JP3069093B1 - Silane-crosslinked polyolefin resin composition and insulating cable - Google Patents
Silane-crosslinked polyolefin resin composition and insulating cableInfo
- Publication number
- JP3069093B1 JP3069093B1 JP11164104A JP16410499A JP3069093B1 JP 3069093 B1 JP3069093 B1 JP 3069093B1 JP 11164104 A JP11164104 A JP 11164104A JP 16410499 A JP16410499 A JP 16410499A JP 3069093 B1 JP3069093 B1 JP 3069093B1
- Authority
- JP
- Japan
- Prior art keywords
- weight
- parts
- silane
- resin composition
- polyolefin resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Organic Insulating Materials (AREA)
- Insulated Conductors (AREA)
Abstract
【要約】
【課題】 成形表面の平滑性と耐熱性に優れたシラン架
橋ポリオレフィン樹脂組成物、および水架橋工程を削除
した絶縁ケーブルを提供すること。
【解決手段】 分散度(Mw/Mn)が4以上である直
鎖状中低密度ポリエチレン45〜99重量部と低密度ま
たは高密度ポリエチレン1〜55重量部の混合物からな
り、平均密度が0.915g/cm3〜0.935g/
cm3であるベースポリマーと、一般式RR’SiY2で
表される有機不飽和シラン0.1〜5重量部、遊離ラジ
カル発生剤0.01〜0.5重量部及びシラノール縮合
触媒0.01〜0.2重量部を溶融混合してなるシラン
架橋ポリオレフィン樹脂組成物において、ベースポリマ
ーがグラニュー状のポリマー5〜100重量部とペレッ
ト状のポリマー95〜0重量部の混合物からなり、溶融
混合後の加熱変形率(JIS K6723)が40%以下である
シラン架橋ポリオレフィン樹脂組成物。An object of the present invention is to provide a silane-crosslinked polyolefin resin composition having excellent molding surface smoothness and heat resistance, and an insulated cable from which a water crosslinking step is eliminated. SOLUTION: The mixture is composed of a mixture of 45 to 99 parts by weight of a linear medium-low density polyethylene having a dispersity (Mw / Mn) of 4 or more and 1 to 55 parts by weight of a low-density or high-density polyethylene having an average density of 0.1 to 0.5 parts by weight. 915 g / cm 3 to 0.935 g /
cm 3 , 0.1 to 5 parts by weight of an organic unsaturated silane represented by the general formula RR′SiY 2 , 0.01 to 0.5 parts by weight of a free radical generator and 0.01 of a silanol condensation catalyst In a silane cross-linked polyolefin resin composition obtained by melt-mixing the base polymer, the base polymer comprises a mixture of 5 to 100 parts by weight of a granulated polymer and 95 to 0 parts by weight of a pellet-shaped polymer. A silane crosslinked polyolefin resin composition having a heat deformation ratio (JIS K6723) of 40% or less.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ベースポリマー、
有機不飽和シラン、遊離ラジカル発生剤及びシラノール
縮合触媒を溶融混合したシラン架橋樹脂組成物、および
この組成物で電線被覆を行った絶縁ケーブルに関するも
のである。The present invention relates to a base polymer,
The present invention relates to a silane crosslinked resin composition obtained by melt-mixing an organic unsaturated silane, a free radical generator and a silanol condensation catalyst, and an insulated cable coated with an electric wire using the composition.
【0002】[0002]
【従来の技術】ポリエチレンを架橋させる簡便な方法と
しては、化学架橋、電子線照射架橋及び温水架橋(有機
シラン化合物を媒体として進行するもの)が広く知られ
ており、その1つである温水架橋は、化学架橋や電子線
照射架橋に比べ架橋装置コストも格段に安いうえ架橋の
コントロールもしやすいという利点を有している。その
温水架橋ポリエチレンの代表的な例としては、該ポリオ
レフィンに遊離ラジカル発生剤の存在下で有機不飽和シ
ランをグラフト反応させてシラングラフト化した後、こ
のシラングラフトマーをシラノール縮合触媒の存在下で
水分と接触させて架橋させる所謂シラン架橋法が一般に
知られている。例えば特公昭48−1711号公報、特
開昭57−49109号公報等に開示されている。2. Description of the Related Art As a simple method for crosslinking polyethylene, chemical crosslinking, electron beam irradiation crosslinking and hot water crosslinking (which proceed using an organic silane compound as a medium) are widely known, and one of them is hot water crosslinking. Has the advantages that the cost of a crosslinking apparatus is much lower than that of chemical crosslinking or electron beam irradiation crosslinking, and that crosslinking can be easily controlled. As a typical example of the hot water cross-linked polyethylene, the polyolefin is subjected to a graft reaction with an organic unsaturated silane in the presence of a free radical generator to perform silane grafting, and then the silane grafter is subjected to a silanol condensation catalyst in the presence of a silanol condensation catalyst. The so-called silane crosslinking method of crosslinking by contact with moisture is generally known. For example, it is disclosed in JP-B-48-1711 and JP-A-57-49109.
【0003】しかしながら、装置コストが他の架橋方法
に比べ安価である温水架橋において惜しまれる点は架橋
処理に多くの時間とコストを費やしてしまう点である。
水架橋可能な樹脂組成物により被覆した電線は、常温で
は架橋反応の進行が極めて遅い為、80度程度の温水や
高温高湿槽の中で架橋を促進させる必要がある。促進さ
せても丸1日程度かかり架橋処理設備の投資費用は莫大
なものとなる。その為装置コストが大変安価であったと
しても架橋処理コストに多大な費用をかけていたのでは
利点も薄れてしまう。[0003] However, the hot water cross-linking, in which the equipment cost is lower than other cross-linking methods, is missed in that much time and cost are required for the cross-linking treatment.
An electric wire coated with a water-crosslinkable resin composition undergoes a very slow cross-linking reaction at room temperature. Therefore, it is necessary to promote cross-linking in hot water of about 80 ° C. or a high-temperature and high-humidity tank. Even if it is promoted, it takes about one day, and the investment cost of the crosslinking treatment equipment is enormous. For this reason, even if the equipment cost is very low, the advantage will be diminished if a large cost is applied to the crosslinking treatment cost.
