JP3106846U - Sample holder for charged particle beam equipment - Google Patents

Sample holder for charged particle beam equipment Download PDF

Info

Publication number
JP3106846U
JP3106846U JP2004004465U JP2004004465U JP3106846U JP 3106846 U JP3106846 U JP 3106846U JP 2004004465 U JP2004004465 U JP 2004004465U JP 2004004465 U JP2004004465 U JP 2004004465U JP 3106846 U JP3106846 U JP 3106846U
Authority
JP
Japan
Prior art keywords
sample
ion beam
sample holder
holder
focused ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004004465U
Other languages
Japanese (ja)
Inventor
靖 黒田
武夫 上野
紀恵 矢口
充 今野
毅 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2004004465U priority Critical patent/JP3106846U/en
Application granted granted Critical
Publication of JP3106846U publication Critical patent/JP3106846U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

【課題】
集束イオンビーム加工法での加工ムラおよびリデポジションの問題を解決し、微細構造解析や元素分析などの分析精度を向上する。
【解決手段】
試料を固定した試料台をホールダ軸の周りに360°回転する機能を備えた荷電粒子線装置用試料ホールダにおいて、前記試料台の先端部を集束イオンビームの進行方向に対し直角に回転補正した試料にイオンビーム照射することで達成される。
また、試料台軸の周りに360°回転できる機能を備えた前記荷電粒子線装置用試料ホールダにおいて、前記試料ホールダの試料台の先端部を集束イオンビームの進行方向に対し直角に回転補正を加えた後、試料台に固定した試料にイオンビーム照射することで達成される。
【選択図】図5

【Task】
It solves the problem of processing unevenness and redeposition in the focused ion beam processing method, and improves analysis accuracy such as fine structure analysis and elemental analysis.
[Solution]
A sample holder for a charged particle beam apparatus having a function of rotating a sample stage on which a sample is fixed around a holder axis by 360 °, wherein the tip of the sample stage is rotationally corrected at right angles to the traveling direction of the focused ion beam. This is achieved by irradiating an ion beam.
Further, in the sample holder for the charged particle beam apparatus having a function capable of rotating 360 ° around the sample stage axis, the tip of the sample stage of the sample holder is rotationally corrected at right angles to the traveling direction of the focused ion beam. Thereafter, this is achieved by irradiating the sample fixed on the sample stage with an ion beam.
[Selection] Figure 5

Description

本考案は、電子顕微鏡観察用試料を作製および観察する装置に係り、特に集束イオンビーム(以下、FIB)加工装置で試料から微小試料片を摘出し、摘出した微小試料片を試料台に固定し加工する際に、摘出した微小試料の任意の方向からのFIBによる試料作製方法と、その試料作製方法を可能にする荷電粒子線装置用試料ホールダに関する。   The present invention relates to an apparatus for preparing and observing a sample for observation with an electron microscope. In particular, a fine sample piece is extracted from a sample by a focused ion beam (hereinafter referred to as FIB) processing apparatus, and the extracted fine sample piece is fixed to a sample stage. The present invention relates to a sample preparation method by FIB from an arbitrary direction of an extracted micro sample, and a sample holder for a charged particle beam apparatus that enables the sample preparation method.

従来、例えば集束イオンビーム装置による試料の前処理とこれに続く観察のシステムとして例えば特許文献1に記載された技術が知られている。この技術では集束イオンビーム装置で加工した試料の付け替えをしないで、前処理装置,透過電子顕微鏡(以下TEM)などの観察装置へ挿入可能である。しかし、これらの装置では、任意の方向から加工し、観察する方法については配慮が見られるが、FIB加工装置を用いて試料を加工する際に、試料断面近傍を通過したイオンビームや試料断面で散乱したイオンビームが試料底部や試料台をスパッタし、試料加工表面に汚染物質として再付着するいわゆるリデポジションの問題については配慮されていない。また、複合材料において、元素によってスパッタレートが異なる為に加工面に生じる凹凸(以下、加工ムラ)の問題については配慮されていない。   2. Description of the Related Art Conventionally, for example, a technique described in Patent Document 1 is known as a system for pretreatment of a sample by a focused ion beam apparatus and subsequent observation system. In this technique, the sample processed by the focused ion beam apparatus can be inserted into an observation apparatus such as a pretreatment apparatus or a transmission electron microscope (hereinafter referred to as TEM) without changing the sample. However, in these apparatuses, consideration is given to the method of processing and observing from an arbitrary direction, but when processing a sample using the FIB processing apparatus, the ion beam or the sample cross section that has passed near the sample cross section is used. No consideration is given to the so-called redeposition problem in which the scattered ion beam sputters the sample bottom or sample stage and reattaches to the sample processing surface as a contaminant. Further, in the composite material, no consideration is given to the problem of unevenness (hereinafter referred to as processing unevenness) generated on the processed surface because the sputtering rate varies depending on the element.

