】〇粉末触媒17、18の調製 粉末触媒16のパラタングステン酸アンモニウムを添加
しない触媒で粉末触媒16と同様の調製法にてTi−V
脱硝触媒粉末17を得た。この触媒の組成はTi:V=
95:5(原子比)である。また、粉末触媒16のパラ
タングステン酸アンモニウムの代わりにパラモリブデン
酸アンモニウム{(NH4 6 ・Mo7 24・4H
2 O}を用いて粉末触媒16と同様の方法にてTi−M
o−V脱硝触媒粉末18を得た。この触媒の組成はT
i:Mo:V=91:5:4(原子比)である。
{Preparation of Powdered Catalysts 17 and 18 } Powdered catalyst 16 was prepared by adding Ti-V in the same manner as powdered catalyst 16 without adding ammonium paratungstate.
A denitration catalyst powder 17 was obtained. The composition of this catalyst is Ti: V =
95: 5 (atomic ratio). Furthermore, ammonium paramolybdate in place of ammonium paratungstate powder catalyst 16 {(NH 4) 6 · Mo 7 O 24 · 4H
Ti-M using 2 O} in the same manner as the powder catalyst 16
An oV denitration catalyst powder 18 was obtained. The composition of this catalyst is T
i: Mo: V = 91: 5: 4 (atomic ratio).

【0020】(実施例3) ハニカム触媒の調製(層状
タイプ) 粉末触媒1を100gに対してバインダとしてアルミナ
ゾル:3g、シリカゾル:55g(SiO2 :20%)
及び水:200g加え、充分攪拌を行いウォッシュコー
ト用スラリとした。次にコージェライト用モノリス基材
(400セルの格子目)を上記スラリに浸漬し、取り出
した後余分なスラリを吹きはらい200℃で乾燥させ
た。コート量は基材100ccあたり10g担持した。
次に、粉末触媒16を上記粉末触媒1の代わりにウォッ
シュコート用スラリを作り、粉末触媒1をコートしたモ
ノリス基材に層状に基材100ccあたり10gコート
して200℃で乾燥させハニカムコート物1を得た。
Example 3 Preparation of Honeycomb Catalyst (Layered Type) Alumina sol: 3 g, silica sol: 55 g (SiO 2 : 20%) as a binder for 100 g of powder catalyst 1
And water: 200 g were added and sufficiently stirred to obtain a wash coat slurry. Next, a monolith base material for cordierite (a grid of 400 cells) was immersed in the above slurry, taken out, and then sprayed with excess slurry and dried at 200 ° C. The coating amount was 10 g per 100 cc of the substrate.
Next, a slurry for wash coating was prepared by using the powder catalyst 16 in place of the powder catalyst 1, and a monolith substrate coated with the powder catalyst 1 was coated in a layer at 10 g per 100 cc of the substrate, dried at 200 ° C., and dried at 200 ° C. I got

【0021】上記ハニカムコート物1と同様の方法で粉
末触媒2〜15をまずモノリス基材にコートして次に粉
末触媒16をコートした層状触媒を調製し、ハニカムコ
ート物2〜15を得た。
Powder catalysts 2 to 15 were first coated on a monolith substrate in the same manner as in the above-mentioned honeycomb coated product 1, and then a layered catalyst coated with powder catalyst 16 was prepared to obtain honeycomb coated products 2 to 15 . .

【0022】またハニカムコート物1と同様の方法で粉
末触媒16に代わり粉末触媒17,18を上層にコート
して、ハニカムコート物16,17を得た。
Further, powder catalysts 17 and 18 were coated on the upper layer in place of the powder catalyst 16 in the same manner as the honeycomb coated material 1 to obtain honeycomb coated products 16 and 17 .

【0023】さらにハニカムコート物1の調製法におい
て、基材100ccあたり下層の粉末触媒1を1gと上
層の粉末触媒16を19g、下層の粉末触媒1を4gと
上層の粉末触媒16を16g、下層の粉末触媒1を16
gと上層の粉末触媒16を4g、下層の粉末触媒1を1
9gと上層の粉末触媒16を1gを各々層状にコート
し、ハニカムコート物1と同様にハニカムコート物18
〜21を得た。
Further, in the method of preparing the honeycomb coated article 1, 1 g of the lower layer powder catalyst 1 and 19 g of the upper layer powder catalyst 16 , 4 g of the lower layer powder catalyst 1 and 16 g of the upper layer powder catalyst 16 per 100 cc of the base material were used. Powder catalyst 1 of 16
g of powder catalyst 16 of the upper layer and 4 g of powder catalyst 1 of the lower layer
9 g and 1 g of the upper layer powder catalyst 16 were each coated in layers, and the same as the honeycomb coat 1, the honeycomb coat 18 was coated.
~ 21 .

【0024】(比較例1) 粉末触媒1又は粉末触媒16のみをハニカムコート物1
と同様の方法にてハニカム基材100ccあたり20g
コートして、ハニカムコート物22、23を得た。
Comparative Example 1 Honeycomb coated product 1 was prepared by using only powder catalyst 1 or powder catalyst 16.
20g per 100cc of honeycomb substrate in the same manner as
Coating was performed to obtain honeycomb coated products 22 and 23 .

【0025】(実験例1) ハニカム触媒1〜23を用いてアンモニア分解試験を実
施した。反応管に15×15×60mmの大きさで14
4セルからなるハニカム触媒1〜23を入れ、次の組成
のアンモニア含有ガスをSV=16300h-1、流量
5.54Nm3 /m2 の条件で流し、反応温度300℃
及び400℃でアンモニア分解性能を調べた。 (ガス組成) NH3 : 20ppm SO2 : 20ppm CO2 : 7% H2 O : 6% O2 : 14.7% N2 : 残 性能評価は反応初期状態におけるアンモニア分解率及び
NOx(NO、NO2、N2 O)生成率及びSO2 酸化
率を測定することによって行なった。なお、アンモニア
分解率及びNOx生成率は次の式により求めた。 ○ アンモニア分解率(%)= 〔(入口NH3 −出口NH3 )/入口NH3 〕×100 ○ NOx生成率(%)= 〔(出口(N2 O×2+NO+NO2 ))/入口N
3 〕×100 ○ SO2 酸化率(%)=〔出口SO3 /入口SO2
×100 これらの測定結果を表Cに示す。
(Experimental Example 1) An ammonia decomposition test was performed using honeycomb catalysts 1 to 23 . 14 x 15 x 15 x 60 mm in the reaction tube
Honeycomb catalysts 1 to 23 each consisting of 4 cells were charged, and an ammonia-containing gas having the following composition was flowed under the conditions of SV = 16300 h -1 and a flow rate of 5.54 Nm 3 / m 2 , and the reaction temperature was 300 ° C.
At 400 ° C. and at 400 ° C. (Gas composition) NH 3: 20ppm SO 2: 20ppm CO 2: 7% H 2 O: 6% O 2: 14.7% N 2: Ammonia decomposition rate remaining performance evaluation in the reaction initial and NOx (NO, NO 2 , N 2 O) production rate and SO 2 oxidation rate were measured. The ammonia decomposition rate and the NOx generation rate were determined by the following equations. ○ Ammonia decomposition rate (%) = [(inlet NH 3 −outlet NH 3 ) / inlet NH 3 ] × 100 ○ NOx generation rate (%) = [(outlet (N 2 O × 2 + NO + NO 2 )) / inlet N
H 3 ] × 100 ○ SO 2 oxidation rate (%) = [outlet SO 3 / inlet SO 2 ]
× 100 The results of these measurements are shown in Table C.

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【0028】(実験例2) ハニカム触媒1〜21を使用し実施例1と同一の条件に
て長時間通ガスすることにより耐久性評価試験を実施し
た。その結果、前記ガス条件にて1000時間供給後に
おいても表Cと同様のアンモニア分解率、NOx生成率
及びSO2 酸化率を維持しており、耐久性に優れた触媒
であることが確認された。
(Experimental Example 2) A durability evaluation test was conducted by using honeycomb catalysts 1 to 21 and passing gas for a long time under the same conditions as in Example 1. As a result, even after supplying for 1000 hours under the above gas conditions, the same ammonia decomposition rate, NOx generation rate and SO2 oxidation rate as those in Table C were maintained, and it was confirmed that the catalyst was excellent in durability.

【0029】[0029]

【発明の効果】本発明のアンモニア分解用触媒によれ
ば、SO2 の酸化やNOx等の副生成物を生ずることな
く、アンモニアを無害な窒素に分解することができる。
このような分解処理方法は従来なかったものであり、そ
の産業上の利用価値は極めて大きいものがある。
According to the catalyst for ammonia decomposition of the present invention, ammonia can be decomposed into harmless nitrogen without oxidizing SO 2 or generating by-products such as NOx.
Such a decomposition treatment method has not been available in the past, and its industrial utility value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のハニカム触媒を構成する粉
末触媒担持の模式図。
FIG. 1 is a schematic view of supporting a powder catalyst constituting a honeycomb catalyst according to one embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭50−53295(JP,A) 特開 昭57−84724(JP,A) 特開 昭50−131690(JP,A) 特開 平7−16462(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/86 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-50-53295 (JP, A) JP-A-57-84724 (JP, A) JP-A-50-131690 (JP, A) 16462 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01J 21/00-38/74 B01D 53/86

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Aに示される特定のX線回折パターン
を有し、脱水された状態において酸化物のモル比で表わ
して、(1±0.8)R2 O・〔aM23 ・bM′O
・cAl2 3 〕・ySiO2 (上記式中、R:アルカ
リ金属イオン及び/又は水素イオン、M:VIII族元素、
希土類元素、チタン、バナジウム、クロム、ニオブ、ア
ンチモン、ガリウム、M′:マグネシウム、カルシウ
ム、ストロンチウム、バリウム、a≧0、20>b≧
0、a+c=1、3000>y>11)なる結晶性シリ
ケートの多孔質物質を担体として、活性金属として白
金、パラジウム、ロジウム及びルテニウムよりなる群か
ら選ばれた少なくとも1種の貴金属を有する触媒Aの上
層にチタン、バナジウム、タングステン及びモリブデン
からなる群から選ばれた1種以上の元素を有する触媒B
を被覆させた層状触媒よりなるアンモニア分解用触媒。 【表1】
(1) It has a specific X-ray diffraction pattern shown in Table A, and expressed as (1 ± 0.8) R 2 O · [aM 2 O 3・ BM'O
· CAl 2 O 3 ] · ySiO 2 (wherein, R is an alkali metal ion and / or hydrogen ion, M is a group VIII element,
Rare earth element, titanium, vanadium, chromium, niobium, antimony, gallium, M ': magnesium, calcium, strontium, barium, a ≧ 0, 20> b ≧
0, a + c = 1,3000>y> 11) as comprising a crystalline silicate <br/> cable preparative porous material carrier, at least one selected platinum, palladium, from the group consisting of rhodium and ruthenium as active metal A catalyst B having at least one element selected from the group consisting of titanium, vanadium, tungsten and molybdenum in an upper layer of the catalyst A having a noble metal
A catalyst for ammonia decomposition comprising a layered catalyst coated with a. [Table 1]
JP06125992A 1994-06-08 1994-06-08 Ammonia decomposition catalyst Expired - Lifetime JP3132960B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP06125992A JP3132960B2 (en) 1994-06-08 1994-06-08 Ammonia decomposition catalyst
US08/472,057 US5679313A (en) 1994-06-08 1995-06-06 Ammonia decomposition catalysts
CA002151229A CA2151229C (en) 1994-06-08 1995-06-07 Ammonia decomposition catalysts
EP95108809A EP0686423B1 (en) 1994-06-08 1995-06-08 Use of ammonia decomposition catalysts
AT95108809T ATE235301T1 (en) 1994-06-08 1995-06-08 USE OF CATALYSTS FOR THE DECOMPOSITION OF AMMONIA
DE1995630024 DE69530024T2 (en) 1994-06-08 1995-06-08 Use of catalysts for the decomposition of ammonia
US10/052,225 USRE39041E1 (en) 1994-06-08 2002-01-16 Ammonia decomposition catalysts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP06125992A JP3132960B2 (en) 1994-06-08 1994-06-08 Ammonia decomposition catalyst
US08/472,057 US5679313A (en) 1994-06-08 1995-06-06 Ammonia decomposition catalysts

Publications (2)

Publication Number Publication Date
JPH07328438A JPH07328438A (en) 1995-12-19
JP3132960B2 true JP3132960B2 (en) 2001-02-05

Family

ID=26462277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06125992A Expired - Lifetime JP3132960B2 (en) 1994-06-08 1994-06-08 Ammonia decomposition catalyst

Country Status (1)

Country Link
JP (1) JP3132960B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664608B2 (en) * 2004-03-02 2011-04-06 大阪瓦斯株式会社 Ammonia decomposition catalyst and ammonia decomposition method
US7727499B2 (en) * 2007-09-28 2010-06-01 Basf Catalysts Llc Ammonia oxidation catalyst for power utilities
WO2009075311A1 (en) * 2007-12-12 2009-06-18 Nikki-Universal Co., Ltd. Ammonia-decomposing catalyst, and method for treatment of ammonia-containing exhaust gas with the catalyst
JP5732297B2 (en) * 2011-03-31 2015-06-10 エヌ・イーケムキャット株式会社 Ammonia oxidation catalyst, exhaust gas purification device, and exhaust gas purification method
US9011809B2 (en) 2011-03-31 2015-04-21 N.E. Chemcat Corporation Ammonia oxidation catalyst, exhaust gas purification device using same, and exhaust gas purification method
KR20150091343A (en) * 2012-11-30 2015-08-10 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Ammonia oxidation catalyst
WO2017005779A1 (en) * 2015-07-09 2017-01-12 Haldor Topsøe A/S Three way catalyst having an nh3-scr activity, an ammonia oxidation activity and an adsorption capacity for volatile vanadium and tungsten compounds
CN110075907A (en) * 2019-05-08 2019-08-02 中自环保科技股份有限公司 A kind of ammoxidation catalyst and preparation method thereof for diesel car tail gas refining

Also Published As

Publication number Publication date
JPH07328438A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
US5679313A (en) Ammonia decomposition catalysts
US6080376A (en) Methods of denitrating exhaust gases
JP2732614B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
CA2486158C (en) Catalyst for removing nitrogen oxides, method for production the same, and method for removing nitrogen oxides
JP3132960B2 (en) Ammonia decomposition catalyst
JP3132959B2 (en) Ammonia decomposition catalyst
JP4346706B2 (en) Catalyst carrier, production method thereof, denitration catalyst and denitration method
JP3229136B2 (en) Ammonia decomposition method
JP3332652B2 (en) Ammonia decomposition removal method
JP3495591B2 (en) Method for reduction treatment of nitrogen oxides and SO3 in exhaust gas
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JP3229117B2 (en) Ammonia decomposition method
JP3241166B2 (en) Ammonia decomposition method
JP3495592B2 (en) Method for reducing SO3 in exhaust gas
JP3970093B2 (en) Ammonia decomposition removal method
JP3495548B2 (en) Reduction method of sulfur trioxide
JP3322520B2 (en) Exhaust gas denitration catalyst
JP3388941B2 (en) Exhaust gas purification method
JP3241216B2 (en) Exhaust gas denitration treatment method
JPH08309188A (en) Ammonia decomposition catalyst and ammonia decomposition method
JP3462580B2 (en) Exhaust gas denitration method
JP3760076B2 (en) Adsorbent such as nitrogen oxide, method for producing the same, and method for removing nitrogen oxide and the like
JPH08266870A (en) Denitrifying method
JP3254040B2 (en) DeNOx treatment method
JP3495542B2 (en) Sulfur trioxide reduction method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 13

EXPY Cancellation because of completion of term