【0004】その為、これまでに水架橋可能な樹脂を押
出被覆した電線の架橋処理時間を短縮しようとする試み
が、様々なされてきた。例えば、変性シラン化合物に触
媒や助剤を添加し架橋を促進させる方法が知られており
特開昭57−208006号公報、特開昭62−106
947号公報に開示されている。また、水架橋樹脂被覆
電線の架橋時に水分との接触を高め、架橋時間を短縮す
る方法も知られており特開昭60−254520号公報
に開示されている。さらに超音波雰囲気中で水架橋樹脂
被覆電線の架橋処理を行うことにより水架橋樹脂内部へ
の水の拡散を進行させ架橋処理時間を短縮する方法につ
いても特開平4−331241号公報により開示されて
いる。しかしながら、これら上記の方法はすべて温水や
蒸気処理による架橋処理の時間を短縮しているにすぎ
ず、水架橋工程を削除するものではない。[0004] For this reason, various attempts have been made to reduce the time required for the cross-linking treatment of an electric wire extruded with a water-crosslinkable resin. For example, a method is known in which a catalyst or an auxiliary agent is added to a modified silane compound to promote cross-linking, which is disclosed in JP-A-57-208006 and JP-A-62-106.
No. 947. In addition, a method of increasing the contact with moisture during the crosslinking of the water-crosslinked resin-coated electric wire to shorten the crosslinking time is also known and disclosed in Japanese Patent Application Laid-Open No. 60-254520. Further, Japanese Patent Application Laid-Open No. 4-331241 discloses a method of shortening the crosslinking treatment time by promoting the diffusion of water into the water-crosslinked resin by performing the crosslinking treatment of the water-crosslinked resin-coated electric wire in an ultrasonic atmosphere. I have. However, all of the above methods only shorten the time of the crosslinking treatment by hot water or steam treatment, and do not eliminate the water crosslinking step.
【0005】また、温水架橋ポリエチレンは化学架橋や
電子線照射架橋に比べ耐熱性等の向上効果が低いという
欠点があった。そのため、耐熱性を効果的に向上させる
ため直鎖状中低密度ポリエチレンをベースレジンに使用
する例が増加してきている。しかしながら、低密度ポリ
エチレン等に比べ融点や溶融粘度が高い直鎖状中低密度
ポリエチレンをベースレジンとして用いると、押出機内
で発熱し早期架橋を生じたり、ダイスとの摩擦により成
形表面が荒れてしまうという問題があった。直鎖状中低
密度ポリエチレンのみを原料に用いた例としては、特開
平7−130238号公報により開示されている。しか
しながら、上記の方法は安定した加工性を供給するもの
であり水架橋工程を削除するものではない。In addition, hot water crosslinked polyethylene has a disadvantage that the effect of improving heat resistance and the like is lower than that of chemical crosslinking or electron beam irradiation crosslinking. Therefore, examples of using a linear medium-low-density polyethylene for a base resin in order to effectively improve heat resistance are increasing. However, when a linear medium-low-density polyethylene having a higher melting point and a higher melt viscosity than a low-density polyethylene or the like is used as a base resin, heat is generated in the extruder to cause early crosslinking, or the molding surface becomes rough due to friction with a die. There was a problem. Japanese Patent Application Laid-Open No. 7-130238 discloses an example using only a linear medium-low-density polyethylene as a raw material. However, the above method provides stable workability and does not eliminate the water crosslinking step.
【0006】[0006]
【発明が解決しようとする課題】本発明は、これら上記
の問題を解決したもので、特に成形表面の平滑性と耐熱
性に優れたシラン架橋ポリオレフィン樹脂組成物を提供
するものである。さらに、シラン架橋ポリオレフィン樹
脂組成物により押出被覆した電線を、被覆後すぐにシー
ス掛けできる絶縁ケーブルを提供するものである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems and provides a silane-crosslinked polyolefin resin composition which is particularly excellent in the smoothness and heat resistance of a molding surface. It is another object of the present invention to provide an insulated cable capable of sheathing an electric wire extrusion-coated with a silane-crosslinked polyolefin resin composition immediately after coating.
【0007】[0007]
【課題を解決するための手段】本発明者らは、上記問題
を解決するため鋭意探索した結果、特定の架橋ポリオレ
フィンを用いることにより解決できることを見いだし
た。即ち本発明は、分散度(Mw/Mn)が4以上であ
る直鎖状中低密度ポリエチレン45〜99重量部と低密
度または高密度ポリエチレン1〜55重量部の混合物か
らなり、平均密度が0.915g/cm3〜0.935
g/cm3であるベースポリマーと、一般式RR’Si
Y2(Rは1価のオレフィン性不飽和炭化水素基、Yは
加水分解しうる有機基、R’は脂肪族不飽和炭化水素以
外の1価の炭化水素基あるいはYと同じもの)で表され
る有機不飽和シラン0.1〜5重量部、遊離ラジカル発
生剤0.01〜0.5重量部及びシラノール縮合触媒
0.01〜0.2重量部を溶融混合してなるシラン架橋
ポリオレフィン樹脂組成物において、ベースポリマーが
グラニュー状のポリマー5〜100重量部とペレット状
のポリマー95〜0重量部の混合物からなり、溶融混合
後の加熱変形率(JIS K 6723)が40%以下であるシラ
ン架橋ポリオレフィン樹脂組成物で電線被覆を行った絶
縁ケーブルである。又本発明は、分散度(Mw/Mn)
が4以上である直鎖状中低密度ポリエチレン75〜99
重量部とエチレン−エチルアクリレート共重合体(EE
A)、エチレン−ビニルアセテート共重合体(EV
A)、エチレン−メチルメタクリレート共重合体(EM
MA)、少なくとも1個のビニル芳香族化合物を主体と
する重合体ブロックと、少なくとも1個の共役ジエン化
合物を主体とする重合体ブロックよりなるブロック共重
合体を水素添加して得られる水添ブロック共重合体及び
これらの混合物からなる群より選ばれたポリオレフィン
1〜25重量部の混合物からなり、平均密度が0.91
5g/cm3〜0.935g/cm3であるベースポリマ
ーと、一般式RR’SiY2(Rは1価のオレフィン性
不飽和炭化水素基、Yは加水分解しうる有機基、R’は
脂肪族不飽和炭化水素以外の1価の炭化水素基あるいは
Yと同じもの)で表される有機不飽和シラン0.1〜5
重量部、遊離ラジカル発生剤0.01〜0.5重量部及
びシラノール縮合触媒0.01〜0.2重量部を溶融混
合してなるシラン架橋ポリオレフィン樹脂組成物におい
て、ベースポリマーがグラニュー状のポリマー5〜10
0重量部とペレット状のポリマー95〜0重量部の混合
物からなり、溶融混合後の加熱変形率(JIS K 6723)が
40%以下であるシラン架橋ポリオレフィン樹脂組成物
で電線被覆を行った絶縁ケーブルである。又本発明は、
上記のシラン架橋ポリオレフィン樹脂組成物で電線被覆
を行い、その後シース材料で被覆した絶縁ケーブルであ
る。Means for Solving the Problems The present inventors have conducted intensive searches to solve the above-mentioned problems, and as a result, have found that the problems can be solved by using a specific crosslinked polyolefin. That is, the present invention comprises a mixture of 45 to 99 parts by weight of a linear medium and low density polyethylene having a dispersity (Mw / Mn) of 4 or more and 1 to 55 parts by weight of a low density or high density polyethylene, and having an average density of 0 to 0. 0.915 g / cm 3 to 0.935
g / cm 3 and a general formula RR′Si
Y2 (R is a monovalent olefinically unsaturated hydrocarbon group, Y is a hydrolyzable organic group, and R 'is a monovalent hydrocarbon group other than an aliphatic unsaturated hydrocarbon or the same as Y) Crosslinked polyolefin resin composition obtained by melt-mixing 0.1 to 5 parts by weight of an organic unsaturated silane, 0.01 to 0.5 parts by weight of a free radical generator and 0.01 to 0.2 parts by weight of a silanol condensation catalyst Silane cross-linking, wherein the base polymer comprises a mixture of 5 to 100 parts by weight of a granulated polymer and 95 to 0 parts by weight of a pelletized polymer, and has a heat deformation ratio (JIS K 6723) of 40% or less after melt mixing. Insulation of wire coating with polyolefin resin composition
It is an edge cable . In addition, the present invention provides a method for preparing a dispersion degree (Mw / Mn).
Is 4 or more, a linear medium-low density polyethylene 75 to 99.
Parts by weight and an ethylene-ethyl acrylate copolymer (EE
A), ethylene-vinyl acetate copolymer (EV
A), ethylene-methyl methacrylate copolymer (EM
MA) a hydrogenated block obtained by hydrogenating a block copolymer consisting of at least one polymer block mainly composed of a vinyl aromatic compound and at least one polymer block mainly composed of a conjugated diene compound A mixture of 1 to 25 parts by weight of a polyolefin selected from the group consisting of a copolymer and a mixture thereof;
A base polymer which is 5g / cm 3 ~0.935g / cm 3 , the general formula RR'SiY2 (R is a monovalent olefinically unsaturated hydrocarbon group, Y represents an organic group which can be hydrolyzed, R 'is an aliphatic Organic unsaturated silane represented by a monovalent hydrocarbon group other than unsaturated hydrocarbon or the same as Y) 0.1 to 5
Parts by weight, a free radical generator 0.01 to 0.5 parts by weight and a silanol condensation catalyst 0.01 to 0.2 parts by weight are melt-mixed. 5-10
An insulated cable comprising a mixture of 0 parts by weight and a pellet-shaped polymer of 95 to 0 parts by weight, and coated with a silane-crosslinked polyolefin resin composition having a heat deformation ratio (JIS K 6723) of 40% or less after melt mixing. It is. Also, the present invention
An insulated cable in which an electric wire is coated with the silane-crosslinked polyolefin resin composition and then coated with a sheath material.
【0008】[0008]
【発明の実施形態】本発明のベースポリマーに使用する
直鎖状中低密度ポリエチレンは、チーグラー系触媒、ク
ロム系触媒等の各種触媒を用い、中低圧化又は高圧化に
おいて、気相法、溶液法、懸濁重合法等の各種の重合法
によるエチレンを主成分としたαーオレフィンとの共重
合体である。上記α−オレフィンとしては、C3〜C12
の例えばプロピレン、ブテン−1、ペンテン−1、オク
テン−1、4−メチルペンテン−1、4−メチルヘキセ
ン−1、4,4−ジメチルペンテン−1、ノネン−1、
デセン−1、ウンデセン−1、ドデセン−1等を挙げる
ことができる。本発明のベースポリマーに使用するポリ
エチレンは、高密度ポリエチレンまたは低密度ポリエチ
レンである。高密度ポリエチレンはチーグラー系触媒、
クロム系触媒等の各種触媒を用い、中低圧化又は高圧化
において、気相法、溶液法、懸濁重合法等の各種の重合
法により得られたエチレン重合体である。又、低密度ポ
リエチレンとは、チューブラー法、又はオートクレーブ
法による高圧ラジカル重合で製造されるエチレン重合体
である。本発明のベースポリマーは、グラニュー状のポ
リマーが5〜100重量部とペレット状のポリマーが9
5〜0重量部の混合物であることが必要である。グラニ
ュー状のポリマーが5重量部未満になると有機シラン化
合物の分散性が低下し局部架橋の原因となる。BEST MODE FOR CARRYING OUT THE INVENTION The linear medium-low-density polyethylene used for the base polymer of the present invention is prepared by using various catalysts such as a Ziegler catalyst, a chromium catalyst, etc. It is a copolymer with an α-olefin containing ethylene as a main component by various polymerization methods such as a polymerization method and a suspension polymerization method. As the α-olefin, C 3 -C 12
For example, propylene, butene-1, pentene-1, octene-1, 4-methylpentene-1, 4-methylhexene-1, 4,4-dimethylpentene-1, nonene-1,
Decene-1, undecene-1, dodecene-1 and the like can be mentioned. The polyethylene used for the base polymer of the present invention is a high density polyethylene or a low density polyethylene. High density polyethylene is a Ziegler catalyst,
It is an ethylene polymer obtained by various polymerization methods such as a gas phase method, a solution method, and a suspension polymerization method at medium to low pressure or high pressure using various catalysts such as a chromium-based catalyst. Low-density polyethylene is an ethylene polymer produced by high-pressure radical polymerization by a tubular method or an autoclave method. The base polymer of the present invention comprises 5 to 100 parts by weight of a granulated polymer and 9
It must be a mixture of 5 to 0 parts by weight. If the amount of the granulated polymer is less than 5 parts by weight, the dispersibility of the organic silane compound is reduced, which causes local crosslinking.