さらに、集積回路の断面観察法としては特許文献2に記載された技術が知られている。この技術では加工ムラの問題については配慮されているが、リデポジションの問題については配慮されておらず、加工ムラとリデポジションの問題を同時に解決できるものではない。   Furthermore, a technique described in Patent Document 2 is known as a method for observing a cross section of an integrated circuit. In this technique, the problem of processing unevenness is considered, but the problem of redeposition is not considered, and the problem of processing unevenness and redeposition cannot be solved at the same time.

特開平6−103947号公報JP-A-6-103947 特開平9−186210号公報JP-A-9-186210

本考案の目的は、集束イオンビーム加工法などにより摘出した微小試料を任意の方向から加工することにある。これにより前記加工ムラおよび前記リデポジションの問題を解決し、微細構造解析や元素分析などの分析精度を向上することが可能な試料作製法と荷電粒子線装置用試料ホールダを提供することにある。   An object of the present invention is to process a micro sample extracted by a focused ion beam processing method from an arbitrary direction. Accordingly, an object of the present invention is to provide a sample preparation method and a sample holder for a charged particle beam apparatus capable of solving the processing unevenness and the redeposition problem and improving the analysis accuracy such as fine structure analysis and elemental analysis.

上記目的は、試料台軸の周りに360°回転できる機能を備えた前記荷電粒子線装置用試料ホールダにおいて、前記試料ホールダの試料台の先端部を集束イオンビームの進行方向に対し直角に回転補正を加えた後、試料台に固定した試料にイオンビーム照射することで達成される。   The object is to correct the rotation of the tip of the sample holder of the sample holder perpendicular to the traveling direction of the focused ion beam in the sample holder for the charged particle beam apparatus having a function capable of rotating 360 ° around the sample stage axis. This is achieved by irradiating the sample fixed to the sample stage with an ion beam.

また、上記目的は、試料を固定した試料台をホールダ軸の周りに360°回転する機能を備えた荷電粒子線装置用試料ホールダにおいて、前記試料台の先端部を集束イオンビームの進行方向に対し直角に回転補正した試料にイオンビーム照射することで達成される。   Further, the above object is to provide a charged particle beam apparatus sample holder having a function of rotating a sample stage to which a sample is fixed around the holder axis by 360 ° with respect to the traveling direction of the focused ion beam. This is achieved by irradiating an ion beam to a sample whose rotation is corrected at a right angle.

本考案による試料作製方法と荷電粒子線装置用試料ホールダを用いることにより、微小試料片を試料台から取り外すことなく、イオンビームによる任意の方向からの加工が可能となる。また、加工ムラやリデポジションの問題がなくなる。   By using the sample preparation method and the sample holder for the charged particle beam apparatus according to the present invention, it is possible to perform processing from an arbitrary direction by an ion beam without removing the minute sample piece from the sample stage. In addition, processing irregularities and redeposition problems are eliminated.

試料台軸の周りに360°回転できる機能を備えた荷電粒子線装置用試料ホールダにおいて、試料ホールダの試料台の先端部を集束イオンビームの進行方向に対し直角に回転補正を加えた後、試料台に固定した試料にイオンビーム照射する。   In a sample holder for a charged particle beam apparatus having a function capable of rotating 360 ° around the sample stage axis, the tip of the sample stage of the sample holder is subjected to rotation correction at a right angle to the traveling direction of the focused ion beam, and then the sample Irradiate the sample fixed to the stage with an ion beam.

また、試料を固定した試料台をホールダ軸の周りに360°回転する機能を備えた荷電粒子線装置用試料ホールダにおいて、試料台の先端部を集束イオンビームの進行方向に対し直角に回転補正した試料にイオンビーム照射する。   Further, in the charged particle beam apparatus sample holder having a function of rotating the sample stage to which the sample is fixed 360 degrees around the holder axis, the tip of the sample stage is rotationally corrected at right angles to the traveling direction of the focused ion beam. The sample is irradiated with an ion beam.

以下、図面を参照して本考案について説明する。図1に本考案の一実施例であるFIB装置1の構成図を示す。FIB装置1鏡体は、イオン銃2,コンデンサーレンズ3,絞り4,走査電極5,対物レンズ6で構成されている。FIB装置1の試料室には、試料7を取り付けた試料ホールダ8上方に二次電子検出器9,試料7への保護膜の形成および試料台への試料7の固定のためのデポジション銃10,FIB加工により作製した微小試料の運搬のためのマイクロプローブ11がとりつけられている。二次電子検出器9には走査像表示装置12が接続されている。走査像表示装置12は走査電極制御部13を介して走査電極5に接続されている。また、マイクロプローブ11にはマイクロプローブ11の位置制御のためのマイクロプローブ制御装置14が接続されている。また、試料ホールダ8は、ホールダ制御部15に接続されている。イオン銃2から放出されたイオンビーム16は、コンデンサーレンズ3と絞り4により収束され、対物レンズ6を通過し、試料7上に収束する。対物レンズ6上方の走査電極5は、走査電極制御部13の指示により、試料7に入射するイオンビーム16を偏向し走査させる。イオンビーム16が試料7に照射されると、試料7はスパッタされるとともに二次電子を発生する。発生した二次電子は、二次電子検出器9により検出され走査像表示装置12に表示される。デポジション銃10より試料7方向に放出されたガスはイオンビーム16と反応し分解され、金属が試料7面上のイオンビーム16照射領域に堆積する。この堆積膜は、FIB加工前の試料7表面の保護膜の形成および微小試料片の試料台への固定に用いられる。試料7は試料ホールダ8に接続されたホールダ制御部15により、イオンビーム16光軸上で角度を変えることが可能で、様々な角度から加工することが可能である。   The present invention will be described below with reference to the drawings. FIG. 1 shows a configuration diagram of an FIB apparatus 1 according to an embodiment of the present invention. The FIB apparatus 1 body includes an ion gun 2, a condenser lens 3, a diaphragm 4, a scanning electrode 5, and an objective lens 6. In the sample chamber of the FIB apparatus 1, a secondary electron detector 9 above the sample holder 8 to which the sample 7 is attached, a deposition gun 10 for forming a protective film on the sample 7 and fixing the sample 7 to the sample stage. , A microprobe 11 for carrying a micro sample produced by FIB processing is attached. A scanning image display device 12 is connected to the secondary electron detector 9. The scanning image display device 12 is connected to the scanning electrode 5 via the scanning electrode control unit 13. The microprobe 11 is connected to a microprobe control device 14 for controlling the position of the microprobe 11. The sample holder 8 is connected to the holder control unit 15. The ion beam 16 emitted from the ion gun 2 is converged by the condenser lens 3 and the diaphragm 4, passes through the objective lens 6, and converges on the sample 7. The scanning electrode 5 above the objective lens 6 deflects and scans the ion beam 16 incident on the sample 7 in accordance with an instruction from the scanning electrode control unit 13. When the ion beam 16 is irradiated onto the sample 7, the sample 7 is sputtered and generates secondary electrons. The generated secondary electrons are detected by the secondary electron detector 9 and displayed on the scanning image display device 12. The gas emitted from the deposition gun 10 toward the sample 7 reacts with the ion beam 16 and is decomposed, and metal is deposited on the ion beam 16 irradiation region on the surface of the sample 7. This deposited film is used to form a protective film on the surface of the sample 7 before FIB processing and to fix a minute sample piece to the sample stage. The angle of the sample 7 can be changed on the optical axis of the ion beam 16 by a holder control unit 15 connected to the sample holder 8, and the sample 7 can be processed from various angles.

図2に本考案の一実施例である荷電粒子線装置用試料ホールダ17の先端部の上面図
(a)および断面図(b)を示す。試料ホールダ17は、先端部と連結されたホールダ軸18が、軸中心の周りに360°回転可能な機構を有し、さらに前記機構と独立して先端部にホールダ軸18と直角な軸中心の周りに360°回転可能な機構を設けた、試料回転軸19を有する。また、試料ホールダ17はFIB装置1内でイオンビーム16が入射する際、試料ホールダ17の構造物がイオンビーム16をさえぎることの無いよう一部解放された構造となっている。
FIG. 2 shows a top view (a) and a cross-sectional view (b) of the tip of the sample holder 17 for a charged particle beam apparatus according to an embodiment of the present invention. The sample holder 17 has a mechanism in which a holder shaft 18 connected to the tip portion can rotate 360 ° around the shaft center, and further, the sample holder 17 has a shaft center perpendicular to the holder shaft 18 at the tip portion independently of the mechanism. A sample rotation shaft 19 having a mechanism capable of rotating 360 ° around is provided. The sample holder 17 has a structure in which a part of the structure of the sample holder 17 is released so that the ion beam 16 is not blocked when the ion beam 16 enters the FIB apparatus 1.

図3は本考案の一実施例である試料台20側面図(a)および斜視図(b)である。試料台20に微小試料片21を固定した状態の側面図および斜視図をそれぞれ(c),(d)に示す。微小試料片21は試料台20の先端に取り付けられている。試料台20先端部は微小試料片21の固定が容易なように平坦な形状を有する。微小試料片21と試料台20の接触部分には、FIB装置1のデポジション銃10を用いてデポジション膜22を形成させ、接着する。   3A and 3B are a side view (a) and a perspective view (b) of a sample stage 20 according to an embodiment of the present invention. A side view and a perspective view of a state in which the minute sample piece 21 is fixed to the sample stage 20 are shown in (c) and (d), respectively. The micro sample piece 21 is attached to the tip of the sample stage 20. The tip of the sample stage 20 has a flat shape so that the minute sample piece 21 can be easily fixed. A deposition film 22 is formed and adhered to the contact portion between the minute sample piece 21 and the sample stage 20 by using the deposition gun 10 of the FIB apparatus 1.

図4に本考案の一実施例である荷電粒子線装置用試料ホールダ17に試料台20を固定した例を示す。試料回転軸19は中空状になっており、試料台20を差し込むように装着することができる。   FIG. 4 shows an example in which a sample stage 20 is fixed to a charged particle beam apparatus sample holder 17 according to an embodiment of the present invention. The sample rotating shaft 19 is hollow and can be mounted so as to insert the sample table 20.

図5に本考案の一実施例である試料台20の先端部を示し、これにより、微小試料片
21の加工方法を説明する。図5(a)に示すようにバルク材料からマイクロプローブ
11を用いて摘出された微小試料片21は、イオンビーム光軸と垂直な試料台20の最先端部にデポジション膜22により、接着,固定される。FIBによる加工を行うときは、図5(b)に示すように、試料台20を90°回転させ、イオンビーム16を微小試料片21の側面から照射する。微小試料片21の側面をスパッタしながら下方に進行するイオンビーム16は、試料台20をスパッタすることなく、また、上方に反射することなく下方に進行する。このように、試料台20をイオンビーム16の進行方向に対し直角に回転補正を加えて加工することにより、試料底面および試料台20からのスパッタされた材料の加工面への再付着を防ぐことが出来る。さらに、図5(c−1)から図5(c−3)に示すように、試料台20の回転角度は固定ではなく、随時角度を変えながら加工しても良い。試料台20は任意の角度に調節できるので、イオンビーム16の進行方向は一定に保ち、試料台20の角度を変えながらイオンビーム16照射すれば、加工ムラが出来ることなく、平坦な試料表面に加工することができる。
FIG. 5 shows a tip portion of a sample stage 20 which is an embodiment of the present invention, and the processing method of the minute sample piece 21 will be described. As shown in FIG. 5A, the micro sample piece 21 extracted from the bulk material by using the micro probe 11 is bonded to the most distal portion of the sample stage 20 perpendicular to the ion beam optical axis by the deposition film 22. Fixed. When processing by FIB, as shown in FIG. 5B, the sample stage 20 is rotated by 90 °, and the ion beam 16 is irradiated from the side surface of the minute sample piece 21. The ion beam 16 traveling downward while sputtering the side surface of the minute sample piece 21 proceeds downward without sputtering the sample stage 20 and without reflecting upward. In this way, the sample stage 20 is processed with rotation correction perpendicular to the traveling direction of the ion beam 16 to prevent reattachment of the sputtered material from the sample bottom surface and the sample stage 20 to the processed surface. I can do it. Further, as shown in FIGS. 5 (c-1) to 5 (c-3), the rotation angle of the sample stage 20 is not fixed, but may be processed while changing the angle as needed. Since the sample stage 20 can be adjusted to an arbitrary angle, the traveling direction of the ion beam 16 is kept constant, and if the ion beam 16 is irradiated while changing the angle of the sample stage 20, there is no processing unevenness, and a flat sample surface is obtained. Can be processed.

図6に本考案の一実施例である試料台20の先端部を示し、これにより、微小試料片
21の加工方法を説明する。図6(a)に示すように試料台20をイオンビーム16の進行方向に対し直角に回転補正を加え、バルク材料からマイクロプローブ11を用いて摘出された微小試料片21の側面を、イオンビーム16光軸と直角な試料台20の最先端部にデポジション膜22により、接着,固定される。この状態でFIBにより加工すれば、前記理由により、試料底面および試料台20からのスパッタされた材料の加工面への再付着を防ぐことが出来る。また、図6(b)に示すように、試料台20を180°回転すると、微小試料片21の底面からイオンビーム16を照射することが可能となる。これにより、例えば、薄膜試料を作製する際、所望の分析または観察する領域が試料表面から深い場所にあっても、容易に薄膜作製が出来る。図6(c−1)から図6(c−3)に示すように、試料台20の回転角度は固定ではなく、随時角度を変えながら加工しても良い。試料台20は任意の角度に調節できるので、イオンビーム16の進行方向は一定に保ち、試料台20の角度を変えながらイオンビーム16照射すれば、加工ムラが出来ることなく、平坦な試料表面に加工することができる。図6(b)に示したように、試料台20を180°回転した後、試料台20の角度を変えながらイオンビーム16照射すれば、試料底面側からも加工ムラが出来ることなく、平坦な試料表面に加工することができる。図6(d)に示すように、試料台20はイオンビーム16光軸を中心とし、360°回転できる。この機構を用いても、前記図6(b)(c)と同様の効果が得られる。
FIG. 6 shows a tip portion of a sample stage 20 which is an embodiment of the present invention, and the processing method of the minute sample piece 21 will be described. As shown in FIG. 6A, the sample stage 20 is rotationally corrected at right angles to the traveling direction of the ion beam 16, and the side surface of the minute sample piece 21 extracted from the bulk material by using the microprobe 11 is used as the ion beam. It is bonded and fixed to the most distal portion of the sample stage 20 perpendicular to the 16 optical axes by a deposition film 22. If the FIB is processed in this state, it is possible to prevent the sputtered material from the sample bottom surface and the sample stage 20 from being reattached to the processed surface for the reason described above. As shown in FIG. 6B, when the sample stage 20 is rotated by 180 °, the ion beam 16 can be irradiated from the bottom surface of the minute sample piece 21. Thereby, for example, when a thin film sample is manufactured, the thin film can be easily manufactured even if the region to be analyzed or observed is deep from the sample surface. As shown in FIG. 6 (c-1) to FIG. 6 (c-3), the rotation angle of the sample stage 20 is not fixed but may be processed while changing the angle as needed. Since the sample stage 20 can be adjusted to an arbitrary angle, the traveling direction of the ion beam 16 is kept constant, and if the ion beam 16 is irradiated while changing the angle of the sample stage 20, there is no processing unevenness, and a flat sample surface is obtained. Can be processed. As shown in FIG. 6B, after the sample stage 20 is rotated by 180 ° and then irradiated with the ion beam 16 while changing the angle of the sample stage 20, there is no processing unevenness even from the bottom side of the sample, and the surface is flat. The sample surface can be processed. As shown in FIG. 6D, the sample stage 20 can be rotated 360 ° around the optical axis of the ion beam 16. Even if this mechanism is used, the same effects as in FIGS. 6B and 6C can be obtained.

ホールダ軸18の回転機構と試料回転軸19の回転機構を組み合わせて用いることにより、微小試料片21に対してあらゆる角度からのイオンビーム16照射と角柱または円柱、もしくは薄膜の作製が可能となる。   By using a combination of the rotating mechanism of the holder shaft 18 and the rotating mechanism of the sample rotating shaft 19, it is possible to irradiate the minute sample piece 21 with the ion beam 16 from any angle and to form a prism or cylinder or a thin film.

図7は図5に示した試料作製法の主な手順を示した説明図である。
(1)まず、バルク材料からマイクロプローブ11を用いて微小試料片21を摘出する。
(2)FIB試料室内に挿入した試料台20をイオンビーム光軸と垂直になるように回転補正する。
(3)イオンビーム光軸と垂直な試料台20の最先端部に微小試料片21の底面を接触させ、デポジション膜22により接着,固定する。
(4)微小試料片21にイオンビーム16を照射し、例えば100nmの厚さに加工する。この段階では試料台20をスパッタし、リデポジションが起こるが気にする必要は無い。また、例えば半導体デバイスのように複数の硬さの異なる材料で構成された試料の場合、エッチングレートの差による加工ムラが出来るが、これも気にする必要は無い。さらに、この工程は省略することも可能であり、最終的には加工ムラ,リデポジションのない試料作製が行える。
(5)試料台20をイオンビーム光軸と直角になるように回転補正する。
(6)例えば100nmの厚さに加工された微小試料片21にイオンビーム16を照射し仕上げ加工する。イオンビーム16の進行方向には試料台20はなくリデポジションは起こらない。(4)の工程で起きたリデポジションはここで取り除くことが出来る。また、微小試料片21に対してのイオンビーム16照射角度が変わったことにより、加工ムラを取り除くことが出来る。図5(c−1)から図5(c−3)に示すように、試料台20の回転角度は固定ではなく、随時角度を変えながら加工しても良い。
FIG. 7 is an explanatory diagram showing the main procedure of the sample preparation method shown in FIG.
(1) First, the micro sample piece 21 is extracted from the bulk material using the microprobe 11.
(2) The sample stage 20 inserted in the FIB sample chamber is rotationally corrected so as to be perpendicular to the ion beam optical axis.
(3) The bottom surface of the micro sample piece 21 is brought into contact with the most distal portion of the sample stage 20 perpendicular to the ion beam optical axis, and is adhered and fixed by the deposition film 22.
(4) The minute sample piece 21 is irradiated with the ion beam 16 and processed to a thickness of, for example, 100 nm. At this stage, the sample stage 20 is sputtered and redeposition occurs, but there is no need to worry about it. Further, for example, in the case of a sample made of a plurality of materials having different hardness, such as a semiconductor device, processing unevenness due to a difference in etching rate can be generated, but this is not necessary. Furthermore, this step can be omitted, and finally a sample can be prepared without processing unevenness and redeposition.
(5) The sample stage 20 is rotationally corrected so as to be perpendicular to the ion beam optical axis.
(6) The fine sample piece 21 processed to a thickness of, for example, 100 nm is irradiated with the ion beam 16 and finished. There is no sample stage 20 in the traveling direction of the ion beam 16, and no redeposition occurs. The redeposition that occurred in step (4) can be removed here. Further, since the irradiation angle of the ion beam 16 with respect to the minute sample piece 21 is changed, the processing unevenness can be removed. As shown in FIG. 5 (c-1) to FIG. 5 (c-3), the rotation angle of the sample stage 20 is not fixed, but may be processed while changing the angle as needed.

図6に示した試料作製法手順も同様であり、加工ムラ,リデポジションなく試料作製ができる。   The sample preparation method procedure shown in FIG. 6 is the same, and the sample preparation can be performed without processing unevenness and redeposition.

図8に本考案の一例であり図7の手順で作製した微小試料片21の説明図を示す。図8(a)は図7(4)の工程を終了した後の図である。空洞23のイオンビーム16進行方向下方にはエッチングレートの差による加工ムラ24が起きている。図8(b)は図7
(6)の工程を終了した後の図である。加工ムラ24は除去されている。また、リデポジションも起きていない。
FIG. 8 is an example of the present invention, and an explanatory view of a minute sample piece 21 produced by the procedure of FIG. 7 is shown. FIG. 8A is a diagram after the process of FIG. 7D is completed. Processing unevenness 24 due to the difference in etching rate occurs below the cavity 23 in the traveling direction of the ion beam 16. FIG. 8 (b) shows FIG.
It is a figure after complete | finishing the process of (6). The processing unevenness 24 is removed. Also, no redeposition has occurred.

本考案の一実施例であるFIB装置基本構成図。1 is a basic configuration diagram of an FIB apparatus according to an embodiment of the present invention. 本考案の一実施例である荷電粒子線装置用試料ホールダ先端部の上面図および断面図。The top view and sectional drawing of the sample holder tip part for charged particle beam devices which are one example of the present invention. 本考案の一実施例である荷電粒子線装置用試料台の側面図および斜視図。The side view and perspective view of the sample stand for charged particle beam apparatuses which are one Example of this invention. 本考案の一実施例である荷電粒子線装置用試料ホールダ先端部の側面図。The side view of the sample holder front-end | tip part for charged particle beam devices which is one Example of this invention. 本考案実施時の試料加工法説明図。Explanatory drawing of the sample processing method at the time of this invention implementation. 本考案実施時の試料加工法説明図。Explanatory drawing of the sample processing method at the time of this invention implementation. 本考案実施時のフローチャート。The flowchart at the time of implementation of this invention. 本考案実施時の電子顕微鏡写真。Electron micrograph at the time of implementation of the present invention.

符号の説明Explanation of symbols

1…FIB装置、2…イオン銃、3…コンデンサーレンズ、4…絞り、5…走査電極、6…対物レンズ、7…試料、8…試料ホールダ、9…二次電子検出器、10…デポジション銃、11…マイクロプローブ、12…走査像表示装置、13…走査電極制御部、14…マイクロプローブ制御装置、15…ホールダ制御部、16…イオンビーム、17…荷電粒子線装置用試料ホールダ、18…ホールダ軸、19…試料回転軸、20…試料台、21…微小試料片、22…デポジション膜、23…空洞、24…加工ムラ。
DESCRIPTION OF SYMBOLS 1 ... FIB apparatus, 2 ... Ion gun, 3 ... Condenser lens, 4 ... Aperture, 5 ... Scan electrode, 6 ... Objective lens, 7 ... Sample, 8 ... Sample holder, 9 ... Secondary electron detector, 10 ... Deposition Gun 11, microprobe 12, scanning image display device 13 scanning electrode control unit 14 microprobe control device 15 holder control unit 16 ion beam 17 sample holder for charged particle beam device 18 DESCRIPTION OF SYMBOLS ... Holder axis, 19 ... Sample rotation axis, 20 ... Sample stage, 21 ... Fine sample piece, 22 ... Deposition film, 23 ... Cavity, 24 ... Unevenness of processing.

Claims (3)

液体金属を備えたイオン源と、該イオン源から発せられたイオンビームを加速する高電圧電源と、イオンビームを試料面上に集束するレンズと、集束されたイオンビームを試料面上で走査する偏向装置と試料を固定した試料ホールダを挿入する試料室を備えた集束イオンビーム加工装置、電子を放出する電子源と該電子を加速する高電圧電源と試料上への電子の集束と、試料を透過した電子像を観察する機能を備えた電子線装置の双方に使用可能な共用試料ホールダにおいて、試料ホールダに固定した試料片を集束イオンビームの進行方向に対し少なくとも90°回転でき、任意の角度で回転補正を加えながら、所望の分析または観察する領域を集束イオンビーム照射によって、加工する工程を含むことを特徴とする荷電粒子線装置用試料ホールダ。   An ion source having a liquid metal, a high voltage power source for accelerating an ion beam emitted from the ion source, a lens for focusing the ion beam on the sample surface, and scanning the focused ion beam on the sample surface A focused ion beam processing apparatus having a sample chamber for inserting a deflector and a sample holder in which a sample is fixed, an electron source for emitting electrons, a high voltage power source for accelerating the electrons, focusing of electrons on the sample, In a common sample holder that can be used for both electron beam apparatuses having a function of observing a transmitted electron image, the sample piece fixed to the sample holder can be rotated at least 90 ° with respect to the traveling direction of the focused ion beam at any angle. And a step of processing a region to be analyzed or observed by irradiation with a focused ion beam while adding rotation correction. Folder. 請求項1記載の荷電粒子線装置用試料ホールダにおいて、試料ホールダの試料台の先端部を集束イオンビームの進行方向に対し直角に回転補正を加え、試料片を試料台に固定できることを特徴とする荷電粒子線装置用試料ホールダ。   2. The sample holder for a charged particle beam apparatus according to claim 1, wherein a tip of the sample holder of the sample holder is rotationally corrected at right angles to the traveling direction of the focused ion beam, and the sample piece can be fixed to the sample holder. Sample holder for charged particle beam equipment. 請求項2記載の試料ホールダにおいて、試料ホールダの試料台の先端部を集束イオンビームの進行方向に対し直角に回転補正を加え、試料台に固定した試料片を試料台軸の周りに360°回転できる機能を備え、任意の角度で回転補正を加えながら、所望の分析または観察する領域を集束イオンビーム照射によって、加工する工程を含むことを特徴とする荷電粒子線装置用試料ホールダ。
3. The sample holder according to claim 2, wherein the tip of the sample stage of the sample holder is rotationally corrected at right angles to the traveling direction of the focused ion beam, and the sample piece fixed to the sample stage is rotated 360 ° around the sample stage axis. A sample holder for a charged particle beam apparatus, comprising a step of processing a region to be analyzed or observed by focused ion beam irradiation while adding a rotation correction at an arbitrary angle.
JP2004004465U 2004-07-28 2004-07-28 Sample holder for charged particle beam equipment Expired - Lifetime JP3106846U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004004465U JP3106846U (en) 2004-07-28 2004-07-28 Sample holder for charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004004465U JP3106846U (en) 2004-07-28 2004-07-28 Sample holder for charged particle beam equipment

Publications (1)

Publication Number Publication Date
JP3106846U true JP3106846U (en) 2005-01-27

Family

ID=43269594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004004465U Expired - Lifetime JP3106846U (en) 2004-07-28 2004-07-28 Sample holder for charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP3106846U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007193977A (en) * 2006-01-17 2007-08-02 Hitachi High-Technologies Corp Charged particle beam apparatus and charged particle beam processing method
JP2010003655A (en) * 2008-06-19 2010-01-07 Hironari Miyazaki Sample stage used into focusing ion beam irradiation device
JP2011198581A (en) * 2010-03-18 2011-10-06 Sii Nanotechnology Inc Composite charged-particle processing and observation apparatus
WO2013108711A1 (en) * 2012-01-20 2013-07-25 株式会社日立ハイテクノロジーズ Charged particle beam microscope, sample holder for charged particle beam microscope, and charged particle beam microscopy
JP2015184066A (en) * 2014-03-20 2015-10-22 株式会社日立ハイテクサイエンス cross section processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007193977A (en) * 2006-01-17 2007-08-02 Hitachi High-Technologies Corp Charged particle beam apparatus and charged particle beam processing method
JP2010003655A (en) * 2008-06-19 2010-01-07 Hironari Miyazaki Sample stage used into focusing ion beam irradiation device
JP2011198581A (en) * 2010-03-18 2011-10-06 Sii Nanotechnology Inc Composite charged-particle processing and observation apparatus
WO2013108711A1 (en) * 2012-01-20 2013-07-25 株式会社日立ハイテクノロジーズ Charged particle beam microscope, sample holder for charged particle beam microscope, and charged particle beam microscopy
US8963102B2 (en) 2012-01-20 2015-02-24 Hitachi High-Technologies Corporation Charged particle beam microscope, sample holder for charged particle beam microscope, and charged particle beam microscopy
JP2015184066A (en) * 2014-03-20 2015-10-22 株式会社日立ハイテクサイエンス cross section processing method

Similar Documents

Publication Publication Date Title
CN107084869B (en) High throughput TEM fabrication process and hardware for backside thinning of cross-sectional view thin layers
KR102221931B1 (en) Method of Performing Electron Diffraction Pattern Analysis Upon a Sample
US8487270B2 (en) Particle beam device and method for use in a particle beam device
US20040164242A1 (en) Sample preparation for transmission electron microscopy
JP2007129214A (en) Stage assembly, particle-optical apparatus including such stage assembly, and method of treating sample in such apparatus
JP4654216B2 (en) Sample holder for charged particle beam equipment
JP7340363B2 (en) Apparatus and method for preparing microscopic specimens
CN104737266B (en) Charged particle beam apparatus and sample manufacture method
JP2009198412A (en) Preparation method of sample for transmission electron microscope, and sample for transmission electron microscope
JP5323405B2 (en) TEM sample preparation method and TEM sample
JP2004087174A (en) Ion beam device, and working method of the same
JP2015159108A (en) Charged particle beam device and sample observation method
JP2009216534A (en) Thin-film sample preparation method
JP6207081B2 (en) Focused ion beam device
JP2006017729A (en) Method for taking out microscopic sample from substrate
JP3106846U (en) Sample holder for charged particle beam equipment
TWI813760B (en) Sample Processing Observation Method
JP2007108105A (en) Method for preparing sample for electron microscope, converged ion beam device and a sample support stand
KR102681961B1 (en) Thin section sample production device and thin section sample production method
JP2004087214A (en) Sample holder for charged particle beam device
JP4199996B2 (en) Sample holder for charged particle beam equipment
JP3260356B2 (en) Focused ion beam processing method
WO2019185069A1 (en) A device for creating and placing a lamella
JP4845452B2 (en) Sample observation method and charged particle beam apparatus
JP2017182923A (en) Specimen holder and focused ion beam device

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 6

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 6