JP3032439B2 - Ultrasonic transducer - Google Patents

Ultrasonic transducer

Info

Publication number
JP3032439B2
JP3032439B2 JP6294811A JP29481194A JP3032439B2 JP 3032439 B2 JP3032439 B2 JP 3032439B2 JP 6294811 A JP6294811 A JP 6294811A JP 29481194 A JP29481194 A JP 29481194A JP 3032439 B2 JP3032439 B2 JP 3032439B2
Authority
JP
Japan
Prior art keywords
ultrasonic
transmitting
receiving
receiving surface
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6294811A
Other languages
Japanese (ja)
Other versions
JPH08154298A (en
Inventor
哲郎 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP6294811A priority Critical patent/JP3032439B2/en
Publication of JPH08154298A publication Critical patent/JPH08154298A/en
Application granted granted Critical
Publication of JP3032439B2 publication Critical patent/JP3032439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】本発明は超音波送受波装置に関し、特に、
簡易な構成によって高精度のダイナミックスフォーカス
測定、多段フォーカス測定等を可能とする焦点位置可変
可能な超音波送受波装置に関する。
[0001] The present invention relates to an ultrasonic wave transmitting / receiving apparatus, and in particular,
The present invention relates to an ultrasonic transmission / reception device with a variable focus position that enables highly accurate dynamics focus measurement, multi-stage focus measurement, and the like with a simple configuration.

【0002】[0002]

【従来の技術】多数の超音波振動子を円弧状に、また
は、アレー状に配置し、超音波パルスのそれぞれの送受
信タイミングを調節することにより形成される焦点位置
に関する超音波強度を測定する電子フォーカス技術が知
られており、上記焦点位置を移動させることによって目
的の探査領域について高精度の測定を行うことができる
技術が超音波測定装置等において用いられている。
2. Description of the Related Art A large number of ultrasonic transducers are arranged in an arc or an array, and an electronic device for measuring the intensity of an ultrasonic wave with respect to a focal position formed by adjusting the transmission / reception timing of each ultrasonic pulse. A focus technique is known, and a technique capable of performing high-accuracy measurement of a target search area by moving the focus position is used in an ultrasonic measurement device or the like.

【0003】図6は電子フォーカスの原理図であり、各
振動子51…は設定時間を変化可能な遅延回路52を介
してその出力を加算器53に接続する。超音波パルスが
発射されると伝播物質によって反射分散され、焦点位置
54において反射された超音波パルスが各振動子51…
に到達した時の受信信号は上記遅延回路52を経ること
によって同時に加算され、その焦点位置近傍で所定の分
解能が得られる。各遅延回路52の設定を変えることに
より、その焦点位置を変化させて目的の探査領域につい
ての反射超音波強度分布を測定することができる。
FIG. 6 is a diagram showing the principle of electronic focusing. Each vibrator 51... Has its output connected to an adder 53 via a delay circuit 52 whose set time can be changed. When the ultrasonic pulse is emitted, the ultrasonic pulse is reflected and dispersed by the propagation material, and the ultrasonic pulse reflected at the focal position 54 is transmitted to each of the transducers 51.
Are received at the same time by passing through the delay circuit 52, and a predetermined resolution is obtained near the focal position. By changing the setting of each delay circuit 52, it is possible to change the focal position and measure the reflected ultrasonic intensity distribution in the target search area.

【0004】上記電子フォーカスには、段階的に設定し
た各焦点位置についてそれぞれ超音波パルスを発射し、
段階的に得られた測定値によって目的領域の探査を行う
多段フォーカスによる方法があり、その他、超音波パル
スの受信中に焦点位置を変化させるダイナミックフォー
カス等の方法が一般に用いられ、このダイナミックフォ
ーカスの遅延量を変更する方式には、アナログスイッチ
により順次切換える方法(実開平5−622121号公
報)、メモリーデータの処理タイミングを制御する方法
(実開平5−63509号公報)、可変容量ダイオード
とコイルによる方法(特開平5−235696号公
報)、可変位相器とミキサ回路を介して局部発振器によ
る中間周波帯域で遅延変化させる方法(特開平5−22
3793号公報)がある。
[0004] In the above-mentioned electronic focus, ultrasonic pulses are respectively emitted for each focus position set in stages,
There is a method using multi-step focus for exploring a target area based on measurement values obtained in a stepwise manner. In addition, a method such as dynamic focus for changing a focus position during reception of an ultrasonic pulse is generally used. Methods for changing the delay amount include a method of sequentially switching with an analog switch (Japanese Utility Model Application Laid-Open No. 5-622121), a method of controlling the processing timing of memory data (Japanese Utility Model Application Laid-Open No. 5-63509), and a method using a variable capacitance diode and a coil. (Japanese Patent Laid-Open No. Hei 5-235696), a method of changing a delay in an intermediate frequency band by a local oscillator via a variable phase shifter and a mixer circuit (Japanese Patent Laid-Open No. 5-22)
No. 3793).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
電子フォーカスは、分割された各振動子の微小信号を扱
うチャネル毎の多数の処理回路を要し、また、遅延時間
の設定精度に起因する焦点位置のばらつきによって測定
精度の向上が困難となる他、多段フォーカスの低フレー
ムレートの問題、アナログスイッチ切換えの不連続性と
スイッチングノイズ対策、メモリーデータのディジタル
処理のための複雑な回路構成と加算信号の対数増幅前の
ディジタル処理による微小レベル信号の喪失、可変容量
遅延線のインピーダンス変化に伴う信号波形の歪、局部
発信器式の位相変化に対応する遅延量の限界等のそれぞ
れの問題を伴うことから、本発明は、目的の探査領域に
ついて簡易な構成によって高精度のダイナミックスフォ
ーカス測定、多段フォーカス測定等を可能とする焦点位
置可変可能の超音波送受波装置を得ることを目的とす
る。
However, these electronic focuses require a large number of processing circuits for each channel for handling a small signal of each of the divided transducers, and a focus position caused by the accuracy of setting the delay time. In addition to the difficulty of improving the measurement accuracy due to the variation in measurement, the problem of low frame rate in multi-stage focus, the discontinuity of analog switch switching and the countermeasures against switching noise, the complicated circuit configuration for digital processing of memory data and the addition signal Digital processing before logarithmic amplification causes problems such as loss of minute level signal, distortion of signal waveform due to impedance change of variable capacitance delay line, and limit of delay amount corresponding to phase change of local oscillator type. The present invention provides a high-precision dynamics focus measurement with a simple configuration for a target search area, And to obtain a focal position varying possible ultrasonic transmitter device capable of Okasu measurement and the like.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、供給された電気信号に応じた超音波を送受波面から
送波すると共に、当該送受波面で受波した超音波を当該
超音波に応じた電気信号に変換する前記送受波面の円弧
中心を超音波信号の焦点とした超音波振動子を有する超
音波送受波装置において、前記超音波振動子は湾曲させ
た板状の可撓性圧電部材の両面に電極を被着してなり、
前記超音波振動子の両端部を支持すべく対向配置した一
対のバイモルフ圧電素子により前記超音波振動子を変形
させ、前記送受波面の曲率を変えて焦点位置を移動させ
Means for Solving the Problems To solve the above problems, an ultrasonic wave according to a supplied electric signal is transmitted from a transmitting and receiving surface, and an ultrasonic wave received by the transmitting and receiving surface is converted into the ultrasonic wave. Arc of the transmitting and receiving wave surface for converting into a corresponding electric signal
In an ultrasonic wave transmitting and receiving apparatus having an ultrasonic transducer whose center is the focal point of an ultrasonic signal, the ultrasonic transducer is curved.
Electrodes are attached to both sides of a flat plate-shaped flexible piezoelectric member,
One of the ultrasonic transducers that is opposed to each other to support both ends.
The ultrasonic transducer is deformed by a pair of bimorph piezoelectric elements
Moving the focal position by changing the curvature of the wave transmitting and receiving surface.
You .

【0007】また、供給された電気信号に応じた超音波
を送受波面から送波すると共に、当該送受波面で受波し
た超音波を当該超音波に応じた電気信号に変換する前記
送受波面の円弧中心を超音波信号の焦点とした超音波振
動子を有する超音波送受波装置において、前記超音波振
動子は略半球殻状に形成した可撓性圧電部材の両面に電
極を被着してなり、前記超音波振動子の凸面に被着形成
したユニモルフ圧電素子により前記送受波面の面積を増
減し、前記送受波面の曲率を変えて焦点位置を移動させ
Further, the converting ultrasonic waves according to the supplied electric signal while transmitting the transmitting and receiving surface, the ultrasonic wave reception in the transmitting and receiving surface into an electric signal corresponding to the ultrasonic
In an ultrasonic wave transmitting / receiving apparatus having an ultrasonic vibrator having an arc center of a wave transmitting / receiving surface as a focal point of an ultrasonic signal, the ultrasonic vibration
The moving element is electrically connected to both sides of a flexible piezoelectric member formed in a substantially hemispherical shell shape.
The poles are adhered, and the adherence is formed on the convex surface of the ultrasonic vibrator.
The transmitting and receiving surface area is increased by the unimorph piezoelectric element
The focal position by changing the curvature of the transmitting and receiving wave surface.
You .

【0008】[0008]

【作用】送受波面を湾曲させた平板に形成した超音波振
動子の両端部を支持すべく対向配置した一対のバイモル
フ圧電素子が、超音波振動子を変形させることによって
送受波面の曲率が変化し、送受波面の円弧中心が移動す
るので、超音波信号の焦点も移動することになる。
A pair of bimoles arranged opposite to each other to support both ends of an ultrasonic transducer formed in a flat plate having a curved transmitting and receiving surface.
The piezoelectric element deforms the ultrasonic vibrator
Since the curvature of the transmitting / receiving surface changes and the center of the arc of the transmitting / receiving surface moves, the focal point of the ultrasonic signal also moves.

【0009】送受波面を略半球殻状に形成した超音波振
動子の凸面に被着形成したユニモルフ圧電素子が、送受
波面の面積を増減させることによって送受波面の曲率が
変化し、送受波面の円弧中心が移動するので、超音波信
号の焦点も移動することになる
[0009] An ultrasonic vibration having a transmission / reception surface formed in a substantially hemispherical shell shape.
The unimorph piezoelectric element formed on the convex surface of the rotor
By increasing or decreasing the area of the wavefront, the curvature of the wavefront
Changes, and the center of the arc of the transmitting and receiving
The focus of the issue will also move .

【0010】[0010]

【実施例】本発明の実施例を図面に基づいて以下に詳述
する。図1は本発明の超音波送受波装置を備えた超音波
測定装置の機能構成図、図2は本発明の第1実施例に係
る超音波送受波装置の斜視図、図3はその作用説明図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a functional block diagram of an ultrasonic measuring apparatus provided with the ultrasonic transmitting / receiving apparatus of the present invention, FIG. 2 is a perspective view of the ultrasonic transmitting / receiving apparatus according to the first embodiment of the present invention, and FIG. FIG.

【0011】超音波送受波装置は超音波振動子1と超音
波振動子1の焦点位置3を変化させる焦点移動手段4と
から構成され、焦点位置制御部6から供給される電圧ま
たは電流に応じて焦点位置3を図1において二点鎖線で
しめす線A上を直線的に変化させるように構成されてい
る。超音波振動子1の送受波面2は円弧状断面をなす凹
状、例えば湾曲させた平板や球面状の凹面を有する半球
状体に形成してその円弧中心を音響的な焦点としてい
る。超音波振動子1は送受信部5から供給される電気信
号に基づいて、送受波面2から発射された超音波信号を
焦点位置3に集中し、焦点位置3或いはこの近傍から反
射される超音波信号を集めて、この超音波信号に基づく
電気信号を送受信部5に送出する。
The ultrasonic wave transmitting / receiving apparatus comprises an ultrasonic transducer 1 and a focus moving means 4 for changing a focal position 3 of the ultrasonic transducer 1, and responds to a voltage or current supplied from a focal position control unit 6. The focal position 3 is linearly changed on a line A indicated by a two-dot chain line in FIG. The transmitting and receiving surface 2 of the ultrasonic transducer 1 is formed in a concave shape having an arc-shaped cross section, for example, a curved flat plate or a hemispherical body having a spherical concave surface, and the center of the arc is set as an acoustic focus. The ultrasonic transducer 1 concentrates the ultrasonic signal emitted from the wave transmitting / receiving surface 2 on the focal position 3 based on the electric signal supplied from the transmitting / receiving section 5 and reflects the ultrasonic signal reflected from the focal position 3 or the vicinity thereof. And sends an electric signal based on the ultrasonic signal to the transmitting / receiving unit 5.

【0012】具体的には図2に示すように、板状の可撓
性部材をなすPVDF(ポリ沸化ビニリデン)等の高分子圧
電材料7aの両面に、ほぼ半割円筒状に塑性加工した金
属材料でなる電極板8、8を被着形成して、超音波振動
子7を構成しており、凹面側を送受波面2としている。
ここで電極板8、8および超音波振動子7の弾性により
超音波振動子7全体の曲率半径が変更可能となる。高剛
性材料でなるフレーム9には、供給される電圧に応じて
曲げ変位するバイモルフ圧電素子10…を対向配置し、
それらの一端を固定している。このバイモルフ圧電素子
10…の両自由端を上記曲げ変位によって互いに離間ま
たは接近するように構成しており、その自由端間にアー
チ状に上記超音波振動子7の両端部を保持することによ
り、焦点移動手段を構成している。
Specifically, as shown in FIG. 2, both surfaces of a high-molecular piezoelectric material 7a such as PVDF (polyvinylidene fluoride), which is a plate-like flexible member, are plastically worked into a substantially half-cylindrical shape. Electrode plates 8, 8 made of a metal material are adhered and formed to form an ultrasonic vibrator 7, and the concave side is the wave transmitting / receiving surface 2.
Here, the radius of curvature of the entire ultrasonic vibrator 7 can be changed by the elasticity of the electrode plates 8 and 8 and the ultrasonic vibrator 7. On a frame 9 made of a highly rigid material, bimorph piezoelectric elements 10 which are bent and displaced in accordance with a supplied voltage are arranged to face each other.
One end of them is fixed. The two free ends of the bimorph piezoelectric element 10 are configured to be separated or approach each other by the bending displacement, and by holding both ends of the ultrasonic vibrator 7 in an arch shape between the free ends, It constitutes a focus moving means.

【0013】このように構成される超音波送受波装置に
おいて、図3に示すように、バイモルフ圧電素子10、
10がその作用電圧に応じて互いに接近するように変位
した場合には、電極8、8を含む超音波振動子7が当該
変位に応じてフレーム9側にたわみ、これにより送受波
面2の曲率半径が減少して、その曲率中心すなわち焦点
位置3がフレーム9側に移動する。次に上記作用電圧を
減じた場合、バイモルフ圧電素子10、10は互いに離
反する方向に復帰し、超音波振動子7は、電極板8、8
の弾性によりフレーム9と離反する方向に復帰し、これ
により送受波面2の曲率半径が増大して、その曲率中心
すなわち焦点位置がフレーム9と離反する方向に移動す
る。すなわち、焦点位置は、焦点位置制御部(図示せ
ず)からバイモルフ圧電素子10、10に対し供給され
る電圧に応じて、最も浅い焦点位置3aから最も深い焦
点位置3の間Aを直線的に変化する。
[0013] In the ultrasonic wave transmitting and receiving apparatus thus configured, as shown in FIG.
When the ultrasonic transducers 10 are displaced so as to approach each other in accordance with the action voltage, the ultrasonic vibrator 7 including the electrodes 8 and 8 bends toward the frame 9 in accordance with the displacement, whereby the radius of curvature of the transmitting and receiving surface 2 is changed. Decreases, and the center of curvature, that is, the focal position 3 moves to the frame 9 side. Next, when the above-mentioned working voltage is reduced, the bimorph piezoelectric elements 10 and 10 return in the directions away from each other, and the ultrasonic vibrator 7 makes the electrode plates 8 and 8
Due to the resilience of the frame 9, it returns in the direction away from the frame 9, whereby the radius of curvature of the wave transmitting / receiving surface 2 increases, and the center of curvature, that is, the focal position moves in the direction away from the frame 9. That is, the focal position is linearly changed from the shallowest focal position 3a to the deepest focal position 3 in accordance with the voltage supplied to the bimorph piezoelectric elements 10 and 10 from the focal position control unit (not shown). Change.

【0014】因みに、上記作用を有する超音波振動子7
による受信ダイナミックフォーカス動作の手順は、先
ず、バイモルフ圧電素子10,10に電圧をかけ、超音
波パルスの送出に適した焦点位置に超音波振動子7を合
せた後、超音波パルスの送出とともに、焦点移動手段に
より反射信号の到着時間に合せて最も浅い位置3aから
最も深い位置3に変化させつつ受信を行う。
Incidentally, the ultrasonic vibrator 7 having the above function
The procedure of the receiving dynamic focus operation is as follows. First, after applying a voltage to the bimorph piezoelectric elements 10 and 10, the ultrasonic vibrator 7 is adjusted to a focal position suitable for transmitting the ultrasonic pulse, and then the ultrasonic pulse is transmitted. Reception is performed by the focus moving means while changing from the shallowest position 3a to the deepest position 3 in accordance with the arrival time of the reflected signal.

【0015】上記超音波測定装置においては、超音波振
動子の凹状の送受波面の焦点位置において反射された超
音波パルスは超音波振動子の送受波面に同時に到達する
ことから、送受波面全体による高レベルの受信信号によ
って超音波強度測定が可能となり、また、焦点移動手段
によって焦点位置を変化させることによって受信ダイナ
ミックフォーカス測定がなされ、簡易な構成によって高
精度の反射超音波測定が可能となる。なお、超音波パル
スの送出ごとに焦点移動手段によってその焦点位置を変
化させることにより、多段フォーカス測定とすることも
可能である。
In the above ultrasonic measuring apparatus, the ultrasonic pulse reflected at the focal point of the concave transmitting and receiving surface of the ultrasonic transducer reaches the transmitting and receiving surface of the ultrasonic transducer at the same time. Ultrasonic intensity measurement can be performed by the received signal of the level, and dynamic focus measurement can be performed by changing the focal position by the focal point moving means, and highly accurate reflected ultrasonic measurement can be performed with a simple configuration. It is also possible to perform multi-stage focus measurement by changing the focal position by the focal point moving means every time an ultrasonic pulse is transmitted.

【0016】図4は本発明の第2実施例に係る超音波送
受波装置の断面図である。可撓性部材をなすPVDF(ポリ
沸化ビニリデン)等の高分子圧電材料を、円弧状断面を
なす凹型に形成し、例えば略半球殻状に形成し、その内
面および外面には電極(図示せず)を被着している。こ
のようにして超音波振動子11を構成し、凹形状の内面
を超音波を送受波する送受波面2としている。送受波面
2を球面状に形成していることにより、超音波を送受波
面2から発射した場合、送受波面2に内接する球の中心
が超音波の焦点3となる。このような構成に加え、超音
波振動子11の凸面に、面内伸縮により面積の増減する
ユニモルフ圧電素子13を被着形成し、有底円筒をなす
略コの字型断面の大なる剛性を有するフレーム15の開
放端の内側に、超音波振動子11を送受波面2が外方を
向くようにして取付けている。
FIG. 4 is a sectional view of an ultrasonic wave transmitting / receiving apparatus according to a second embodiment of the present invention. A high-molecular piezoelectric material such as PVDF (polyvinylidene fluoride) as a flexible member is formed in a concave shape having an arcuate cross section, for example, in a substantially hemispherical shell shape, and electrodes (not shown) are formed on the inner and outer surfaces thereof. Zu). The ultrasonic transducer 11 is configured as described above, and the inner surface of the concave shape is the wave transmitting / receiving surface 2 for transmitting and receiving the ultrasonic wave. By forming the transmitting / receiving surface 2 in a spherical shape, when an ultrasonic wave is emitted from the transmitting / receiving surface 2, the center of a sphere inscribed in the transmitting / receiving surface 2 becomes the focal point 3 of the ultrasonic wave. In addition to such a configuration, a unimorph piezoelectric element 13 whose area increases and decreases due to in-plane expansion and contraction is formed on the convex surface of the ultrasonic vibrator 11 to increase the rigidity of a substantially U-shaped cross section that forms a bottomed cylinder. The ultrasonic vibrator 11 is mounted inside the open end of the frame 15 so that the wave transmitting / receiving surface 2 faces outward.

【0017】このように構成される超音波送受波装置の
超音波振動子11は、焦点移動手段であるユニモルフ圧
電素子13がその作用電圧によってその球面の面積が増
減した場合には、結局フレーム15によって外周端を固
定された超音波振動子11の送受波面2の面積が増減す
ることとなり、従ってその曲率が変化し、送受波面2の
焦点位置3が移動する。すなわち、超音波送受波装置の
焦点3はユニモルフ圧電素子13を制御する焦点位置制
御手段(図示せず)の出力電圧に応じて送受波面2に接
近した位置から離間する位置の間を直線的に変化する。
The ultrasonic vibrator 11 of the ultrasonic wave transmitting / receiving apparatus having the above-described structure is configured such that when the unimorph piezoelectric element 13 as the focal point moving means increases or decreases the area of the spherical surface due to the applied voltage, the frame 15 ends up. As a result, the area of the wave transmitting / receiving surface 2 of the ultrasonic transducer 11 whose outer peripheral end is fixed increases / decreases, so that its curvature changes, and the focal position 3 of the wave transmitting / receiving surface 2 moves. That is, the focal point 3 of the ultrasonic wave transmitting / receiving device linearly moves between a position close to the wave transmitting / receiving surface 2 and a position away from the wave transmitting / receiving surface 2 in accordance with an output voltage of a focal position control means (not shown) for controlling the unimorph piezoelectric element 13. Change.

【0018】図5は本発明の第3実施例に係る超音波送
受波装置の断面図である。超音波振動子16を高分子
系、セラミック系等の圧電材料により円弧状断面をなす
凹型に形成し、例えばこの実施例の場合は略半球形状に
形成している。その凹面および凸面に電極(図示せず)
を被着形成し、凸面側にバッキング材18を全面に亘り
積層形成し、また凹面側を球面状に形成し、超音波を送
受波する送受波面2となしている。凹面側を球面状に形
成していることにより、超音波信号を送受波面2から発
射した場合、球の中心が超音波信号の焦点3となる。
FIG. 5 is a sectional view of an ultrasonic wave transmitting / receiving apparatus according to a third embodiment of the present invention. The ultrasonic vibrator 16 is formed in a concave shape having an arc-shaped cross section from a polymer material, a ceramic material, or the like piezoelectric material. Electrodes (not shown) on the concave and convex surfaces
The backing material 18 is laminated on the entire surface on the convex side, and the concave side is formed in a spherical shape to form the transmitting and receiving surface 2 for transmitting and receiving ultrasonic waves. Since the concave side is formed in a spherical shape, when the ultrasonic signal is emitted from the transmitting / receiving surface 2, the center of the sphere becomes the focal point 3 of the ultrasonic signal.

【0019】超音波振動子16のバッキング材18の周
縁を、可撓性部材でなるエッヂ19を介してフレーム2
0に進退可能に保持し、このフレーム20の背面側には
マグネット21、ヨーク22、ヨークプレート23及び
ポールピース24でなる磁気回路を構成し、即ちヨーク
22に連結するヨークプレート23の円孔内にマグネッ
ト21側のポールピース24を隙間をおいて同心に配置
している。
The peripheral edge of the backing material 18 of the ultrasonic vibrator 16 is connected to the frame 2 via an edge 19 made of a flexible member.
And a magnetic circuit comprising a magnet 21, a yoke 22, a yoke plate 23 and a pole piece 24 is formed on the back side of the frame 20, that is, in a circular hole of the yoke plate 23 connected to the yoke 22. The pole piece 24 on the magnet 21 side is arranged concentrically with a gap.

【0020】この隙間内に超音波振動子16に取り付け
たコイル25を配置し、さらにコイル25を電流供給の
可能な焦点位置制御部(図示せず)と電気的に接続して
いる。これにより超音波送受波装置においては、ムービ
ングコイル式の焦点位置移動手段が形成されていること
になる。
A coil 25 attached to the ultrasonic vibrator 16 is arranged in this gap, and the coil 25 is electrically connected to a focus position control unit (not shown) capable of supplying current. Thus, in the ultrasonic wave transmitting / receiving apparatus, a moving coil type focal position moving means is formed.

【0021】このように構成される超音波送受波装置に
おいて、超音波振動子16はヨークプレート23とポー
ルピース24の間の隙間の磁束密度および焦点位置制御
部6からコイル25に供給される電流に応じて進退さ
れ、その焦点位置3を前後に移動することができる。ま
た第3実施例によれば、超音波振動子16の送受波面2
の形状に影響を及ぼさない焦点位置移動手段を設けたこ
とにより、第1、第2実施例に比較して焦点可変距離を
大きくできる。さらに超音波振動子16をセラミック圧
電材料で形成した場合は、セラミック圧電部材の電気音
響感度または音響電気感度が高分子圧電材料のそれより
も高いことにより、高分子圧電材料で形成した場合に較
べ、感度の高い超音波送受波装置を実現できる。また超
音波振動子16として、磁歪材料、電歪材料が使用でき
ることについてはいうまでもない。
In the ultrasonic wave transmitting / receiving apparatus thus constructed, the ultrasonic vibrator 16 controls the magnetic flux density in the gap between the yoke plate 23 and the pole piece 24 and the current supplied to the coil 25 from the focus position controller 6. And the focal position 3 can be moved back and forth. Further, according to the third embodiment, the transmitting / receiving wave surface 2 of the ultrasonic vibrator 16 is used.
By providing the focus position moving means which does not affect the shape of the lens, the variable focal length can be increased as compared with the first and second embodiments. Further, when the ultrasonic vibrator 16 is formed of a ceramic piezoelectric material, the electroacoustic sensitivity or acoustoelectric sensitivity of the ceramic piezoelectric member is higher than that of the polymer piezoelectric material. Thus, an ultrasonic transmission / reception device with high sensitivity can be realized. Needless to say, a magnetostrictive material or an electrostrictive material can be used as the ultrasonic vibrator 16.

【0022】なお、第3実施例においては超音波振動子
16を進退させる焦点移動手段として、ムービングコイ
ル式の電気機械変換器を使用したが、本発明はこれに限
らず、その他種々の電気機械変換器、例えば圧電形アク
チュエータ、電磁形変換器を使用しても第3実施例と同
様の作用効果を呈する。
In the third embodiment, a moving coil type electromechanical transducer is used as the focal point moving means for moving the ultrasonic vibrator 16 forward and backward. However, the present invention is not limited to this. Even if a transducer, for example, a piezoelectric actuator or an electromagnetic transducer is used, the same operation and effect as those of the third embodiment are exhibited.

【0023】また前記第1実施例における2枚のバイモ
ルフ圧電素子10…の代わりに、上記ムービングコイル
式を含む電気機械変換器等を対向して配置し、超音波振
動子7の両端を、電気信号に応じた機械力により押圧す
るようにしても、前記第1実施例と同様の作用効果を呈
する。
In place of the two bimorph piezoelectric elements 10 in the first embodiment, electromechanical transducers including the above-described moving coil type are arranged facing each other, and both ends of the ultrasonic vibrator 7 are electrically connected. The same operation and effect as those of the first embodiment can be obtained even if the pressing is performed by the mechanical force corresponding to the signal.

【0024】[0024]

【発明の効果】上述したように、請求項1に係る発明に
よれば、超音波振動子の送受波面を湾曲させた平板に形
成してその円弧中心を超音波信号の焦点とし、超音波振
動子の両端部を支持すべく対向配置した一対のバイモル
フ圧電素子によって超音波振動子を変形させ、送受波面
の曲率を変えて焦点位置を移動させるので、簡易な構成
によって高精度で焦点を可変し得る超音波送受波装置を
実現でき、ダイナミックスフォーカス測定、多段フォー
カス測定等の反射超音波測定が可能となる。
As described above, according to the first aspect of the present invention,
According to the present invention, a pair of bimorphs which are formed so that the transmitting and receiving surfaces of an ultrasonic vibrator are formed in a curved flat plate , the center of the arc of which is the focal point of the ultrasonic signal, and which is opposed to support both ends of the ultrasonic vibrator.
The ultrasonic transducer is deformed by the piezoelectric element,
The focus position is moved by changing the curvature of the ultrasonic wave, so it is possible to realize an ultrasonic transducer that can change the focus with high accuracy with a simple configuration, and it is possible to perform reflected ultrasonic measurement such as dynamics focus measurement, multi-stage focus measurement, etc. Become.

【0025】また、請求項2に係る発明によれば、超音
波振動子の送受波面を略半球殻状に形成してその円弧中
心を超音波信号の焦点とし、超音波振動子の凸面に被着
形成したユニモルフ圧電素子により送受波面の面積を増
減し、送受波面の曲率を変えて焦点位置を移動させるの
で、簡易な構成によって高精度で焦点を可変し得る超音
波送受波装置を実現でき、ダイナミックスフォーカス測
定、多段フォーカス測定等の反射超音波測定が可能とな
According to the second aspect of the present invention, a supersonic
The transmitting and receiving surface of the wave oscillator is formed in a substantially hemispherical shell shape and the arc
The heart is the focal point of the ultrasonic signal and is attached to the convex surface of the ultrasonic transducer
Increases the area of the transmitting and receiving surface by the formed unimorph piezoelectric element
Moving the focal position by changing the curvature of the transmitting and receiving surface.
A super sound that can change the focus with high accuracy with a simple configuration
Wave transmission / reception device can be realized,
Measurement, multi-focus measurement, etc.
You .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超音波送受波装置を備えた超音波測定
装置の機能構成図
FIG. 1 is a functional configuration diagram of an ultrasonic measurement device including an ultrasonic transmission / reception device of the present invention.

【図2】本発明の第1実施例に係る超音波送受波装置の
斜視図
FIG. 2 is a perspective view of the ultrasonic wave transmitting / receiving apparatus according to the first embodiment of the present invention.

【図3】上記超音波送受波装置の作用説明図FIG. 3 is a diagram for explaining the operation of the ultrasonic wave transmitting / receiving device.

【図4】本発明の第2実施例に係る超音波送受波装置の
断面図
FIG. 4 is a sectional view of an ultrasonic wave transmitting / receiving apparatus according to a second embodiment of the present invention.

【図5】本発明の第3実施例に係る超音波送受波装置の
断面図
FIG. 5 is a sectional view of an ultrasonic wave transmitting / receiving apparatus according to a third embodiment of the present invention.

【図6】従来の電子的に焦点を移動させる構成の超音波
送受波装置。
FIG. 6 shows a conventional ultrasonic wave transmitting / receiving apparatus having a structure in which the focal point is moved electronically.

【符号の説明】[Explanation of symbols]

1…超音波振動子、2…送受波面、3…焦点、4…焦点
移動手段、5…送受信部、6…焦点位置制御部、7…超
音波振動子、8…電極、9…フレーム、10…バイモル
フ圧電素子(焦点移動手段)、11‥超音波振動子、1
3…ユニモルフ振動子(焦点移動手段)、15…フレー
ム、16…超音波振動子、18…バッキング材、19…
エッジ、20…フレーム、21…マグネット、22…ヨ
ーク、23…ヨークプレート、24…ポールピース、2
5…コイル(焦点移動手段)、A…焦点移動経路。
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic transducer, 2 ... Transmitting / receiving surface, 3 ... Focus, 4 ... Focus moving means, 5 ... Transmitter / receiver, 6 ... Focus position controller, 7 ... Ultrasonic transducer, 8 ... Electrode, 9 ... Frame, 10 ... bimorph piezoelectric element (focal point moving means), 11 ° ultrasonic vibrator, 1
3: Unimorph vibrator (focus moving means), 15: frame, 16: ultrasonic vibrator, 18: backing material, 19:
Edge, 20: frame, 21: magnet, 22: yoke, 23: yoke plate, 24: pole piece, 2
5: coil (focal point moving means), A: focal point moving path.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H04R 17/00 330 G01B 17/00 G01N 29/24 G01S 7/521 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H04R 17/00 330 G01B 17/00 G01N 29/24 G01S 7/521

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 供給された電気信号に応じた超音波を送
受波面から送波すると共に、当該送受波面で受波した超
音波を当該超音波に応じた電気信号に変換する前記送受
波面の円弧中心を超音波信号の焦点とした超音波振動子
を有する超音波送受波装置において、前記超音波振動子
は湾曲させた板状の可撓性圧電部材の両面に電極を被着
してなり、前記超音波振動子の両端部を支持すべく対向
配置した一対のバイモルフ圧電素子により前記超音波振
動子を変形させ、前記送受波面の曲率を変えて焦点位置
を移動させることを特徴とする超音波送受波装置。
1. A well as transmit the ultrasonic waves according to the supplied electric signal from the transmitting and receiving surface, the transmission and reception of converting the ultrasonic wave reception in the transmitting and receiving surface into an electric signal corresponding to the ultrasonic
In an ultrasonic wave transmitting / receiving apparatus having an ultrasonic vibrator having an arc center of a wavefront as a focal point of an ultrasonic signal, the ultrasonic vibrator
Has electrodes on both sides of a curved plate-shaped flexible piezoelectric member.
Facing each other to support both ends of the ultrasonic vibrator.
The ultrasonic vibration is caused by a pair of bimorph piezoelectric elements arranged.
Deform the rotor and change the curvature of the transmitting and receiving wave surface to change the focal position.
An ultrasonic wave transmitting / receiving apparatus characterized by moving an object.
【請求項2】 供給された電気信号に応じた超音波を送
受波面から送波すると共に、当該送受波面で受波した超
音波を当該超音波に応じた電気信号に変換する前記送受
波面の円弧中心を超音波信号の焦点とした超音波振動子
を有する超音波送受波装置において、前記超音波振動子
は略半球殻状に形成した可撓性圧電部材の両面に電極を
被着してなり、前記超音波振動子の凸面に被着形成した
ユニモルフ圧電素子により前記送受波面の面積を増減
し、前記送受波面の曲率を変えて焦点位置を移動させる
ことを特徴とする超音波送受波装置。
With wherein to transmit the ultrasonic waves according to the supplied electric signal from the transmitting and receiving surface, the transmission and reception of converting the ultrasonic wave reception in the transmitting and receiving surface into an electric signal corresponding to the ultrasonic
In an ultrasonic wave transmitting / receiving apparatus having an ultrasonic vibrator having an arc center of a wavefront as a focal point of an ultrasonic signal, the ultrasonic vibrator
Has electrodes on both sides of a flexible piezoelectric member formed in a substantially hemispherical shell shape.
It was adhered and formed on the convex surface of the ultrasonic vibrator.
Increase / decrease the area of the transmitting / receiving wave surface with a unimorph piezoelectric element
An ultrasonic wave transmitting / receiving apparatus , wherein a focal position is moved by changing a curvature of the wave transmitting / receiving surface.
JP6294811A 1994-11-29 1994-11-29 Ultrasonic transducer Expired - Lifetime JP3032439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6294811A JP3032439B2 (en) 1994-11-29 1994-11-29 Ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6294811A JP3032439B2 (en) 1994-11-29 1994-11-29 Ultrasonic transducer

Publications (2)

Publication Number Publication Date
JPH08154298A JPH08154298A (en) 1996-06-11
JP3032439B2 true JP3032439B2 (en) 2000-04-17

Family

ID=17812563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6294811A Expired - Lifetime JP3032439B2 (en) 1994-11-29 1994-11-29 Ultrasonic transducer

Country Status (1)

Country Link
JP (1) JP3032439B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047087A (en) * 2004-08-04 2006-02-16 Mitsubishi Electric Corp Ultrasonic transmitting and receiving radiation sensor, position detecting device and dehumidifier
CN106269451B (en) * 2011-02-15 2020-02-21 富士胶卷迪马蒂克斯股份有限公司 Piezoelectric transducer using micro-dome array
JP2020106476A (en) * 2018-12-28 2020-07-09 三菱重工エンジニアリング株式会社 Tube inspection device and tube inspection method

Also Published As

Publication number Publication date
JPH08154298A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
US4058003A (en) Ultrasonic electronic lens with reduced delay range
JP4242472B2 (en) Ultrasonic transducer array and ultrasonic imaging system
JPWO2005032374A1 (en) Ultrasonic probe, ultrasonic imaging apparatus, and ultrasonic imaging method
US6614143B2 (en) Class V flextensional transducer with directional beam patterns
JP2004523259A (en) Small ultrasonic transducer
JPH02217000A (en) Ultrasonic wave probe
US5458120A (en) Ultrasonic transducer with magnetostrictive lens for dynamically focussing and steering a beam of ultrasound energy
Anzinger et al. Low power capacitive ultrasonic transceiver array for airborne object detection
JP3032439B2 (en) Ultrasonic transducer
Lee et al. A micro-machined source transducer for a parametric array in air
KR101927635B1 (en) Focusing ultrasonic transducer to applying shadow FZP mask and method for controlling the focusing ultrasonic transducer
Toda Phase-matched air ultrasonic transducers using corrugated PVDF film with half wavelength depth
US20200152857A1 (en) Ultrasonic device and ultrasonic sensor
JPH06269090A (en) Piezoelectric ultrasonic wave transmitter-receiver
JPS6052823B2 (en) Probe for ultrasound diagnostic equipment
KR19990045153A (en) Ultrasonic probe manufacturing method, ultrasonic probe and ultrasonic imaging device
JP3436486B2 (en) Ultrasonic vibrator and manufacturing method thereof
JPH0293362A (en) Ultrasonic probe
JP3007782B2 (en) Ultrasound diagnostic equipment
JP2004089357A (en) Ultrasonic search unit, and ultrasonic diagnostic apparatus using the same
Ries et al. Phase aberration correction in two dimensions using a deformable array transducer
KR102426027B1 (en) Phase control apparatus for improving acoustic radiation force impulse image and method thereof
EP3638429B1 (en) High frequency wideband wide beam ultrasound emitter transducer for underwater communications
JPS595298B2 (en) Ultrasonic imaging device
JP2633576B2 (en) Ultrasound diagnostic equipment