【0009】本発明のベースポリマーは、分散度(Mw
/Mn)が4以上である直鎖状中低密度ポリエチレン4
5〜99重量部と高密度または低密度ポリエチレン1〜
55重量部の混合物で、混合物の平均密度が0.915
g/cm3〜0.935g/cm3である。分散度が4未
満の直鎖状中低密度ポリエチレンを使用すると外観不良
が発生しやすい。又、混合した時の平均密度が0.91
5g/cm3未満もしくは低密度ポリエチレンの混合部
数が55重量部を越えると耐熱性の低下を引き起こし、
混合した時の平均密度が0.935g/cm3を越える
と堅くなり太物の電線及びケーブルの製造に適さない。The base polymer of the present invention has a dispersity (Mw).
/ Mn) is 4 or more.
5 to 99 parts by weight and high density or low density polyethylene 1
55 parts by weight of the mixture, the average density of the mixture being 0.915
a g / cm 3 ~0.935g / cm 3 . When a linear medium-low-density polyethylene having a degree of dispersion of less than 4 is used, poor appearance is likely to occur. The average density when mixed is 0.91
When the amount is less than 5 g / cm 3 or the mixing number of the low-density polyethylene exceeds 55 parts by weight, heat resistance is lowered,
If the average density when mixed exceeds 0.935 g / cm 3 , it becomes hard and unsuitable for producing thick electric wires and cables.
【0010】本発明のベースポリマーに使用するポリオ
レフィンとしては、エチレンーエチルアクリレート共重
合体(EEA)、エチレン−ビニルアセテート共重合体
(EVA)、エチレンーメチルメタクリレート共重合体
(EMMA)、少なくとも1個のビニル芳香族化合物を
主体とする重合体ブロックと、少なくとも1個の共役ジ
エン化合物を主体とする重合体ブロックよりなるブロッ
ク共重合体を水素添加して得られる水添ブロック共重合
体、例えば水添スチレンーイソプレンブロック共重合体
(SEPS)、水添スチレンーブタジエンブロック共重
合体(SEBS)等をあげることができる。本発明のベ
ースポリマーは、分散度(Mw/Mn)が4以上である
直鎖状中低密度ポリエチレン75〜99重量部と上記ポ
リオレフィン1〜25重量部の混合物で、混合物の平均
密度が0.915g/cm3〜0.935g/cm3であ
る。平均密度が0.915g/cm3未満もしくはポリ
オレフィンの混合部数が25重量部を越えると耐熱性の
低下を引き起こし、平均密度が0.935g/cm3を
越えると堅くなり太物の電線やケーブルの製造に適さな
い。The polyolefin used in the base polymer of the present invention includes ethylene-ethyl acrylate copolymer (EEA), ethylene-vinyl acetate copolymer (EVA), ethylene-methyl methacrylate copolymer (EMMA), and at least one polyolefin. Hydrogenated block copolymer obtained by hydrogenating a block copolymer consisting of a polymer block mainly composed of a vinyl aromatic compound and at least one polymer block mainly composed of a conjugated diene compound, for example, Examples include hydrogenated styrene-isoprene block copolymer (SEPS) and hydrogenated styrene-butadiene block copolymer (SEBS). The base polymer of the present invention is a mixture of 75 to 99 parts by weight of a linear medium-low-density polyethylene having a dispersity (Mw / Mn) of 4 or more and 1 to 25 parts by weight of the above-mentioned polyolefin. It is 915 g / cm 3 to 0.935 g / cm 3 . When the average density is less than 0.915 g / cm 3 or when the number of mixed parts of the polyolefin exceeds 25 parts by weight, the heat resistance is reduced, and when the average density exceeds 0.935 g / cm 3, it becomes hard and produces thick electric wires and cables. Not suitable for
【0011】本発明の有機不飽和シランは、ベースレジ
ン相互の架橋点となるべくベースレジンにグラフト化さ
れるものである。本発明において使用される有機不飽和
シランとしては、一般式RR’SiY2(Rは1価のオ
レフィン性不飽和炭化水素基、Yは加水分解しうる有機
基、R’は脂肪族不飽和炭化水素以外の1価の炭化水素
基あるいはYと同じもの)で表される化合物が使用され
る。R’がYと同一で一般式RSiY3で表される有機
不飽和シランを使用するのが望ましく、例えばビニルト
リメトキシシラン、ビニルトリエトキシシラン、ビニル
トリブトキシシラン、アリルトリメトキシシラン、アリ
ルトリエトキシシラン等が挙げられる。これらの添加量
としてはポリマーの全重量を基準にして0.1〜5重量
%、好ましくは0.7〜3重量%である。0.1重量%
未満では充分なグラフト化が起こらず、又5重量%を超
えると成形不良を起こすとともに経済的でなくなる。The organic unsaturated silane of the present invention is one which is grafted to the base resin so as to be a cross-linking point between the base resins. Examples of the organic unsaturated silane used in the present invention include a compound represented by the general formula RR'SiY 2 (R is a monovalent olefinically unsaturated hydrocarbon group, Y is a hydrolyzable organic group, and R 'is an aliphatic unsaturated hydrocarbon group. A compound represented by a monovalent hydrocarbon group other than hydrogen or the same as Y) is used. It is desirable to use an organic unsaturated silane represented by the general formula RSiY 3 in which R ′ is the same as Y, for example, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, allyltrimethoxysilane, allyltriethoxysilane. Examples include silane. The amount of these additives is from 0.1 to 5% by weight, preferably from 0.7 to 3% by weight, based on the total weight of the polymer. 0.1% by weight
If it is less than 5%, sufficient grafting does not occur, and if it exceeds 5% by weight, molding failure occurs and it is not economical.
【0012】本発明の遊離ラジカル発生剤は、シラング
ラフト化反応の開始剤として働く。本発明において使用
される遊離ラジカル発生剤には、重合開始作用の強い種
々の有機過酸化物及びパーエステル、例えばジクミルパ
ーオキサイド、α,α′−ビス(t−ブチルパーオキシ
ジイソプロピル)ベンゼン、ジ−t−ブチルパーオキサ
イド、t−ブチルクミルパーオキサイド、ジ−ベンゾイ
ルパーオキサイド、2,5−ジメチル−2,5−ビス
(t−ブチルパーオキシ)ヘキサン、t−ブチルパーオ
キシピバレート、t−ブチルパーオキシ−2−エチルヘ
キサノエート等が挙げられる。これらの添加量としては
ポリマーの全重量を基準にして0.01〜0.5重量
%、好ましくは0.05〜0.2重量%である。0.0
1重量%未満では充分なシラングラフト化反応が進行せ
ず、また0.5重量%を超えると押出加工性が低下する
とともに成形表面が悪くなる。The free radical generator of the present invention acts as an initiator for a silane grafting reaction. The free radical generator used in the present invention includes various organic peroxides and peresters having a strong polymerization initiating action, such as dicumyl peroxide, α, α'-bis (t-butylperoxydiisopropyl) benzene, Di-t-butyl peroxide, t-butyl cumyl peroxide, di-benzoyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, t-butylperoxypivalate, t -Butylperoxy-2-ethylhexanoate and the like. The amount of these additives is 0.01 to 0.5% by weight, preferably 0.05 to 0.2% by weight, based on the total weight of the polymer. 0.0
If the amount is less than 1% by weight, a sufficient silane grafting reaction does not proceed.
【0013】本発明のシラノール縮合触媒としては、ジ
ブチル錫ジラウレート、酢酸第一錫、ジブチル錫ジアセ
テート、ジブチル錫ジオクトエート、ナフテン酸鉛、カ
プリル酸亜鉛、ナフテン酸コバルト、チタン酸テトラブ
チルエステル、ステアリン酸鉛、ステアリン酸亜鉛、ス
テアリン酸カドミウム、ステアリン酸バリウム、ステア
リン酸カルシウム等の有機金属化合物が挙げられる。こ
れらの添加量としては、ポリマーの全重量を基準として
0.01〜0.2重量%、好ましくは0.02〜0.1
重量%である。0.01重量%未満では十分な架橋反応
が進まず、又0.2重量%を超えると押出時に押出機内
で局部的に架橋が進行し外観が著しく悪化する。The silanol condensation catalyst of the present invention includes dibutyltin dilaurate, stannous acetate, dibutyltin diacetate, dibutyltin dioctoate, lead naphthenate, zinc caprylate, cobalt naphthenate, tetrabutyl titanate, and stearic acid. Organic metal compounds such as lead, zinc stearate, cadmium stearate, barium stearate, calcium stearate and the like can be mentioned. These additives may be added in an amount of 0.01 to 0.2% by weight, preferably 0.02 to 0.1% by weight, based on the total weight of the polymer.
% By weight. If the amount is less than 0.01% by weight, a sufficient crosslinking reaction does not proceed. If the amount exceeds 0.2% by weight, crosslinking occurs locally in the extruder at the time of extrusion, and the appearance is significantly deteriorated.
【0014】その他の添加剤としては所望により通常に
使用される添加剤、例えば酸化防止剤、中和剤、紫外線
吸収剤、帯電防止剤、顔料、分散剤、増粘剤、金属劣化
防止剤、防カビ剤、流動調整剤、その他の無機質充填剤
等、または他の合成樹脂を含有させることもできる。As other additives, if desired, commonly used additives such as antioxidants, neutralizers, ultraviolet absorbers, antistatic agents, pigments, dispersants, thickeners, metal deterioration inhibitors, A fungicide, a flow regulator, other inorganic fillers, or the like, or other synthetic resins can be contained.
【0015】本発明の架橋ポリオレフィン樹脂組成物
は、加熱変形特性が極めて優れており各種の用途に使用
できる。押出後の蒸気処理や温水処理といった後架橋処
理工程を行えば、更に耐熱性が向上するが、この工程を
省略することも可能である。その為、耐熱性や柔軟性を
必要とする絶縁ケーブル類の製造に特に適しており、電
線被覆を行った後、水架橋工程を行わずにシース材料で
被覆することが可能である。このためには、押出し直後
の加熱変形率が40%以下であることが必要である。シ
ース材料としては、塩化ビニル樹脂組成物等が使用され
る。The crosslinked polyolefin resin composition of the present invention has extremely excellent heat deformation properties and can be used for various applications. If a post-crosslinking treatment step such as steam treatment or hot water treatment after extrusion is performed, the heat resistance is further improved, but this step can be omitted. Therefore, it is particularly suitable for the production of insulated cables that require heat resistance and flexibility, and can be covered with a sheath material without performing a water crosslinking step after covering the electric wires. For this purpose, it is necessary that the heating deformation ratio immediately after extrusion is 40% or less. As the sheath material, a vinyl chloride resin composition or the like is used.
【0016】[0016]
【実施例】以下の実施例は本発明を説明するが、これは
単なる例示であり本発明はこれに限定されるものではな
い。The following examples illustrate the invention, but are by way of example only and the invention is not limited thereto.
【0017】ベースポリマーと、不飽和有機シラン化合
物、遊離ラジカル発生剤及びシラノール触媒を表1〜3
の比率で混合し押出機を用いてテープを押出した。この
押出テープを用いて加熱変形率の評価を行った。又、テ
ープ押出時と同様の配合で電線押出も行い、成形表面の
平滑性について評価した。The base polymer, unsaturated organic silane compound, free radical generator and silanol catalyst are shown in Tables 1-3.
And the tape was extruded using an extruder. The extruded tape was used to evaluate the heating deformation rate. In addition, the wire was extruded with the same composition as when the tape was extruded, and the smoothness of the molded surface was evaluated.
【0018】使用した原材料は次のとおりである。 (1)L−LDPE(1):直鎖状低密度ポリエチレン (密度;0.918g/cm3、分散度4.5)(グラニュー状) (2)L−LDPE(2):直鎖状中低密度ポリエチレン (密度;0.917g/cm3、分散度 7.8)(ペレット状) (3)L−LDPE(3):直鎖状中低密度ポリエチレン (密度;0.919g/cm3、分散度 3.9)(ペレット状) (4)L−LDPE(4):直鎖状中低密度ポリエチレン (密度;0.902g/cm3、分散度 5)(ペレット状) (5)L−LDPE(5):直鎖状中低密度ポリエチレン (密度;0.925g/cm3、分散度 5)(ペレット状) (6)L−LDPE(6):直鎖状中低密度ポリエチレン (密度;0.920g/cm3、分散度 3.6)(グラニュー状) (6) LDPE :低密度ポリエチレン(密度;0.923g
/cm3) (7) HDPE :高密度ポリエチレン(密度;0.950g
/cm3) (8) EEA :エチレンーエチルアクリレート共重
合体(EA含量;23重量%) (密度;
0.935g/cm3) (9)EVA :エチレンービニルアセテート共重合
体(VA含量;25重量%)(密度;0.950g/cm3) (10)VTMOS :ビニルトリメトキシシラン (11)DCP :ジクミルパーオキサイド (12)DBTDL :ジブチルスズジラウレートThe raw materials used are as follows. (1) L-LDPE (1): linear low-density polyethylene (density: 0.918 g / cm 3 , dispersion degree 4.5) (granular) (2) L-LDPE (2): linear medium-low density polyethylene (Density: 0.917 g / cm 3 , dispersity 7.8) (pellet) (3) L-LDPE (3): linear medium-low density polyethylene (density: 0.919 g / cm 3 , dispersity 3.9) (pellet) (4) L-LDPE (4): linear medium-low density polyethylene (density: 0.902 g / cm 3 , dispersity 5) (pellet) (5) L-LDPE (5): linear medium-low Density polyethylene (density; 0.925 g / cm 3 , dispersity 5) (pellet) (6) L-LDPE (6): linear medium-low density polyethylene (density: 0.920 g / cm 3 , dispersity 3.6) ( (6) LDPE: Low density polyethylene (density: 0.923g)
/ cm 3 ) (7) HDPE: high-density polyethylene (density; 0.950 g)
/ cm 3 ) (8) EEA: ethylene-ethyl acrylate copolymer (EA content; 23% by weight) (density;
(0.935 g / cm 3 ) (9) EVA: ethylene-vinyl acetate copolymer (VA content; 25% by weight) (density: 0.950 g / cm 3 ) (10) VTMOS: vinyl trimethoxysilane (11) DCP: dik Mil peroxide (12) DBTDL: dibutyltin dilaurate
【0019】評価方法は次のとおりである。 (13)テープ押出外観(ブツのあるなしの確認):50mmφ
の押出機 130-160-180-190-180℃ L/D:20、圧縮比 3.5、テープダイ:巾 100mm、リップ間
隔 1mmt スクリュー回転数 40rpm テープ外観(ブツ)評価:○>△>×の順とし、○のレ
ベルを合格とした。(14)加熱変形率(%):JIS K 6723
による。 (15)被覆電線押出外観(成形表面の評価):50mmφの押
出機 130-160-180-190-180℃ L/D:24、圧縮比 4.0、導体径 0.8mmφ、被覆厚 1.00mm
φ スクリュー回転数 40 rpm 被覆電線の外観評価:○>△>×の順とし、○のレベル
を合格とした。 (16)電線被覆後の巻き取り安さ(ケーブルの柔軟性確
認):被覆電線の巻き取り評価:○>△>×の順とし、
○のレベルを合格とした。The evaluation method is as follows. (13) Appearance of tape extrusion (confirmation of presence or absence of bumps): 50mmφ
Extruder 130-160-180-190-180 ℃ L / D: 20, compression ratio 3.5, tape die: width 100mm, lip interval 1mmt, screw rotation speed 40rpm Tape appearance (bubble) evaluation: ○>△> × , The level of ○ was judged to be acceptable. (14) Heat deformation ratio (%): JIS K 6723
by. (15) Coated wire extrusion appearance (Evaluation of molding surface): Extruder with 50mmφ 130-160-180-190-180 ℃ L / D: 24, compression ratio 4.0, conductor diameter 0.8mmφ, coating thickness 1.00mm
φ Screw rotation speed 40 rpm Appearance evaluation of the coated electric wire: ○>△> ×, and the level of ○ was accepted. (16) Ease of winding after covering the wire (confirmation of cable flexibility): Winding evaluation of the covered wire: ○>△> ×
The level of ○ was judged as passed.
【0020】[0020]
【表1】 [Table 1]
【0021】[0021]
【表2】 [Table 2]
【0022】[0022]
【表3】 [Table 3]
【0023】表1〜3から明らかなように、実施例1〜
5は押出加工性及び成形表面の平滑性が良好で、かつ非
常に優れた耐熱性を示している。すなわち、加熱変形率
が押出直後に40%以下になっており架橋処理工程を削
除することが可能である。また、どの架橋方法を用いて
も良好な加工性及び耐熱性を有していることがわかる。
これに対し比較例には全て平滑性に難があり、押出加工
性及び耐熱性のバランスがとれていない。As is clear from Tables 1 to 3, Examples 1 to
No. 5 has good extrusion processability and smoothness of the molding surface, and shows very excellent heat resistance. That is, the heat deformation ratio is 40% or less immediately after the extrusion, and the crosslinking treatment step can be omitted. In addition, it can be seen that good workability and heat resistance are obtained by using any of the crosslinking methods.
On the other hand, all of the comparative examples have difficulty in smoothness, and the extrusion processability and heat resistance are not balanced.
【0024】[0024]
【発明の効果】本発明によれば、成形表面の平滑性に優
れ耐熱性に優れたシラン架橋ポリオレフィンを得ること
ができ、電線被覆に使用した場合に水架橋処理工程を削
減し、すぐにシース掛けを実施することができる。この
ことにより、製品の生産性が大幅に向上するだけでなく
製造コストが大幅に削減され、絶縁ケーブルの製造に大
きく貢献するものである。According to the present invention, it is possible to obtain a silane-crosslinked polyolefin having excellent molding surface smoothness and excellent heat resistance. Hanging can be performed. As a result, not only is the productivity of the product significantly improved, but also the production cost is greatly reduced, which greatly contributes to the production of the insulated cable.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01B 7/02 H01B 7/02 F ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI H01B 7/02 H01B 7/02 F
Claims (3)
鎖状中低密度ポリエチレン45〜99重量部と低密度ま
たは高密度ポリエチレン1〜55重量部の混合物からな
り、平均密度が0.915g/cm3〜0.935g/
cm3であるベースポリマーと、一般式RR’SiY2
(Rは1価のオレフィン性不飽和炭化水素基、Yは加水
分解しうる有機基、R’は脂肪族不飽和炭化水素以外の
1価の炭化水素基あるいはYと同じもの)で表される有
機不飽和シラン0.1〜5重量部、遊離ラジカル発生剤
0.01〜0.5重量部及びシラノール縮合触媒0.0
1〜0.2重量部を溶融混合してなるシラン架橋ポリオ
レフィン樹脂組成物において、ベースポリマーがグラニ
ュー状のポリマー5〜100重量部とペレット状のポリ
マー95〜0重量部の混合物からなり、溶融混合後の加
熱変形率(JIS K 6723)が40%以下であるシラン架橋
ポリオレフィン樹脂組成物で電線被覆を行ったことを特
徴とする絶縁ケーブル。1. A mixture of 45 to 99 parts by weight of a linear medium and low density polyethylene having a degree of dispersion (Mw / Mn) of 4 or more and 1 to 55 parts by weight of a low density or high density polyethylene having an average density of 0 0.915 g / cm 3 to 0.935 g /
cm 3 and a general formula RR′SiY 2
(R is a monovalent olefinically unsaturated hydrocarbon group, Y is a hydrolyzable organic group, and R ′ is a monovalent hydrocarbon group other than an aliphatic unsaturated hydrocarbon or the same as Y). 0.1 to 5 parts by weight of an organic unsaturated silane, 0.01 to 0.5 parts by weight of a free radical generator and 0.0 of a silanol condensation catalyst
In a silane crosslinked polyolefin resin composition obtained by melt-mixing 1 to 0.2 parts by weight, a base polymer is a mixture of 5 to 100 parts by weight of a granulated polymer and 95 to 0 parts by weight of a pellet-shaped polymer, It was noted that the wire was coated with a silane-crosslinked polyolefin resin composition having a post-heating deformation ratio (JIS K 6723) of 40% or less.
Insulated cable .
鎖状中低密度ポリエチレン75〜99重量部とエチレン
−エチルアクリレート共重合体(EEA)、エチレン−
ビニルアセテート共重合体(EVA)、エチレン−メチ
ルメタクリレート共重合体(EMMA)、少なくとも1
個のビニル芳香族化合物を主体とする重合体ブロック
と、少なくとも1個の共役ジエン化合物を主体とする重
合体ブロックよりなるブロック共重合体を水素添加して
得られる水添ブロック共重合体及びこれらの混合物から
なる群より選ばれたポリオレフィン1〜25重量部の混
合物からなり、平均密度が0.915g/cm3〜0.
935g/cm3であるベースポリマーと、一般式R
R’SiY2(Rは1価のオレフィン性不飽和炭化水素
基、Yは加水分解しうる有機基、R’は脂肪族不飽和炭
化水素以外の1価の炭化水素基あるいはYと同じもの)
で表される有機不飽和シラン0.1〜5重量部、遊離ラ
ジカル発生剤0.01〜0.5重量部及びシラノール縮
合触媒0.01〜0.2重量部を溶融混合してなるシラ
ン架橋ポリオレフィン樹脂組成物において、ベースポリ
マーがグラニュー状のポリマー5〜100重量部とペレ
ット状のポリマー95〜0重量部の混合物からなり、溶
融混合後の加熱変形率(JIS K 6723)が40%以下であ
るシラン架橋ポリオレフィン樹脂組成物で電線被覆を行
った ことを特徴とする絶縁ケーブル。2. 75 to 99 parts by weight of a linear medium-low-density polyethylene having a dispersity (Mw / Mn) of 4 or more, ethylene-ethyl acrylate copolymer (EEA),
Vinyl acetate copolymer (EVA), ethylene-methyl methacrylate copolymer (EMMA), at least 1
Hydrogenated block copolymer obtained by hydrogenating a block copolymer consisting of a polymer block mainly composed of two vinyl aromatic compounds and at least one polymer block mainly composed of a conjugated diene compound, and And a mixture of 1 to 25 parts by weight of a polyolefin selected from the group consisting of mixtures having an average density of 0.915 g / cm 3 to 0.1.
A base polymer of 935 g / cm 3 ,
R'SiY2 (R is a monovalent olefinically unsaturated hydrocarbon group, Y is a hydrolyzable organic group, R 'is a monovalent hydrocarbon group other than an aliphatic unsaturated hydrocarbon or the same as Y)
A silane crosslink obtained by melt-mixing 0.1 to 5 parts by weight of an organic unsaturated silane represented by the formula, 0.01 to 0.5 parts by weight of a free radical generator and 0.01 to 0.2 parts by weight of a silanol condensation catalyst. In the polyolefin resin composition, the base polymer is composed of a mixture of 5 to 100 parts by weight of a granulated polymer and 95 to 0 parts by weight of a pellet-shaped polymer, and a heat deformation ratio after melt mixing (JIS K 6723) is 40% or less. Conducting wire coating with a silane-crosslinked polyolefin resin composition
Insulated cable which is characterized in that Tsu.
シラン架橋ポリオレフィン樹脂組成物で電線被覆を行
い、その後シース材料で被覆したことを特徴とする絶縁
ケーブル。3. The insulated cable according to claim 1, wherein
An insulated cable, wherein an electric wire is coated with a silane-crosslinked polyolefin resin composition and then coated with a sheath material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11164104A JP3069093B1 (en) | 1999-06-10 | 1999-06-10 | Silane-crosslinked polyolefin resin composition and insulating cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11164104A JP3069093B1 (en) | 1999-06-10 | 1999-06-10 | Silane-crosslinked polyolefin resin composition and insulating cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JP3069093B1 true JP3069093B1 (en) | 2000-07-24 |
JP2000351876A JP2000351876A (en) | 2000-12-19 |
Family
ID=15786844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11164104A Expired - Lifetime JP3069093B1 (en) | 1999-06-10 | 1999-06-10 | Silane-crosslinked polyolefin resin composition and insulating cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3069093B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111936567A (en) * | 2018-04-27 | 2020-11-13 | 陶氏环球技术有限责任公司 | Foamed polyolefin composition for wire and cable coating |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002097324A (en) * | 2000-09-25 | 2002-04-02 | Nippon Unicar Co Ltd | Water-crosslinkable olefin-based resin composition, method for producing water-crosslinked olefin-based resin molding and the resultant molding |
JP4812931B2 (en) * | 2000-11-08 | 2011-11-09 | 三菱電線工業株式会社 | Electric wire manufacturing method |
EP1528574B1 (en) * | 2003-10-24 | 2006-06-07 | Borealis Technology Oy | Low voltage power cable with insulation layer comprising polyolefin having polar groups |
WO2009002845A1 (en) | 2007-06-27 | 2008-12-31 | Dow Global Technologies Inc. | Crosslinkable blends of polyolefin elastomers and silane copolymers for increased flexibility cable insulation |
-
1999
- 1999-06-10 JP JP11164104A patent/JP3069093B1/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
特開 昭61−103941JP,A) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111936567A (en) * | 2018-04-27 | 2020-11-13 | 陶氏环球技术有限责任公司 | Foamed polyolefin composition for wire and cable coating |
CN111936567B (en) * | 2018-04-27 | 2023-12-08 | 陶氏环球技术有限责任公司 | Foamed polyolefin composition for wire and cable coatings |
Also Published As
Publication number | Publication date |
---|---|
JP2000351876A (en) | 2000-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3091232B2 (en) | Silanes, free radical generators, amine blends for crosslinking olefin polymers | |
JP4399076B2 (en) | Peelable semiconductive resin composition for external semiconductive layer of water-crosslinked polyethylene insulated power cable | |
JP2010540697A (en) | Moisture curable composition and method for producing the composition | |
EP2226355B1 (en) | Moisture-crosslinked polyolefin compositions | |
JP4399077B2 (en) | Adhesive semiconductive resin composition for semiconductive layer inside water-crosslinked polyethylene insulated power cable | |
JP3186542B2 (en) | Method for producing flame-retardant foamed crosslinked polyolefin insulated wire | |
JP2996903B2 (en) | Method for producing silane-crosslinked polyolefin | |
JP3069093B1 (en) | Silane-crosslinked polyolefin resin composition and insulating cable | |
JP3322818B2 (en) | Method for producing silane-crosslinked polyolefin | |
JP2000034383A (en) | Silane-cross-linkable polyolefin resin composition and insulation cable | |
JP3359572B2 (en) | Silane cross-linked polyolefin resin composition and insulated cable | |
JP2004010864A (en) | Tracking-resistant resin composition crosslinkable with water and power cable having insulating coated layer formed out of the composition | |
JP3352630B2 (en) | Silane cross-linked polyolefin resin composition and insulated cable | |
JP3359573B2 (en) | Silane cross-linked polyolefin resin composition and insulated cable | |
JP3354498B2 (en) | Silane crosslinkable polyolefin resin composition and insulated cable | |
JP3352631B2 (en) | Silane cross-linked polyolefin resin composition and insulated cable | |
JP3354501B2 (en) | Silane crosslinkable polyolefin resin composition and insulated cable | |
JP3354499B2 (en) | Silane crosslinkable polyolefin resin composition and insulated cable | |
JP2000230025A (en) | Silane-modified linear polyethylene for power cable covering, and power cable | |
JP3516388B2 (en) | Flexible silane cross-linked polyolefin and insulated wire | |
JP3377742B2 (en) | Method for producing silane-crosslinked polyolefin | |
JP4399078B2 (en) | Peelable semiconductive water crosslinkable resin composition for external semiconductive layer of water cross-linked polyethylene insulated power cable | |
JP4448589B2 (en) | Adhesive semiconductive water crosslinkable resin composition for internal semiconductive layer of water cross-linked polyethylene insulated power cable | |
JP3375871B2 (en) | Method for producing silane-crosslinked polyolefin | |
JP3124211B2 (en) | Method for producing silane-crosslinked polyolefin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3069093 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080519 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080519 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080519 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090519 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090519 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090519 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090519 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110519 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120519 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130519 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140519 Year of fee payment: 14 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |