JP3115176B2 - Measurement method of natural frequency of bridge girder and spring constant of bearing - Google Patents
Measurement method of natural frequency of bridge girder and spring constant of bearingInfo
- Publication number
- JP3115176B2 JP3115176B2 JP05352471A JP35247193A JP3115176B2 JP 3115176 B2 JP3115176 B2 JP 3115176B2 JP 05352471 A JP05352471 A JP 05352471A JP 35247193 A JP35247193 A JP 35247193A JP 3115176 B2 JP3115176 B2 JP 3115176B2
- Authority
- JP
- Japan
- Prior art keywords
- point
- bearing
- center
- span
- calculate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は橋梁の固有振動数を測定
する方法と橋梁の支承部におけるバネ定数を測定する方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a natural frequency of a bridge and a method for measuring a spring constant at a support portion of the bridge.
【0002】[0002]
【従来の技術】従来は目視による巡回調査で異常が見ら
れる橋梁を判別し、それらについて外力をかけることで
振動測定を実施し、固有振動数やバネ定数を測定してい
た。この場合は調査に多くの人手と時間がかかり、また
外力に対する応答には支承部分や基礎地盤などの影響が
含まれているという問題点がある。2. Description of the Related Art Conventionally, bridges in which abnormalities are observed by visual inspection are determined, and vibration is measured by applying an external force to them to measure natural frequencies and spring constants. In this case, there is a problem that the survey requires a lot of manpower and time, and the response to the external force includes the influence of the bearing portion and the foundation ground.
【0003】[0003]
【発明が解決しようとする課題】従来の技術による測定
において、橋梁の形式や規模によっては測定に大がかり
な設備が必要になり、実施にはかなりの費用と労力を必
要とするため、多くの構造物について網羅的に調査する
ことができないという点である。また、調査結果が必ず
しも的確でないという問題も解決しようとする。In the measurement by the prior art, large-scale equipment is required for the measurement depending on the type and scale of the bridge, and the implementation requires considerable cost and labor. The point is that it is not possible to comprehensively investigate things. It also tries to solve the problem that the survey results are not always accurate.
【0004】[0004]
【課題を解決するための手段】支間中央部の振動の卓越
振動数には支承部の影響が入っているために橋梁の桁の
固有振動数にはなっていない。このため本発明では支間
中央のみではなく、支承部直上の桁上と、支間中央の桁
上の2カ所にセンサを図1の通りに設置して橋梁の振動
データを測定する。両者の測定データの水平方向成分及
び鉛直方向成分のスペクトルの比を求めることによって
おのおのの点における支承部の影響を排除した卓越振動
数を求めることができる。また求めた卓越振動数から支
承部のバネ定数を求めることができる。The predominant frequency of vibration at the center of the span is not the natural frequency of the bridge girder due to the influence of the bearing. For this reason, in the present invention, vibration data of a bridge is measured by installing sensors as shown in FIG. 1 not only at the center of the span but also at two places on the girder just above the bearing part and on the girder at the center of the span. By obtaining the ratio of the spectrum of the horizontal component and the spectrum of the vertical component of both measurement data, the dominant frequency excluding the influence of the bearing at each point can be obtained. Also, the spring constant of the bearing can be obtained from the obtained dominant frequency.
【0005】[0005]
【作用】まず桁の全質量mが支間中央に集中した単純桁
を考える。支間中央に荷重Pが載荷した場合のこの桁の
支間中央のたわみ量δは、次のように与えられる。[Operation] First, consider a simple girder in which the total mass m of the girder is concentrated at the center of the span. When the load P is applied to the center of the span, the deflection amount δ of the center of the span of this girder is given as follows.
【0006】[0006]
【数1】 (Equation 1)
【0007】ここで、Lは桁の支間長、Eはヤング係
数、Iは桁の断面2次モーメントとする。また、支間中
央のたわみ量δと桁の固有円振動数ωの関係はgを重力
定数として以下のように与えられる。Here, L is the span length of the girder, E is the Young's modulus, and I is the second moment of area of the girder. The relationship between the amount of deflection δ at the center of the span and the natural circular frequency ω of the girder is given as follows, where g is the gravity constant.
【0008】[0008]
【数2】 (Equation 2)
【0009】図2(a)のように桁が支承部においてバ
ネで支持されているモデルを考える。ここで桁の支間中
央における質量集中係数eは以下のように与えられる。Consider a model in which a spar is supported by a spring at a support portion as shown in FIG. Here, the mass concentration coefficient e at the center of the span of the girder is given as follows.
【数3】 (Equation 3)
【0010】このため、桁の全質量の約0.49倍が有
効質量M2として支間中央に集中する。両端の有効質量
をM1、M3としたとき桁の両端の死荷重による上下方
向のたわみ量をそれぞれδ1,δ3とすると、たわみ量
は以下のように表すことができる。ここにk1,k3は
それぞれM1側,M3側の上下バネのバネ定数である。For this reason, about 0.49 times the total mass of the girder is concentrated at the center of the span as the effective mass M2. Assuming that the effective masses at both ends are M1 and M3, and the vertical deflection amounts due to the dead load at both ends of the beam are respectively δ1 and δ3, the deflection amounts can be expressed as follows. Here, k1 and k3 are the spring constants of the upper and lower springs on the M1 side and the M3 side, respectively.
【0011】[0011]
【数4】 (Equation 4)
【0012】[0012]
【数5】 (Equation 5)
【0013】支間中央部での変位量には桁の自重による
支承部の沈下量と桁自身のたわみ量が足し合わされてい
るため、この2つの量を区別しなければならない。支間
中央部において全変位量をδ2、桁自身のたわみ量をδ
Bとすると支間中央での全変位量δ2は、次のように表
すことができる。Since the amount of displacement at the center of the span includes the amount of subsidence of the bearing due to the weight of the girder and the amount of deflection of the girder itself, these two amounts must be distinguished. In the center of the span, the total displacement is δ2, and the deflection of the girder itself is δ
Assuming B, the total displacement δ2 at the center of the span can be expressed as follows.
【0014】[0014]
【数6】 (Equation 6)
【0015】桁の振動を、支間中央点2と端点1(また
は端点3)で測定した場合、支間中央点2と端点1(ま
たは端点3)の振動のスペクトル比の卓越円振動数ω2
1(またはω23)は、次のように表される。When the vibration of the girder is measured at the center point 2 of the span and the end point 1 (or end point 3), the dominant circular frequency ω2 of the spectral ratio of the vibration of the center point 2 of the span and the end point 1 (or end point 3) is obtained.
1 (or ω23) is expressed as follows.
【0016】[0016]
【数7】 (Equation 7)
【0017】[0017]
【数8】 (Equation 8)
【0018】ここでδ21とδ23はそれぞれ以下のよ
うに表すことができる。Here, δ21 and δ23 can be respectively expressed as follows.
【0019】[0019]
【数9】 (Equation 9)
【0020】[0020]
【数10】 (Equation 10)
【0021】これにより両支承部の影響を排除した桁の
たわみ量δBは次のように表される。Thus, the deflection δB of the girder excluding the influence of both bearings is expressed as follows.
【0022】[0022]
【数11】 [Equation 11]
【0023】従って固有円振動数ωBは以下のように求
まる。Accordingly, the natural circular frequency ωB is obtained as follows.
【0024】[0024]
【数12】 (Equation 12)
【0025】つまり、桁の固有円振動数ωBは支間中央
と両支承部直上の桁上で測定した常時微動のスペクトル
比の卓越円振動数ω21ならびにω23から算出するこ
とができる。これにより橋梁の桁の固有振動数FBは次
のように求めることができる。That is, the natural circular frequency ωB of the girder can be calculated from the predominant circular frequencies ω21 and ω23 of the spectrum ratio of the microtremor measured on the girder at the center of the span and on the girder immediately above both bearings. Thus, the natural frequency FB of the bridge girder can be obtained as follows.
【0026】[0026]
【数13】 (Equation 13)
【0027】また、これらの結果から両支承部のバネ定
数k1、k3を次のように算出することができる。ちな
みに各固有円振動数と固有振動数の関係は、F2=ω2
/(2π),F21=ω21/(2π),F23=ω2
3/(2π)である。Further, from these results, the spring constants k1 and k3 of the two bearing portions can be calculated as follows. By the way, the relationship between each natural circular frequency and the natural frequency is F2 = ω2
/ (2π), F21 = ω21 / (2π), F23 = ω2
3 / (2π).
【0028】[0028]
【数14】 [Equation 14]
【0029】[0029]
【数15】 (Equation 15)
【0030】[0030]
【実施例】ここでは実際の橋梁に本発明の方法を適用し
た場合の実施例を述べる。図3に示すように、この橋梁
は4主桁4連からなり、上部工はゴム支承で支えられて
いる。支間長は4連とも等しく作られている。また図3
において、図に向かって左側の支承が固定支承、右側の
支承が可動支承となっている。DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, an embodiment in which the method of the present invention is applied to an actual bridge will be described. As shown in FIG. 3, this bridge consists of four main girder quadruples, and the superstructure is supported by rubber bearings. The span length is made equally for all four. FIG.
In the figure, the left bearing in the drawing is a fixed bearing, and the right bearing is a movable bearing.
【0031】測定は、支間中央部の桁上と支承部直上の
桁上で常時微動を同時に測定した。各測定では100H
zサンプリングで4096個のデータを3回ずつ記録し
た。周波数分析は4096個のデータをすべて対象にし
て高速フーリエ変換した。3組の結果を平均したものを
最終的なフーリエスペクトルとし、スペクトル比は各測
定毎にフーリエスペクトル比を算定し、3組の結果を平
均して最終的なフーリエスペクトル比とした。この場
合、周波数の最小分解能は約0.024Hzとなってい
る。In the measurement, fine movement was always measured simultaneously on the girder at the center of the span and on the girder immediately above the bearing. 100H for each measurement
4096 data were recorded three times by z sampling. In the frequency analysis, fast Fourier transform was performed on all 4096 data. The average of the three sets of results was used as the final Fourier spectrum. The spectral ratio was calculated for each measurement, and the three sets of results were averaged to obtain the final Fourier spectrum ratio. In this case, the minimum frequency resolution is about 0.024 Hz.
【0032】なお、測定方法,解析方法については前記
の方法に限定されるものではない。The measuring method and the analyzing method are not limited to the above methods.
【0033】得られたフーリエスペクトルとスペクトル
比を図4から図7に示す。これらのピーク振動数から、
桁の固有振動数や支承部のバネ定数を算出した結果を表
1に示す。これらのデータを基に式FIGS. 4 to 7 show the obtained Fourier spectrum and spectrum ratio. From these peak frequencies,
Table 1 shows the results of calculating the natural frequency of the girder and the spring constant of the bearing. Formula based on these data
【数13】から算出した桁の支承部の影響を排除した桁
自身の固有振動数FBは桁の支間中央部での卓越振動数
F2より安定した数値3.42Hz〜3.45Hzを示
している。The natural frequency FB of the girder itself excluding the influence of the bearing portion of the girder calculated from Eq. (13) shows a stable value of 3.42 Hz to 3.45 Hz from the dominant frequency F2 at the center of the girder. .
【0034】[0034]
【表1】 [Table 1]
【0035】[0035]
【発明の効果】本発明によれば、測定時に振動発生のた
めの特別な措置は何ら必要とならず、桁の所定の位置に
センサを配置するだけで、安全かつ簡単に測定を行うこ
とができる。測定結果の後処理も簡単で、固有振動数と
バネ定数を用いて桁と支承部を定量的に評価することが
できる。しかも同時に測定したデータを基に桁の固有振
動数と支承部のバネ定数の解析を行うため、経費と時間
の省略に大きく貢献することが可能である。According to the present invention, no special measures are required for generating vibration at the time of measurement, and the measurement can be performed safely and easily simply by disposing the sensor at a predetermined position of the girder. it can. Post-processing of the measurement results is also easy, and the girder and the bearing can be quantitatively evaluated using the natural frequency and the spring constant. In addition, since the natural frequency of the girder and the spring constant of the bearing are analyzed based on the data measured at the same time, it is possible to greatly contribute to savings in cost and time.
【図1】橋梁の振動を測定するためのセンサ設置位置を
示した図である。(a)は平面図、(b)は断面図を示
す。FIG. 1 is a diagram showing a sensor installation position for measuring bridge vibration. (A) is a plan view, and (b) is a cross-sectional view.
【図2】(a)は桁の質量が支間中央部と両支承部に集
中した桁のモデル図、(b)は桁および支承部が変位し
た量を示すモデル図である。FIG. 2A is a model diagram of a girder in which the mass of the girder is concentrated at the center of the span and both bearing portions, and FIG. 2B is a model diagram showing the amount of displacement of the girder and the bearing portion.
【図3】本発明を適用した橋梁の概略図である。FIG. 3 is a schematic view of a bridge to which the present invention is applied.
【図4】実施例の1Bにおいて、 (a)固定支承側の端点と支間中央における水平方向振
動データのスペクトル比、 (b)可動支承側の端点と支間中央における水平方向振
動データのスペクトル比、 (c)固定支承側の端点と支間中央における鉛直方向振
動データのスペクトル比、 (d)可動支承側の端点と支間中央における鉛直方向振
動データのスペクトル比、 (e)支承部の影響のある支間中央における振動データ
のスペクトル、を示す図である。4A and 4B of the embodiment, (a) the spectral ratio of horizontal vibration data at the end point of the fixed bearing and the center of the span, (b) the spectral ratio of horizontal vibration data at the end point of the movable bearing and the center of the span, (C) Spectral ratio of vertical vibration data at the end point of the fixed bearing side and the center of the span, (d) Spectral ratio of vertical vibration data at the end point of the movable bearing side and the center of the span, (e) Span affected by the bearing portion It is a figure which shows the spectrum of the vibration data in the center.
【図5】実施例の2Bにおいて、 (a)固定支承側の端点と支間中央における水平方向振
動データのスペクトル比、 (b)可動支承側の端点と支間中央における水平方向振
動データのスペクトル比、 (c)固定支承側の端点と支間中央における鉛直方向振
動データのスペクトル比、 (d)可動支承側の端点と支間中央における鉛直方向振
動データのスペクトル比、 (e)支承部の影響のある支間中央における振動データ
のスペクトル、を示す図である。FIG. 5B is a diagram illustrating 2A of the embodiment: (a) the spectral ratio of horizontal vibration data at the end point of the fixed bearing side and the center of the span; (b) the spectral ratio of horizontal vibration data at the end point of the movable bearing side and the center of the span. (C) Spectral ratio of vertical vibration data at the end point of the fixed bearing side and the center of the span, (d) Spectral ratio of vertical vibration data at the end point of the movable bearing side and the center of the span, (e) Span affected by the bearing portion It is a figure which shows the spectrum of the vibration data in the center.
【図6】実施例の3Bにおいて、 (a)固定支承側の端点と支間中央における水平方向振
動データのスペクトル比、 (b)可動支承側の端点と支間中央における水平方向振
動データのスペクトル比、 (c)固定支承側の端点と支間中央における鉛直方向振
動データのスペクトル比、 (d)可動支承側の端点と支間中央における鉛直方向振
動データのスペクトル比、 (e)支承部の影響のある支間中央における振動データ
のスペクトル、を示す図である。6A and 6B show: (a) the spectral ratio of horizontal vibration data at the end of the fixed bearing and the center of the span; (b) the spectral ratio of horizontal vibration data at the end of the movable bearing and the center of the span; (C) Spectral ratio of vertical vibration data at the end point of the fixed bearing side and the center of the span, (d) Spectral ratio of vertical vibration data at the end point of the movable bearing side and the center of the span, (e) Span affected by the bearing portion It is a figure which shows the spectrum of the vibration data in the center.
【図7】実施例の4Bにおいて、 (a)固定支承側の端点と支間中央における水平方向振
動データのスペクトル比、 (b)可動支承側の端点と支間中央における水平方向振
動データのスペクトル比、 (c)固定支承側の端点と支間中央における鉛直方向振
動データのスペクトル比、 (d)可動支承側の端点と支間中央における鉛直方向振
動データのスペクトル比、 (e)支承部の影響のある支間中央における振動データ
のスペクトル、を示す図である。FIG. 7B is a view showing 4A of the embodiment, (a) the spectral ratio of horizontal vibration data at the end point of the fixed bearing side and the center of the span, (b) the spectral ratio of horizontal vibration data at the end point of the movable bearing side and the center of the span, (C) Spectral ratio of vertical vibration data at the end point of the fixed bearing side and the center of the span, (d) Spectral ratio of vertical vibration data at the end point of the movable bearing side and the center of the span, (e) Span affected by the bearing portion It is a figure which shows the spectrum of the vibration data in the center.
1,3 橋脚 2 橋梁の桁 4,5,6,7 センサ m 桁の全質量 P 荷重 e 桁の支間中央における質量集中係数 g 重力定数 L 桁のスパン長 E ヤング係数 I 断面2次モーメント M1,M3 桁の両支承部にかかる有効質量(図2
(a)参照) M2 桁の支間中央にかかる有効質量(図2(a)参
照) δ 桁の支間中央に荷重Pが作用したときのたわみ量 δ1 桁の点1における支承部の沈下量(図2(b)参
照) δ2 桁の支間中央部での全変位量(図2(b)参照) δ3 桁の点3における支承部の沈下量(図2(b)参
照) δB 支間中央における桁自身のたわみ量(図2(b)
参照) ω 支間中央に荷重Pが作用したときの固有円振動数 ωB 支承部の影響を排除した桁自身の固有円振動数 ω21,ω23 桁のそれぞれの支承部における卓越円
振動数 FB 支承部の影響を排除した桁自身の固有振動数 F2 支承部の影響のある桁の卓越振動数 F21,F23 桁のそれぞれの支承部における卓越振
動数 k1,k3 桁のそれぞれの支承部におけるバネ定数1,3 Bridge pier 2 Bridge girder 4,5,6,7 sensor m total mass of g digit P load e mass concentration factor at center of girder g gravity constant L span length of girth E Young's modulus I second moment of area M1, Effective mass on both bearings of M3 girder (Fig. 2
(See (a)) M2 Effective mass applied to the center of the span of the girder (see FIG. 2 (a)) δ Deflection amount when the load P acts on the center of the span of the girder. 2 (b)) δ2 The total displacement at the center of the span (see FIG. 2 (b)) δ3 The subsidence amount of the bearing at point 3 (see FIG. 2 (b)) δB The girder at the center of the span (FIG. 2 (b))
Ω) Natural circular frequency when a load P acts on the center of the span ωB Natural circular frequency of the girder itself excluding the influence of the bearing ω21, ω23 Predominant circular frequency at each of the girder supporting parts FB The natural frequency of the girder itself excluding the influence F2 The dominant frequency of the girder affected by the bearing F21, F23 The dominant frequency of each girder bearing k1, k3 The spring constant of each girder bearing
フロントページの続き (72)発明者 日高 和利 東京都国分寺市光町二丁目8番地38 財 団法人鉄道総合技術研究所内 (72)発明者 西永 雅行 埼玉県入間市高倉4番11−2−409 審査官 郡山 順 (58)調査した分野(Int.Cl.7,DB名) G01H 17/00 G01M 13/00 G01M 19/00 JICSTファイル(JOIS)Continued on the front page (72) Inventor Kazutoshi Hidaka 2-8-8 Hikaricho, Kokubunji-shi, Tokyo Inside the Railway Technical Research Institute (72) Inventor Masayuki Nishinaga 4-11-2 Takakura, Iruma-shi, Saitama 409 Examiner Jun Koriyama (58) Field surveyed (Int. Cl. 7 , DB name) G01H 17/00 G01M 13/00 G01M 19/00 JICST file (JOIS)
Claims (2)
いて、橋梁の桁の両支承部直上の点と支間中央の点にセ
ンサを設置して、おのおのの支承部直上の点と、支間中
央の点と、で振動データを測定し、おのおのの支承部直
上の点において測定した振動データと、支間中央の点に
おいて測定した振動データと、のスペクトルの比から卓
越振動数を算出し、算出されたおのおの支承部直上の点
における卓越振動数と重力定数からおのおのの支承部直
上の点における卓越円振動数を算出し、算出されたおの
おのの支承部直上の点における卓越円振動数から支間中
央の点における卓越円振動数を算出し、算出された支間
中央の点における卓越円振動数から支間中央の点におけ
る固有振動数を算出し、算出された支間中央の点におけ
る固有振動数をもって桁自身の固有振動数とすることを
特徴とする、橋梁の桁の固有振動数の測定方法。In a method for measuring the natural frequency of a bridge girder, a sensor is installed at a point immediately above both bearings of a bridge girder and at a center of a span, and each of the sensors is installed at a point just above a bearing, Measure vibration data at the center point and at each point, and calculate the dominant frequency from the ratio of the spectrum of the vibration data measured at the point directly above the bearing and the vibration data measured at the center point between the supports. Calculate the dominant circular frequency at each point directly above the bearing from the dominant frequency and gravity constant at each point directly above the bearing, and calculate the center of the span from the calculated dominant circular frequency at the point directly above each bearing. Calculate the predominant circular frequency at the point, calculate the natural frequency at the center of the span from the calculated predominant circular frequency at the center of the span, and calculate the natural frequency at the center of the span between the calculated points. Characterized, measuring bridges digit natural frequency of the way that the natural frequency of the digits themselves Te.
方法において、橋梁の桁の両支承部直上の点と支間中央
の点にセンサを設置して、おのおのの支承部直上の点
と、支間中央の点と、で振動データを測定し、おのおの
の支承部直上の点において測定した振動データと、支間
中央の点において測定した振動データと、のスペクトル
の比から卓越振動数を算出し、算出されたおのおのの支
承部直上の点における卓越振動数と重力定数からおのお
のの支承部直上の点における卓越円振動数を算出し、他
方で桁の分布質量をおのおのの支承部直上の点及び支間
中央の点における等価な集中荷重に置き換えるための有
効質量を算出し、算出したおのおのの支承部直上の点に
おける卓越振動数と、算出したおのおのの支承部直上の
点および支間中央の点における有効質量と、請求項1に
記載の橋梁の固有振動数と、から橋梁の支承部のバネ定
数を算出することを特徴とする、橋梁支承部のバネ常数
の測定方法。2. A method for measuring a spring constant at a support portion of a bridge, wherein a sensor is installed at a point immediately above both support portions of the bridge girder and at a center point of the support, and a point just above each support portion and a point between the support portions are provided. Measure vibration data at the center point and at each point, and calculate the dominant frequency from the ratio of the spectrum of the vibration data measured at the point directly above the bearing and the vibration data measured at the center point of the span, and calculate Calculate the dominant circular frequency at the point directly above each bearing from the dominant frequency and the gravitational constant at each point directly above the bearing, and, on the other hand, calculate the distributed mass of the girder at the point directly above each bearing and at the center of the span. Calculate the effective mass to be replaced with the equivalent concentrated load at point, calculate the dominant frequency at each point directly above the bearing, and the calculated point just above each bearing and the center of the span between And effective mass of the natural frequency of the bridge according to claim 1, and calculates the spring constant of the support portion of the bridge from the method for measuring the spring constant of the bridge bearing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05352471A JP3115176B2 (en) | 1993-12-28 | 1993-12-28 | Measurement method of natural frequency of bridge girder and spring constant of bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05352471A JP3115176B2 (en) | 1993-12-28 | 1993-12-28 | Measurement method of natural frequency of bridge girder and spring constant of bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07198473A JPH07198473A (en) | 1995-08-01 |
JP3115176B2 true JP3115176B2 (en) | 2000-12-04 |
Family
ID=18424297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05352471A Expired - Fee Related JP3115176B2 (en) | 1993-12-28 | 1993-12-28 | Measurement method of natural frequency of bridge girder and spring constant of bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3115176B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8273674B2 (en) | 2005-12-21 | 2012-09-25 | Saint-Gobain Centre De Recherches Et D'etudes European | Self-flow refractory mixture |
KR102335777B1 (en) * | 2017-07-03 | 2021-12-08 | 삼성디스플레이 주식회사 | Display device and driving method thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003156415A (en) * | 2001-11-21 | 2003-05-30 | Shogo Tanaka | Method of inspecting soundness of large-sized structure by adaptive parameter estimation method using physical model, and device therefor |
KR101478456B1 (en) * | 2013-08-27 | 2014-12-31 | 서울과학기술대학교 산학협력단 | A Natural Frequency Measuring Method using Application |
JP6253056B2 (en) * | 2014-03-20 | 2017-12-27 | 国立大学法人愛媛大学 | Vibration measuring apparatus and vibration measuring method |
JP6390046B2 (en) * | 2015-07-02 | 2018-09-19 | 公益財団法人鉄道総合技術研究所 | Method for estimating natural frequency of structure and program for estimating natural frequency of structure |
CN109029711B (en) * | 2018-08-10 | 2020-12-08 | 中交基础设施养护集团有限公司 | Dynamic bridge structure multi-order frequency identification method |
-
1993
- 1993-12-28 JP JP05352471A patent/JP3115176B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8273674B2 (en) | 2005-12-21 | 2012-09-25 | Saint-Gobain Centre De Recherches Et D'etudes European | Self-flow refractory mixture |
KR102335777B1 (en) * | 2017-07-03 | 2021-12-08 | 삼성디스플레이 주식회사 | Display device and driving method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH07198473A (en) | 1995-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Brownjohn et al. | Ambient vibration survey of the Bosporus suspension bridge | |
JP4992084B2 (en) | Structure damage diagnostic system and method | |
CN102162217B (en) | Laser dynamic deflection survey vehicle | |
WO2023087890A1 (en) | Method for comprehensively analyzing and determining modal resonance of frame on basis of dynamic stress, vibrations and oma | |
WO2023151680A1 (en) | Passive excitation-type bridge damage evaluation method | |
WO2023151681A1 (en) | Passive exciting type bridge flaw detection device | |
CN102444079A (en) | Pavement deflection measuring system and measuring method thereof | |
Boroschek et al. | Dynamic characteristics of a long span seismic isolated bridge | |
JP3842249B2 (en) | Fatigue diagnosis method for structures | |
JP3115176B2 (en) | Measurement method of natural frequency of bridge girder and spring constant of bearing | |
JP4001806B2 (en) | Identification method and apparatus for non-contact measurement of vibration characteristics of structure | |
JP3313028B2 (en) | Measurement method of bending stiffness and tension of cable under tension | |
CN109799053B (en) | Power transmission equipment dynamic characteristic analysis method | |
JPH0599648A (en) | Automatic measuring method for use in maintenance and management of base isolation building | |
Zhu et al. | Identification of moving interaction forces with incomplete velocity information | |
de Sá Caetano et al. | Assessment of cable forces at the London 2012 Olympic Stadium roof | |
JP2003042892A (en) | Method of evaluating dynamic earthquake resistance of building | |
CN112985672A (en) | Prestressed cable force analysis method based on non-contact space vibration test | |
CN108151957B (en) | Cable force dynamic tester calibration device and method | |
USRE27875E (en) | Method and apparatus for determining deflection of a structure | |
JPH08105823A (en) | Judging method of risk in seismic damage for rigid frame structure | |
Cundill | MERLIN-a low-cost machine for measuring road roughness in developing countries | |
RU209692U1 (en) | Laboratory stand for precision measurements of displacements of structural elements of buildings and structures from external dynamic influences | |
JP3361448B2 (en) | Apparatus for continuously measuring unevenness of long bodies | |
JPH0915107A (en) | Method and system for determining risk of damage to rigid frame structure due to earthquake |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |