JP3022518B2 - Coated cemented carbide tool - Google Patents
Coated cemented carbide toolInfo
- Publication number
- JP3022518B2 JP3022518B2 JP30189898A JP30189898A JP3022518B2 JP 3022518 B2 JP3022518 B2 JP 3022518B2 JP 30189898 A JP30189898 A JP 30189898A JP 30189898 A JP30189898 A JP 30189898A JP 3022518 B2 JP3022518 B2 JP 3022518B2
- Authority
- JP
- Japan
- Prior art keywords
- cemented carbide
- coating film
- coated
- crack
- cutting tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/044—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は切削工具に関し、特
に鋼および鋳鉄の切削加工に使用する被覆超硬合金製切
削工具として最適であり、耐摩耗性と耐欠損性に同時に
優れるようにしたものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting tool, and more particularly, to a cutting tool made of coated cemented carbide used for cutting steel and cast iron, which is excellent in wear resistance and fracture resistance at the same time. It is.
【0002】[0002]
【従来の技術】従来、金属材料切削用の工具材質として
は、超硬合金(WC−Co合金もしくはWC−Co合金
にTiやTa、Nbの炭窒化物を添加した合金)が用い
られてきたが、近年は切削条件が高速化してきた結果、
超硬合金にCVDやPVDで元素周期律表IVa、Va、
VIa族金属およびAl等の炭化物、窒化物、炭窒化物、
炭酸化物又はホウ窒化物、酸化物またはこれらの固溶体
からなる被覆膜を3〜15μmの厚さに被覆した超硬合
金工具の使用割合が増大している。被覆膜厚はさらに厚
くなる傾向にあり、20μm以上の膜厚のCVD被覆超
硬合金も提案されている。このようなCVD被覆超硬合
金工具では被覆膜と母材の熱膨張係数の違いから、コー
ティング後の冷却過程で被覆膜中に引張り残留応力が発
生し、工具の耐欠損性が低下するという問題点が指摘さ
れていた。2. Description of the Related Art Conventionally, as a tool material for cutting a metal material, a cemented carbide (WC-Co alloy or an alloy obtained by adding Ti, Ta, or Nb carbonitride to a WC-Co alloy) has been used. However, in recent years, as cutting conditions have become faster,
Periodic table IVa, Va,
Group VIa metals and carbides, nitrides, carbonitrides such as Al,
The use ratio of cemented carbide tools in which a coating film made of a carbonate, a boride, an oxide or a solid solution thereof is coated to a thickness of 3 to 15 μm is increasing. The coating thickness tends to be even greater, and CVD coated cemented carbides having a thickness of 20 μm or more have been proposed. In such a CVD-coated cemented carbide tool, a residual tensile stress is generated in the coating film in a cooling process after coating due to a difference in thermal expansion coefficient between the coating film and the base material, and the fracture resistance of the tool is reduced. The problem was pointed out.
【0003】これに対して、被覆超硬合金の表面に機械
的衝撃をブラストなどの方法で与え、被覆膜中に母材ま
で貫通したクラックを導入し、耐欠損性を改善する提案
(特公平7−6066号公報)がなされた。この提案の
方法では、ある程度、耐欠損性が向上することが確認さ
れたが、母材まで貫通した亀裂を予め被覆膜中に導入し
たため、グリフィスの予亀裂長さが長くなり、この長い
亀裂がもとで耐欠損性が低下したり、被覆膜の摩耗に乱
れが生じ、耐摩耗性が低下する問題点があった。[0003] On the other hand, a proposal has been made to improve the fracture resistance by applying a mechanical impact to the surface of the coated cemented carbide by blasting or the like, introducing cracks penetrating to the base metal in the coating film (patented). Japanese Patent Publication No. Hei 7-6066). It was confirmed that the proposed method improved the fracture resistance to some extent, but the crack that penetrated to the base material was introduced into the coating film in advance, so that the pre-crack length of Griffith became longer, and this longer crack However, there has been a problem that the chipping resistance is deteriorated or the wear of the coating film is disturbed, and the wear resistance is lowered.
【0004】[0004]
【発明が解決しようとする課題】このように、従来の表
面被覆超硬合金工具では耐摩耗性を増大させるために被
覆膜の厚さを増加させると工具の耐欠損性が低下した
り、比較的厚さの大きい被覆膜中に亀裂を予め付与する
場合にも付与された亀裂の状態によってかえって耐摩耗
性が低下するという問題があり、これは未だ解消されて
いない。本発明は、かかる従来の事情に鑑み、耐欠損性
と耐摩耗性の両特性を向上させ、工具寿命を長寿命化さ
せた被覆超硬合金工具を提供することを目的とする。As described above, in the conventional surface-coated cemented carbide tool, when the thickness of the coating film is increased in order to increase the wear resistance, the fracture resistance of the tool decreases, Even when a crack is previously formed in a coating film having a relatively large thickness, there is a problem that the abrasion resistance is rather reduced depending on the state of the provided crack, which has not been solved yet. An object of the present invention is to provide a coated cemented carbide tool that improves both the fracture resistance and the wear resistance and extends the tool life in view of the conventional circumstances.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するた
め、本発明者らは、鋭意研究を行った結果、WCをマト
リックスとし、鉄族金属を結合相とした超硬合金を基体
とし、その表面に特定の膜質、構造のセラミック膜を被
覆後、熱的もしくは機械的手法により、被覆膜中に導入
する亀裂長さおよび亀裂間隔を厳密に制御することで、
耐欠損性と耐摩耗性の両特性を向上させ、工具寿命を大
幅に長寿命化できることを見いだした。すなわち、本発
明は下記に要約したとおりの特定された各発明からな
る。Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies and as a result, have determined that a base material is a cemented carbide having WC as a matrix and an iron group metal as a binder phase. After coating the surface with a ceramic film of a specific film quality and structure, by thermally or mechanically controlling the crack length and crack interval introduced into the coating film strictly,
It has been found that the tool life can be greatly extended by improving both the fracture resistance and the wear resistance. That is, the present invention consists of the specified inventions as summarized below.
【0006】(1)WCをマトリックスとし、鉄族金属
を結合相とした超硬合金を基体とし、その基体の表面に
複数の被覆層を設けた被覆超硬合金製切削工具におい
て、(a)該被覆層の基体に隣接する最内層が厚み0.
1〜3μm、好ましくは0.3〜1μmの窒化チタンで
あり、(b)前記工具の鏡面研磨した断面組織上で、刃
先稜線部及び/又はすくい面の被覆膜中の平均亀裂間隔
が逃げ面の被覆膜中の平均亀裂間隔より小さく、(c)
前記刃先稜線部及び/又はすくい面の被覆膜中の亀裂の
うち、亀裂の先端が前記最内層の窒化チタン内もしくは
窒化チタンよりも上層内もしくはそれらの層間の界面に
あるものが50%以上、好ましくは80%以上であり、
(d)前記刃先稜線部の被覆膜中の亀裂の平均長さが逃
げ面での被覆膜厚の平均値よりも短いことを特徴とする
被覆超硬合金製切削工具。 (2)それらの層間の界面が最内層の窒化チタンとその
直上層の界面である上記(1)に記載の被覆超硬合金製
切削工具。(1) A coated cemented carbide cutting tool comprising a substrate made of a cemented carbide having WC as a matrix and an iron group metal as a binder phase and having a plurality of coating layers on the surface of the substrate, The innermost layer of the coating layer adjacent to the substrate has a thickness of 0.1 mm.
1 to 3 μm, preferably 0.3 to 1 μm titanium nitride, and (b) the average crack interval in the coating film at the ridge and / or rake face of the cutting edge is reduced on the mirror-polished cross-sectional structure of the tool. Smaller than the average crack interval in the surface coating film, (c)
50% or more of the cracks in the coating film on the ridge portion and / or the rake face of which the tip of the crack is in the innermost layer of titanium nitride or in the upper layer than titanium nitride or at the interface between these layers , Preferably at least 80%,
(D) A coated cemented carbide cutting tool, characterized in that the average length of cracks in the coating film at the cutting edge is shorter than the average value of the coating film thickness at the flank. (2) The coated cemented carbide cutting tool according to (1), wherein the interface between the layers is the interface between the innermost layer of titanium nitride and the layer immediately above it.
【0007】(3)前記最内層の窒化チタンの上層に、
厚み3〜30μm、好ましくは5〜15μmのアスペク
ト比5以上、好ましくは10〜50の柱状晶からなる炭
窒化チタン、さらにその上層に0.5〜10μm、好ま
しくは1〜8μmのアルミナが少なくとも一層被覆され
ていることを特徴とする上記(1)又は(2)に記載の
被覆超硬合金製切削工具。 (4)前記刃先稜線部及び/又はすくい面の被覆膜中の
亀裂のうち、基体側の亀裂の先端が前記最内層の窒化チ
タン内、前記柱状晶からなる炭窒化チタン内、もしくは
前記窒化チタンと前記柱状晶からなる炭窒化チタンとの
界面にあるものが50%以上、好ましくは80〜100
%であることを特徴とする上記(3)に記載の被覆超硬
合金製切削工具。(ここでいう基体側の亀裂の先端の存
在量は総量を意味する。) (5)前記最内層の窒化チタンの上層に3〜20μmの
アルミナ、さらにその上層に厚み3〜30μmのアスペ
クト比5以上の柱状晶からなる炭窒化チタン、さらにそ
の上層に0.5〜10μmのアルミナが被覆されている
ことを特徴とする上記(1)又は(2)に記載の被覆超
硬合金製切削工具。(3) On the uppermost layer of titanium nitride,
Titanium carbonitride having a thickness of 3 to 30 μm, preferably 5 to 15 μm, having an aspect ratio of 5 or more, preferably 10 to 50, and at least one alumina layer of 0.5 to 10 μm, preferably 1 to 8 μm in the upper layer The coated cemented carbide cutting tool according to the above (1) or (2), which is coated. (4) Of the cracks in the coating film on the cutting edge ridge and / or the rake face, the tip of the crack on the substrate side is in the innermost layer titanium nitride, in the columnar crystal titanium carbonitride, or in the nitriding. 50% or more, preferably 80 to 100% at the interface between titanium and titanium carbonitride comprising the columnar crystals
% Of the coated cemented carbide cutting tool according to the above (3). (The abundance at the tip of the crack on the substrate side means the total amount.) (5) Alumina having a thickness of 3 to 20 μm is formed on the innermost layer of titanium nitride, and an aspect ratio of 3 to 30 μm is formed on the uppermost layer. The coated cemented carbide cutting tool according to the above (1) or (2), wherein the columnar crystal is made of titanium carbonitride, and the upper layer is further coated with alumina of 0.5 to 10 μm.
【0008】(6)前記刃先稜線部及び/又はすくい面
の被覆膜中の亀裂間隔の平均値は10μm以下であるこ
とを特徴とする上記(1)〜(5)のいずれかに記載の
被覆超硬合金製切削工具。 (7)前記断面組織上で刃先稜線部もしくはすくい面の
被覆膜中の亀裂間隔のうち、亀裂間隔の狭いほうの平均
値をX、逃げ面の被覆膜中の亀裂間隔の平均値をYとし
たとき、Y/Xの値が2以上の関係を満たすことを特徴
とする上記(1)〜(6)のいずれかに記載の被覆超硬
合金製切削工具。 (8)前記刃先稜線部及び/又はすくい面の被覆膜中の
亀裂のうち、被覆膜表面側の亀裂の先端が被覆膜表面に
貫通していないものが50%以上、好ましくは75〜1
00%であることを特徴とする上記(1)〜(7)のい
ずれかに記載の被覆超硬合金製切削工具。(6) The method according to any of (1) to (5) above, wherein the average value of the crack interval in the coating film on the ridge portion and / or the rake face of the cutting edge is 10 μm or less. Coated cemented carbide cutting tool. (7) On the cross-sectional structure, among the crack intervals in the coating film at the ridge portion of the cutting edge or the rake face, the average value of the smaller crack interval is X, and the average value of the crack intervals in the coating film on the flank face is X. The coated cemented carbide cutting tool according to any one of (1) to (6), wherein when Y is set, the value of Y / X satisfies a relationship of 2 or more. (8) Of the cracks in the coating film on the ridge and / or rake face of the cutting edge, 50% or more, preferably 75%, of the cracks on the surface side of the coating film whose tips do not penetrate the surface of the coating film. ~ 1
The coated cemented carbide cutting tool according to any one of the above (1) to (7), wherein the content is 00%.
【0009】(9)前記刃先稜線部及び/又はすくい面
の被覆膜中の亀裂のうち、前記柱状晶からなる炭窒化チ
タン膜にのみ存在し、その上下の被覆層に貫通していな
いものが50%以上、好ましくは70〜100%である
ことを特徴とする上記(2)〜(8)のいずれかに記載
の被覆超硬合金製切削工具。 (10)前記超硬合金表面には脱β層を有することを特
徴とする上記(1)〜(9)のいずれかに記載の被覆超
硬合金製切削工具。(9) Among the cracks in the coating film on the ridge portion and / or the rake face of the cutting edge, those present only in the titanium carbonitride film composed of the columnar crystals and not penetrating the coating layers above and below the titanium carbonitride film. Is 50% or more, preferably 70 to 100%. The coated cemented carbide cutting tool according to any one of the above (2) to (8). (10) The coated cemented carbide cutting tool according to any one of (1) to (9), wherein the surface of the cemented carbide has a β-removed layer.
【0010】(11)前記刃先稜線部の被覆膜中の亀裂
はコーティング後に機械的に導入されたことを特徴とす
る上記(1)〜(10)のいずれかに記載の被覆超硬合
金製切削工具。 (12)前記柱状晶からなる炭窒化チタンが有機CN化
合物を反応ガスとするCVD法によって800℃以上1
000℃以下、好ましくは850〜950℃の温度で被
覆されたことを特徴とする上記(3)〜(11)のいず
れかに記載の被覆超硬合金製切削工具。 (13)被覆膜の総膜厚が3〜50μmの範囲にある上
記(1)〜(12)のいずれかに記載の被覆超硬合金製
切削工具。 なお、前記最内層に被覆した窒化チタンと前記柱状晶の
炭窒化チタン又は前記(5)のアルミナ層との間および
前記柱状晶の炭窒化チタンと前記アルミナ層の間には各
層間の密着力向上のため中間層が被覆されていても構わ
ない。中間層としては厚さ0.1〜5μm程度の硼窒化
チタン、炭化チタン、炭窒酸化チタン等が挙げられる。(11) The coated cemented carbide according to any one of the above (1) to (10), wherein cracks in the coating film at the ridge portion of the cutting edge are mechanically introduced after coating. Cutting tools. (12) The titanium carbonitride composed of the columnar crystals is 800 ° C. or higher by a CVD method using an organic CN compound as a reaction gas.
The coated cemented carbide cutting tool according to any one of the above (3) to (11), wherein the coated cutting tool is coated at a temperature of 000 ° C or less, preferably 850 to 950 ° C. (13) The coated cemented carbide cutting tool according to any of (1) to (12) above, wherein the total thickness of the coating film is in the range of 3 to 50 μm. The adhesion between the titanium nitride coated on the innermost layer and the columnar crystal titanium carbonitride or the alumina layer of (5) and between the columnar crystal titanium carbonitride and the alumina layer are between the respective layers. An intermediate layer may be coated for improvement. Examples of the intermediate layer include titanium boronitride, titanium carbide, and titanium carbonitride having a thickness of about 0.1 to 5 μm.
【0011】[0011]
【発明の実施の形態】本発明によれば、WCをマトリッ
クスとし、鉄族金属を結合相とした超硬合金又はこれに
更にTi、Ta、Nb等の炭窒化物を添加した合金を基
体とし、その基体の表面に複数の被覆層を設けた被覆超
硬合金製切削工具において、(a)該被覆層の基体に隣
接する最内層が厚み0.1〜3μm、好ましくは0.3
〜1μmの窒化チタンとする。好ましくは、その上層に
厚み3〜30μm、更に好ましくは5〜15μmのアス
ペクト比5以上、更に好ましくは10〜50の柱状晶か
らなる炭窒化チタン、さらに0.5〜10μm、更に好
ましくは1〜8μmのアルミナを少なくとも一層被覆す
る。(b)前記工具の鏡面研磨した断面組織上で、刃先
稜線部及び/又はすくい面の被覆膜中の平均亀裂間隔が
逃げ面の被覆膜の平均亀裂間隔より狭くする。(c)前
記刃先稜線部及び/又はすくい面の被覆膜中の亀裂のう
ち、基体側の亀裂の先端が前記最内層の窒化チタン内、
もしくは窒化チタンよりも上層内もしくはそれらの層間
の界面にあるものが50%以上、好ましくは80〜10
0%である。前記最内層の窒化チタンの上層に前記柱状
晶からなる炭窒化チタンを被覆した場合には、前記最内
層の窒化チタン内、前記柱状晶からなる炭窒化チタン
内、もしくは前記窒化チタンと前記柱状晶からなる炭窒
化チタンとの界面にあるものが50%以上、好ましくは
80〜100%である。(d)前記刃先稜線部及び/又
はすくい面の被覆膜中の亀裂の平均長さが逃げ面での被
覆膜厚の平均値よりも短くすることが重要である。DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a cemented carbide having WC as a matrix and an iron group metal as a binder phase or an alloy further added with a carbonitride such as Ti, Ta, Nb, etc., is used as a substrate. A coated cemented carbide cutting tool having a plurality of coating layers on the surface of the substrate, wherein (a) the innermost layer of the coating layer adjacent to the substrate has a thickness of 0.1 to 3 μm, preferably 0.3
チ タ ン 1 μm titanium nitride. Preferably, the upper layer has a thickness of 3 to 30 μm, more preferably 5 to 15 μm, and an aspect ratio of 5 or more, more preferably 10 to 50 columnar crystals of titanium carbonitride, more preferably 0.5 to 10 μm, more preferably 1 to 10 μm. At least one layer of 8 μm alumina is coated. (B) On the mirror-polished cross-sectional structure of the tool, the average crack interval in the coating film on the cutting edge ridge and / or the rake face is made smaller than the average crack interval in the coating film on the flank face. (C) Among the cracks in the coating film on the cutting edge ridge and / or the rake face, the tip of the crack on the substrate side is in the innermost layer of titanium nitride;
Alternatively, 50% or more, preferably 80 to 10%, is present in the upper layer of titanium nitride or at the interface between the layers.
0%. When the titanium nitride of the columnar crystal is coated on the upper layer of the titanium nitride of the innermost layer, the titanium nitride of the innermost layer, the titanium carbonitride of the columnar crystal, or the titanium nitride and the columnar crystal. At the interface with titanium carbonitride consisting of at least 50%, preferably 80 to 100%. (D) It is important that the average length of the cracks in the coating film on the cutting edge ridge and / or the rake face is shorter than the average value of the coating film thickness on the flank face.
【0012】以下に上記発明(1)における、(a)〜
(d)及びその他の発明の限定理由について説明する。 (a)最内層を窒化チタンとしたのは超硬合金素材に対
する密着力に優れている上、被覆膜中の亀裂が母材に達
するのを防ぐ膜質として非常に優れているからである。
その厚みは0.1μm未満ではその効果が期待できず、
3μmよりも厚くすると耐摩耗性が低下するためこのよ
うに限定した。その上層の炭窒化チタン膜は耐摩耗性の
観点から被覆することが好ましく、また、アスペクト比
が5以上の柱状晶膜とすることで、亀裂を導入しやす
く、膜そのものも強靱であるためこのように限定した。
また、このアスペクト比は10〜50の範囲にあると特
に優れた性能を期待できる。その厚みは5μm未満では
耐摩耗性向上効果が小さく、30μmよりも厚くなると
耐欠損性の低下が著しくなるのでこのように限定した。
また、さらに上層のアルミナ膜は鋼を高速切削したさい
にすくい面摩耗抑制の観点から必要で、その厚みが0.
5μm未満であるとその効果が小さく、10μmを超え
ると耐欠損性の低下が著しいためこのように限定した。Hereinafter, (a) to (d) of the invention (1) will be described.
(D) and other reasons for limiting the invention will be described. (A) The innermost layer is made of titanium nitride because it has excellent adhesion to the cemented carbide material and is very excellent as a film quality for preventing cracks in the coating film from reaching the base material.
If the thickness is less than 0.1 μm, the effect cannot be expected,
When the thickness is more than 3 μm, the abrasion resistance is reduced. The upper layer of titanium carbonitride film is preferably coated from the viewpoint of abrasion resistance. Further, by forming a columnar crystal film having an aspect ratio of 5 or more, it is easy to introduce cracks and the film itself is tough. Limited.
If the aspect ratio is in the range of 10 to 50, particularly excellent performance can be expected. When the thickness is less than 5 μm, the effect of improving the wear resistance is small, and when the thickness is more than 30 μm, the decrease in fracture resistance becomes remarkable.
Further, the upper alumina film is necessary from the viewpoint of suppressing rake face wear when the steel is cut at a high speed.
If the thickness is less than 5 μm, the effect is small, and if it exceeds 10 μm, the fracture resistance is remarkably reduced.
【0013】(b)工具の断面組織を鏡面加工後、光学
顕微鏡もしくは走査電子顕微鏡で観察したとき、刃先稜
線部及び/又はすくい面の被覆膜中の平均亀裂間隔が逃
げ面の被覆膜中の平均亀裂間隔よりも狭いと断続切削時
の耐欠損性が向上し、耐摩耗性を支配する逃げ面で亀裂
を導入しすぎることによる膜の破壊、脱落、剥離現象が
抑制できるため好ましい。特に、前記断面組織上で刃先
稜線部もしくはすくい面の被覆膜中の亀裂間隔のうち、
亀裂間隔の狭いほうの平均値をX、逃げ面の被覆膜中の
亀裂間隔の平均値をYとしたときに、Y/Xの値が2以
上なる関係を満たしていると、特にこれらの効果が顕著
に現れるためこのように限定した。なお、前記刃先稜線
部とは刃先稜線部の中央部(範囲としてはすくい面もし
くは逃げ面とのつなぎ部までをいう)、前記逃げ面とは
逃げ面中央部、すくい面とは刃先稜線部とすくい面のつ
なぎ部からすくい面側に0〜100μm入った位置を指
す(図1、2参照)。また、前記の光学顕微鏡もしくは
走査電子顕微鏡による断面組織の観察は、指定の場所の
被覆膜を距離で約50〜100μm程度の長さ分、写真
撮影し、これを用いて亀裂の導入状態を評価する。ただ
し、この観察視野で導入されている亀裂本数が少ないと
きには、測定視野を延長する。ここでいう亀裂とは各被
覆層の膜厚の1/2以上の長さで被覆膜表面と垂直方向
に導入された亀裂のことを指す(図3参照)。これは、
各層の厚みの1/2以上の亀裂長さの亀裂が導入された
ときに、特に各層の膜が強靱化し、切削性能が向上する
ためである。また、各被覆層の平均亀裂間隔が異なると
きには、最も小さい平均亀裂間隔を本発明の平均亀裂間
隔とした。(B) When the cross-sectional structure of the tool is mirror-finished and observed with an optical microscope or a scanning electron microscope, the average crack interval in the coating film on the ridge portion of the cutting edge and / or the rake face is a coating film on the flank. If the average crack interval is smaller than the average crack interval, the fracture resistance during intermittent cutting is improved, and the breakage, falling off, and peeling phenomena of the film due to excessive introduction of cracks at the flank which controls wear resistance can be suppressed. In particular, among the crack intervals in the coating film of the cutting edge ridge portion or the rake face on the cross-sectional structure,
Assuming that the average value of the narrower crack interval is X and the average value of the crack interval in the flank coating film is Y, if the relationship of Y / X is 2 or more is satisfied, in particular, these values are satisfied. Since the effect is remarkable, this is limited. In addition, the said cutting edge ridge line part is the center part of a cutting edge ridge line part (it says to the connecting part with a rake face or a flank), the said flank is a flank center part, and a rake face is a knives edge part. It refers to a position at 0-100 μm from the joint of the rake face to the rake face side (see FIGS. 1 and 2). In addition, the observation of the cross-sectional structure by the above-mentioned optical microscope or scanning electron microscope is performed by taking a photograph of the coating film at a designated place for a length of about 50 to 100 μm in distance and using the photograph to check the state of crack introduction. evaluate. However, when the number of cracks introduced in this observation field is small, the measurement field is extended. The term “crack” as used herein refers to a crack having a length equal to or more than 1 / of the thickness of each coating layer and introduced in a direction perpendicular to the surface of the coating film (see FIG. 3). this is,
This is because when a crack having a crack length equal to or more than 1 / of the thickness of each layer is introduced, the film of each layer becomes particularly tough and cutting performance is improved. When the average crack interval of each coating layer was different, the smallest average crack interval was defined as the average crack interval of the present invention.
【0014】(c)刃先稜線部及び/又はすくい面の被
覆膜中の亀裂のうち、母材側の亀裂の先端が前記最内層
の窒化チタン内、前記柱状晶からなる炭窒化チタン内、
もしくは前記窒化チタンと前記柱状晶からなる炭窒化チ
タンの界面で止まっているものが50%以上あると、母
材まで貫通した亀裂の割合が低くなるため、断続切削時
に母材に貫通した亀裂が応力集中源となって超硬合金母
材が破壊し欠損したり、被覆膜直下の超硬合金が破壊す
ることによって被覆膜が剥がれて耐摩耗性が低下する現
象が抑制できるため好ましい。特に好ましいのは80%
以上の時である。(C) Among the cracks in the coating film on the ridge portion and / or the rake face of the cutting edge, the tips of the cracks on the base metal side are in the innermost layer titanium nitride, in the columnar crystal titanium carbonitride,
Alternatively, if 50% or more is stopped at the interface between the titanium nitride and the titanium carbonitride composed of the columnar crystal, the rate of cracks penetrating to the base material decreases, so that the cracks penetrating the base material during intermittent cutting are reduced. It is preferable because a phenomenon in which the cemented carbide base material is broken and broken as a source of stress concentration or the cemented carbide immediately below the coating film is broken, whereby the coating film is peeled off and the wear resistance is reduced can be suppressed. Especially preferred is 80%
That is the time.
【0015】(d)前記刃先稜線部及び/又はすくい面
の被覆膜中の亀裂の平均長さが、逃げ面での被覆膜厚の
平均値よりも短いと、表面から母材まで貫通した亀裂が
少なくなり、高速切削時に母材に貫通した亀裂先端で超
硬合金母材が酸化することによる超硬母材の破壊、膜の
剥離による摩耗の増加が抑制できるため好ましい。(D) If the average length of the cracks in the coating film on the ridge and / or the rake face is shorter than the average value of the coating film thickness on the flank, the penetration from the surface to the base metal is made. This is preferable because the number of cracks can be reduced, and the fracture of the cemented carbide base material due to oxidation of the cemented carbide base material at the tip of the crack penetrating the base material during high-speed cutting and an increase in wear due to peeling of the film can be suppressed.
【0016】また、前記最内層の窒化チタンの上層に3
〜20μmのアルミナ、さらにその上層に厚み3〜30
μmのアスペクト比5以上の柱状晶からなる炭窒化チタ
ン、さらにその上層に0.5〜5μmのアルミナが被覆
されていると、高速と低速での耐摩耗性が両立するため
好ましい。ここで内側の3〜20μmのアルミナは3μ
mよりも薄いとその効果が小さく、20μmよりも厚い
と耐欠損性の低下が著しいため、このように限定した。
また、外側の0.5〜10μmのアルミナは0.5μm
よりも薄いとその効果が小さく、10μmよりも厚い
と、耐摩耗性が低下するためこのように限定した。さら
に、前記刃先稜線部及び/又はすくい面の被覆膜中の亀
裂間隔の平均値を10μm以下とすることにより、刃先
稜線部に負荷された切削応力が特定の亀裂先端に集中す
ることを防止、すなわち応力分散できるため、耐欠損性
が向上する上、異常摩耗が抑制するため耐摩耗性が向上
するので特に好ましい。[0016] Further, 3
2020 μm alumina, and furthermore, a thickness of 3 to 30
It is preferable that titanium carbide nitride having a columnar crystal having an aspect ratio of 5 μm or more and alumina having a thickness of 0.5 to 5 μm be further coated thereon because both high-speed and low-speed wear resistance are compatible. Here, the inner 3 to 20 μm alumina is 3 μm.
When the thickness is smaller than m, the effect is small, and when the thickness is larger than 20 μm, the fracture resistance is significantly reduced.
Also, the outer 0.5-10 μm alumina is 0.5 μm
When the thickness is thinner, the effect is small. When the thickness is larger than 10 μm, the wear resistance is reduced. Further, by setting the average value of the crack interval in the coating film of the cutting edge ridge portion and / or the rake face to 10 μm or less, the cutting stress applied to the cutting edge ridge portion is prevented from being concentrated on a specific crack tip. In other words, stress can be dispersed, so that fracture resistance is improved, and abnormal wear is suppressed.
【0017】また、前記刃先稜線部及び/又はすくい面
の被覆膜中の亀裂のうち、被覆膜表面側の亀裂が被覆膜
表面に貫通していないものが50%以上であると、高速
切削時に発生する高熱により、被覆膜が酸化することに
よる膜質の劣化、膜の破壊、剥離による急激な摩耗増大
現象が抑制できるため好ましい。特にこのとき、前記刃
先稜線部の被覆膜中の亀裂が、前記柱状晶からなる炭窒
化チタン膜にのみ存在し、その上下の被覆層に貫通して
いないものが50%以上であると、前記柱状晶からなる
炭窒化チタン膜の結晶粒は柱状のため、断続切削時のよ
うな衝撃が繰り返し負荷される切削でも亀裂が膜表面と
平行に進展したり、亀裂同士が合体したりすることが少
なく、膜のチッピングからの溶着欠損や膜の剥離による
急激な摩耗増大現象が抑制できるため好ましい。本発明
の被覆超硬合金において、被覆の総膜厚範囲は3〜50
μmとするのが好ましい。[0017] Further, among the cracks in the coating film on the ridge line portion and / or the rake face of the cutting edge, if not more than 50% of the cracks on the coating film surface side do not penetrate the coating film surface, The high heat generated during high-speed cutting is preferable because deterioration of the film quality due to oxidation of the coating film, breakage of the film, and a rapid increase in wear due to peeling can be suppressed. In particular, at this time, if cracks in the coating film at the ridge portion of the cutting edge exist only in the titanium carbonitride film made of the columnar crystals, and 50% or more of the cracks do not penetrate through the coating layers above and below, Since the crystal grains of the titanium carbonitride film composed of the columnar crystals are columnar, even in cutting in which an impact is repeatedly applied, such as during intermittent cutting, cracks develop parallel to the film surface or cracks coalesce. This is preferable because it can suppress the occurrence of welding defects due to chipping of the film and a rapid increase in wear due to peeling of the film. In the coated cemented carbide of the present invention, the total coating thickness range is 3 to 50.
It is preferably set to μm.
【0018】次に、前記超硬合金表面には脱β層(WC
および結合相金属以外の析出物を有さない層)を有して
いると、亀裂が切削応力により母材中に進展したときに
超硬母材表面部での靱性が向上しているため、亀裂進展
しにくく、耐欠損性がさらに向上できる。さらに、脱β
層直下に合金内部よりも硬度の高い部分が存在している
と耐欠損性と耐摩耗性のバランスが向上する。脱β層は
窒化物及び/又は炭窒化物を含有する超硬合金組成粉末
を真空などの脱窒雰囲気で焼結することによって得るこ
とができ、その厚さは5〜50μmが好ましい。なお、
前記刃先稜線部の被覆膜中の亀裂はコーティング後に機
械的に導入することができ、機械的衝撃の程度を制御す
ることで本発明の被覆超硬合金製切削工具を製造するこ
とができる。機械的衝撃を与える方法としてはブラスト
処理の他に、砥粒を付着させたブラシや弾性砥石による
研磨、バレル処理などの方法を挙げることが出来る。Next, on the surface of the cemented carbide, a β-free layer (WC
And a layer having no precipitates other than the binder phase metal), since the toughness on the surface of the cemented carbide base material is improved when the crack propagates into the base material due to the cutting stress, Cracks do not easily propagate, and fracture resistance can be further improved. In addition, β
When there is a portion having a higher hardness than the inside of the alloy immediately below the layer, the balance between fracture resistance and wear resistance is improved. The de-β layer can be obtained by sintering a cemented carbide composition powder containing nitride and / or carbonitride in a denitrification atmosphere such as vacuum, and its thickness is preferably 5 to 50 μm. In addition,
The crack in the coating film at the edge of the cutting edge can be mechanically introduced after coating, and the coated cemented carbide cutting tool of the present invention can be manufactured by controlling the degree of mechanical impact. As a method of applying a mechanical impact, there can be mentioned, for example, a method of polishing with a brush or an elastic whetstone to which abrasive grains are adhered, a method of barrel processing, and the like, in addition to the blast processing.
【0019】また、前記柱状晶からなる炭窒化チタンが
アセトニトリル(CH3 CN)、スクシノニトリル、ト
ルニトリル、アクリロニトリル、ブチロニトリルなどの
有機CN化合物を反応ガスとするCVD法によって80
0℃以上1000℃以下の温度で被覆されていると、炭
窒化チタン膜がアスペクト比5以上の柱状晶となりやす
く、本発明に記載の亀裂が導入されやすいため好まし
い。The titanium carbonitride composed of the columnar crystals is produced by CVD using an organic CN compound such as acetonitrile (CH 3 CN), succinonitrile, tolunitrile, acrylonitrile or butyronitrile as a reaction gas.
The coating at a temperature of 0 ° C. or more and 1000 ° C. or less is preferable because the titanium carbonitride film easily becomes columnar crystals having an aspect ratio of 5 or more and the cracks described in the present invention are easily introduced.
【0020】[0020]
【実施例】以下、実施例により、本発明を説明するが、
これにより本発明が限定されるものではない。 (実施例1)重量%で86%WC−3%TaC−1%N
bC−2%TiC−1%ZrC−7%Coなる組成の超
硬合金粉末をプレスし、真空雰囲気中で1400℃、1
時間保持の条件で焼結し、平研、刃先処理を行い、IS
O型番CNMG120408の形状の超硬合金製チップ
を作製した。このチップに下層から順に次の3種類の被
覆膜をCVD法によりコーティングした。 膜質:0.5μmTiC−10μmTiCN(アスペ
クト比3)−0.5μmTiBN−2μmα−アルミナ
(総膜厚13μm) 膜質:0.5μmTiN−10μmTiCN(アスペ
クト比3)−0.5μmTiBN−2μmα−アルミナ
(総膜厚13μm) 膜質:0.5μmTiN−10μmTiCN(アスペ
クト比7)−0.5μmTiBN−2μmα−アルミナ
(総膜厚13μm)Hereinafter, the present invention will be described with reference to examples.
This does not limit the present invention. Example 1 86% WC-3% TaC-1% N by weight
A cemented carbide powder having a composition of bC-2% TiC-1% ZrC-7% Co is pressed at 1400.degree.
Sintering under the condition of holding time, flattening, cutting edge treatment, IS
A cemented carbide chip having a shape of O model number CNMG120408 was produced. The chip was coated with the following three types of coating films in order from the bottom by a CVD method. Film quality: 0.5 μm TiC-10 μm TiCN (aspect ratio 3) -0.5 μm TiBN-2 μm α-alumina (total film thickness 13 μm) Film quality: 0.5 μm TiN-10 μm TiCN (aspect ratio 3) -0.5 μm TiBN-2 μm α-alumina (total film thickness) 13 μm) Film quality: 0.5 μm TiN-10 μm TiCN (aspect ratio 7) -0.5 μm TiBN-2 μm α-alumina (total film thickness 13 μm)
【0021】なお、膜質のTiCN膜被覆時には有機
CN化合物としてアセトニトリルを原料として用い、9
00℃で被覆し、アスペクト比が約7の柱状晶TiCN
膜を形成した。また、いずれの膜質もアルミナ膜被覆時
にはH2 Sガスを添加ガスとして用い、刃先稜線部と逃
げ面中央部の膜厚が均一となるように被覆した。このた
め、いずれの膜質でも被覆膜厚はすくい面部、刃先稜線
部、逃げ面中央部ともに約13μmであった。When coating a TiCN film of a quality, acetonitrile is used as a raw material as an organic CN compound.
Columnar TiCN coated at 00 ° C with an aspect ratio of about 7
A film was formed. In addition, H 2 S gas was used as an additive gas when coating the alumina film, and the film was coated so that the film thickness was uniform at the ridge of the cutting edge and at the center of the flank. For this reason, the coating film thickness was about 13 μm for each of the rake face, the ridge line of the cutting edge, and the center of the flank face in any film quality.
【0022】さらに、この被覆超硬合金の表面を、鉄球
を用いて鉄球のサイズ、投射スピード、投射角度、投射
時間を変化させて、表1に示す被覆膜中の亀裂状態の異
なるチップを作製した。なお被覆膜中の亀裂の状態は、
各被覆超硬合金をダイヤモンドホイールで切断し、切断
面が見えるように樹脂に埋込んだ後、切断面を研削盤で
#140のダイヤモンド砥石を用い研削速度30m/s
ec、送り速度20cm/sec、切り込み量4μm
(初期)、2μm(中期)、1μm(後期)の条件で約
300μmの厚さを平面研削し、更に、研磨盤で#15
00(平均粒径が11.5〜8.9μm)のダイヤモン
ドペーストで粗研磨、次に#3000(平均粒径が5.
9〜4.7μm,JIS R6001)のダイヤモンド
ペーストで仕上げ研磨した面を光学顕微鏡を用いて×1
500で観察し定量化した。Further, the surface of the coated cemented carbide is changed in the crack state in the coating film shown in Table 1 by changing the size, the projection speed, the projection angle, and the projection time of the iron ball using the iron ball. A chip was prepared. The state of cracks in the coating film is
After cutting each coated cemented carbide with a diamond wheel and embedding it in resin so that the cut surface can be seen, the cut surface is ground at a grinding speed of 30 m / s using a # 140 diamond wheel with a grinder.
ec, feed rate 20 cm / sec, depth of cut 4 μm
(Initial), 2 μm (middle), 1 μm (late), about 300 μm thick surface ground, and # 15 with a polishing machine
Rough polishing with a diamond paste having a mean particle size of 1 00 to 11.5 to 8.9 μm, followed by # 3000 (average particle size of 5.
The surface polished and finished with a diamond paste of 9 to 4.7 μm, JIS R6001) was x1 using an optical microscope.
Observed at 500 and quantified.
【0023】[0023]
【表1】 [Table 1]
【0024】次にこれらのチップを用いて、図4に示す
SCM435製被削材(外周に4つの溝があり、断続切
削になる丸棒材)を下記条件で切削し、各工具の耐欠損
性を評価するとともに、SCM435製被削材を用いて
下記条件で耐摩耗性テスト1を実施した。Next, using these chips, a work material made of SCM435 shown in FIG. 4 (a round bar material having four grooves on the outer periphery and being intermittently cut) was cut under the following conditions, and the fracture resistance of each tool was determined. Abrasion resistance test 1 was carried out under the following conditions using a work material made of SCM435.
【0025】 寿命判定は欠け発生時点とし、寿命時間は4コーナー平
均とした。[0025] The life was determined at the time of occurrence of chipping, and the life was averaged over four corners.
【0026】 [0026]
【0027】その結果を表2に示すが、最下層が0.5
μmのTiNで、その上層にアスペクト比が3もしくは
7の柱状晶のTiCN膜が10μm被覆された膜質、
〔前記発明(1)の構成要件(a)を満たす〕を被覆
し、亀裂の状態が前記発明(1)の(b)、(c)、
(d)の構成要件を満たす試料No.1−6、1−8〜
1−13のチップ(本発明品)は最下層がTiNでない
試料No.1−1〜1−3および膜質、であるが、
構成要件(b)、(c)、(d)のいずれかを満たさな
い試料No.1−4、1−5、1−7と1−14〜1−
16に比べて、優れた耐欠損性、耐摩耗性を示した。中
でも刃先稜線部の被覆膜中の亀裂間隔の平均値10μm
以下である発明品No.1−9〜1−12は特に優れた
耐欠損性及び耐摩耗性を示した。さらに、Y/X(刃先
稜線部の亀裂間隔の平均値X、逃げ面の被覆膜中の亀裂
間隔の平均値Y)の値が2以上の範囲にある発明品1−
10、1−11、1−12は特に優れた耐欠損性及び耐
摩耗性を示した。Table 2 shows the results.
film thickness of 10 μm coated with a columnar crystal TiCN film having an aspect ratio of 3 or 7,
[Satisfies the constituent requirement (a) of the invention (1)], and the crack state is (b), (c), or
Sample No. satisfying the constitutional requirements of (d). 1-6, 1-8 ~
The sample No. 1-13 (the product of the present invention) has the lowermost layer which is not TiN. 1-1 to 1-3 and film quality,
Sample No. which does not satisfy any of the constituent requirements (b), (c) and (d) 1-4, 1-5, 1-7 and 1-14 to 1-
As compared with No. 16, excellent fracture resistance and wear resistance were exhibited. Above all, the average value of the crack interval in the coating film at the edge line of the cutting edge is 10 μm.
Inventive product No. 1-9 to 1-12 showed particularly excellent fracture resistance and wear resistance. Further, the invention product 1 in which the value of Y / X (the average value of the crack interval at the edge of the cutting edge X, the average value of the crack interval in the flank coating film Y) is 2 or more.
10, 1-11 and 1-12 exhibited particularly excellent fracture resistance and abrasion resistance.
【0028】[0028]
【表2】 [Table 2]
【0029】(実施例2)実施例1と同じ超硬合金でI
SO型番CNMG120408の形状の超硬合金製チッ
プを作製した。このチップに実施例1に記載した被覆膜
質を被覆し、この被覆超硬合金の表面をすくい面側か
ら約100μmの鉄粉を用いて投射速度を種々変化させ
てブラスト処理し、表3に示す被覆膜中の亀裂状態の異
なるチップを作製した。これらのチップを用いて、実施
例1と同じ切削テストを実施した。(Example 2) The same cemented carbide as in Example 1 was used.
A cemented carbide tip having the shape of SO model number CNMG120408 was produced. This chip was coated with the coating film quality described in Example 1, and the surface of the coated cemented carbide was blasted from the rake face side using an iron powder of about 100 μm while changing the projection speed variously, as shown in Table 3. Chips with different crack states in the coating film were produced. Using these chips, the same cutting test as in Example 1 was performed.
【0030】[0030]
【表3】 [Table 3]
【0031】その結果を表4中に記載する。本発明品で
あるNo.2−3から2−7のチップはいずれも優れた
耐欠損性、耐摩耗性を示したが、中でも刃先稜線部の被
覆膜中の亀裂の母材側の先端が最内層窒化チタン、炭窒
化チタン内で止まっている割合が80%以上である試料
No.2−5、2−6、2−7は、特に優れた耐欠損
性、耐摩耗性を示した。The results are shown in Table 4. No. 1 of the present invention. Each of the tips 2-3 to 2-7 exhibited excellent chipping resistance and wear resistance. In particular, the tip of the crack in the coating film on the edge line of the cutting edge on the base metal side was formed of the innermost layer of titanium nitride or carbon. The sample No. in which the ratio stopped in the titanium nitride was 80% or more. 2-5, 2-6, and 2-7 exhibited particularly excellent fracture resistance and wear resistance.
【0032】[0032]
【表4】 [Table 4]
【0033】(実施例3)実施例1と同じ超硬合金でI
SO型番CNMG120408の形状の超硬合金製チッ
プを作製した。このチップに下層から順に 膜質:1μmTiN−7μmTiCN(アスペクト5
〜20)−2μmTiC−5μmκ−アルミナ(総膜厚
15μm)なる構造の膜を被覆した。なお、TiCN膜
はアセトニトリル、窒素ガス、TiCl4 、水素ガスを
原料ガスもしくはキャリアガスとして用い、被覆時のコ
ーティング温度を800〜1000℃の範囲で変化さ
せ、さらに炉内圧力、ガス組成比を変化させて被覆する
ことで、アスペクト比が5〜20の範囲のものを作製し
た。さらに、これらの工具の逃げ面をマスキングした上
で、すくい面側から鉄粉を投射速度を変化させてブラス
トし、表5に示す被覆膜中の亀裂状態の異なるチップを
作製した。これらのチップを用いて、実施例1と同じ切
削テストおよび以下に示す耐摩耗性テスト2を実施し
た。Example 3 The same cemented carbide as in Example 1 was used.
A cemented carbide tip having the shape of SO model number CNMG120408 was produced. Film quality: 1 μm TiN-7 μm TiCN (aspect 5)
2020) -2 μm TiC-5 μm κ-alumina (total film thickness 15 μm). The TiCN film uses acetonitrile, nitrogen gas, TiCl 4 , and hydrogen gas as a source gas or a carrier gas, changes the coating temperature during coating in the range of 800 to 1000 ° C., and further changes the furnace pressure and the gas composition ratio. By covering by covering, an object having an aspect ratio in a range of 5 to 20 was produced. Further, after flank surfaces of these tools were masked, iron powder was blasted from the rake surface side while changing the projection speed, and chips having different crack states in the coating film shown in Table 5 were produced. Using these chips, the same cutting test as in Example 1 and the wear resistance test 2 shown below were performed.
【0034】[0034]
【表5】 [Table 5]
【0035】 [0035]
【0036】その結果を表6中に記載する。本発明品で
あるNo.3−3から3−9のチップはいずれも優れた
耐欠損性、耐摩耗性を示したが、中でも刃先稜線部の被
覆膜中の亀裂のうち、被覆膜表面側の亀裂の先端が被覆
膜表面に貫通していないものが50%以上である試料N
o.3−5から3−9のチップは、高速切削テストであ
る耐摩耗テスト1で特に優れた耐摩耗性を示した。ま
た、刃先稜線部の被覆膜中の亀裂のうち、亀裂が柱状晶
からなる炭窒化チタン膜にのみ存在しその上下の被覆層
に貫通していないものが50%以上である試料No.3
−7から3−9のチップは耐欠損性テスト1および断続
切削による衝撃で膜剥離しやすい耐摩耗性テスト2で優
れた性能を示した。The results are shown in Table 6. No. 1 of the present invention. All of the chips 3-3 to 3-9 exhibited excellent fracture resistance and wear resistance. Among the cracks in the coating film on the ridge of the cutting edge, the tip of the crack on the surface of the coating film was particularly high. Sample N in which 50% or more do not penetrate the coating film surface
o. The chips 3-5 to 3-9 showed particularly excellent wear resistance in the wear resistance test 1, which is a high-speed cutting test. Further, among the cracks in the coating film at the edge of the cutting edge, 50% or more of the cracks were present only in the titanium carbonitride film formed of columnar crystals and did not penetrate the coating layers above and below. 3
The chips of -7 to 3-9 showed excellent performance in the fracture resistance test 1 and the abrasion resistance test 2 in which the film was easily peeled off by the impact of intermittent cutting.
【0037】[0037]
【表6】 [Table 6]
【0038】(実施例4)重量%で86%WC−1%T
aC−1%NbC−3%TiC−2%ZrCN−7%C
oなる組成の超硬粉末をプレスし、真空雰囲気中で14
00℃、1時間保持の条件で焼結し、平研、刃先処理を
行い、ISO型番CNMG120408の形状の超硬合
金製チップを作製した。この超硬合金の断面を鏡面研磨
し、組織を光学顕微鏡で観察したところ合金表面に約2
5μmの脱β層が形成でき、脱β層の直下に合金内部よ
りも硬度の高い部分が形成できていることが確認でき
た。このチップおよび実施例1で作製した合金表面に脱
β層を有しないチップに実施例1で被覆した膜質をコ
ーティングした。さらに、この被覆超硬合金の表面を、
実施例1と同様にして鉄球を用いて鉄球のサイズ、投射
スピード、投射角度、投射時間を変化させて、ブラスト
処理し、表7に示す被覆膜中の亀裂状態の異なるチップ
を作製した。Example 4 86% WC-1% T by weight
aC-1% NbC-3% TiC-2% ZrCN-7% C
o and pressed in a vacuum atmosphere.
Sintering was performed under the condition of holding at 00 ° C. for 1 hour, and flattening and cutting edge treatment were performed to produce a cemented carbide chip having a shape of ISO model number CNMG120408. The cross section of this cemented carbide was mirror-polished and the structure was observed with an optical microscope.
It could be confirmed that a 5 μm de-β layer was formed, and a portion having a higher hardness than the inside of the alloy was formed immediately below the β-layer. This chip and the chip produced in Example 1 having no β-removed layer on the alloy surface were coated with the film quality coated in Example 1. Furthermore, the surface of this coated cemented carbide is
The size of the iron ball, the projection speed, the projection angle, and the projection time were changed using an iron ball in the same manner as in Example 1 and blasting was performed to produce chips having different crack states in the coating film shown in Table 7. did.
【0039】[0039]
【表7】 [Table 7]
【0040】次にこれらのチップを用いて、実施例1と
同様にして耐欠損性テスト1、耐摩耗性テスト1を実施
した。その結果を表8中に記載する。本発明品であるN
o.4−1から4−4のチップはいずれも優れた耐欠損
性、耐摩耗性を示したが、中でも合金表面に脱β層を有
する試料No.4−3と4−4は脱β層を有さない試料
No.4−1、4−2と比較して、特に優れた耐欠損
性、耐摩耗性を有することが確認できた。Next, a chip resistance test 1 and a wear resistance test 1 were carried out using these chips in the same manner as in Example 1. The results are shown in Table 8. N which is the product of the present invention
o. All of the chips 4-1 to 4-4 exhibited excellent fracture resistance and wear resistance. Sample Nos. 4-3 and 4-4 have no β-removed layer. Compared to 4-1 and 4-2, it was confirmed that they had particularly excellent fracture resistance and wear resistance.
【0041】[0041]
【表8】 [Table 8]
【0042】(実施例5)実施例4で作製した超硬合金
の表面に下記の膜質をコーティングした。さらに、こ
の被覆超硬合金の表面をすくい面側から#400のダイ
ヤモンドを付着させたブラシによって研磨し、ブラシ回
転速度、ブラシ切込み量、研削油の量などを変化させて
下記表9に示す被覆膜中の亀裂状態の異なるチップを作
製した。そして、これらのチップを用いて、実施例1と
同じ耐欠損性テスト及びSCM415を下記の表10に
示す切削条件で耐摩耗性テスト3と4を実施した。 膜質:0.3μmTiN−0.4μmTiBN−6μ
mα−Al2 O3 −0.3μmTiCNO−10μmT
iCN(アスペクト比10)−0.5μmAlON−
1.5μmκ−Al2 O3 (総膜厚19μm)(Example 5) The surface of the cemented carbide prepared in Example 4 was coated with the following film quality. Further, the surface of the coated cemented carbide was polished from the rake face side with a brush having diamond # 400 adhered thereto, and the brush rotation speed, the brush cutting amount, the amount of the grinding oil, etc. were changed to change the coating speed shown in Table 9 below. Chips with different crack states in the coating were produced. Using these chips, the same chipping resistance test and SCM415 as in Example 1 were subjected to wear resistance tests 3 and 4 under cutting conditions shown in Table 10 below. Film quality: 0.3 μm TiN-0.4 μm TiBN-6 μ
mα-Al 2 O 3 −0.3 μm TiCNO-10 μmT
iCN (aspect ratio 10) -0.5 μm AlON-
1.5 μm κ-Al 2 O 3 (total film thickness 19 μm)
【0043】[0043]
【表9】 [Table 9]
【0044】[0044]
【表10】 [Table 10]
【0045】その結果を表11中に示す。表11の結果
から、本発明の試料5−3〜5−8は試料5−1、5−
2と比較して、優れた耐摩耗性と耐欠損性を有すること
がわかる。中でも、亀裂がTiCN膜にのみ存在する割
合が50%を越える試料5−6、5−7、5−8は高速
切削において特に優れた性能を示した。The results are shown in Table 11. From the results in Table 11, Samples 5-3 to 5-8 of the present invention were Samples 5-1, 5-
It can be seen that it has excellent wear resistance and chipping resistance as compared with Comparative Example 2. Among them, samples 5-6, 5-7, and 5-8 in which the ratio of the presence of cracks only in the TiCN film exceeded 50% showed particularly excellent performance in high-speed cutting.
【0046】[0046]
【表11】 [Table 11]
【0047】以上、実施例により本発明を例示的に説明
したが、本発明の範囲は請求項に記載した内容で制限さ
れるものであり、以上の実施例によって請求項の範囲が
制限できるものではない。As described above, the present invention has been described by way of examples. However, the scope of the present invention is limited by the contents described in the claims, and the scope of the claims can be limited by the above examples. is not.
【0048】[0048]
【発明の効果】本発明により超硬合金の被覆層中の亀裂
の間隔、その先端の位置等を定量的に特定することで、
優れた耐欠損性と耐摩耗性を得ることができる。According to the present invention, the distance between cracks in the coating layer of a cemented carbide, the position of the tip thereof, and the like are quantitatively specified.
Excellent fracture resistance and wear resistance can be obtained.
【図1】本発明に係るチップの刃先稜線部、逃げ面、す
くい面等を示すための説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view showing a cutting edge ridge, a flank, a rake face, and the like of a tip according to the present invention.
【図2】図1のチップを上面からみた模式図。FIG. 2 is a schematic view of the chip of FIG. 1 as viewed from above.
【図3】本発明に係る超硬合金の被覆層中における亀裂
の先端の基体に対する位置関係を示す説明図。FIG. 3 is an explanatory view showing a positional relationship between a tip of a crack and a substrate in a coating layer of a cemented carbide according to the present invention.
【図4】実施例の切削テストに用いたSCM435製被
削材(丸棒材)の横断面図。FIG. 4 is a cross-sectional view of a work material (round bar) made of SCM435 used for a cutting test of an example.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平11−99405(JP,A) 特開 平10−15711(JP,A) 特開 平9−1403(JP,A) 特開 平7−26366(JP,A) 特開 平6−246512(JP,A) 特開 平6−108258(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23B 27/14 C23C 16/36 C23C 28/04 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-11-99405 (JP, A) JP-A-10-15711 (JP, A) JP-A 9-1403 (JP, A) JP-A-7-107 26366 (JP, A) JP-A-6-246512 (JP, A) JP-A-6-108258 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B23B 27/14 C23C 16 / 36 C23C 28/04
Claims (14)
合相とした超硬合金を基体とし、その基体の表面に複数
の被覆層を設けた被覆超硬合金製切削工具において、
(a)該被覆層の基体に隣接する最内層が厚み0.1〜
3μmの窒化チタンであり、(b)前記工具の鏡面研磨
した断面組織上で、刃先稜線部及び/又はすくい面の被
覆膜中の平均亀裂間隔が逃げ面の被覆膜中の平均亀裂間
隔より小さく、(c)前記刃先稜線部及び/又はすくい
面の被覆膜中の亀裂のうち、基体側の亀裂の先端が前記
最内層の窒化チタン内もしくは窒化チタンよりも上層内
もしくはそれらの層間の界面にあるものが50%以上で
あり、(d)前記刃先稜線部及び/又はすくい面の被覆
膜中の亀裂の平均長さが逃げ面での被覆膜厚の平均値よ
りも短いことを特徴とする被覆超硬合金製切削工具。1. A coated cemented carbide cutting tool comprising a substrate made of a cemented carbide with WC as a matrix and an iron group metal as a binder phase, and a plurality of coating layers provided on the surface of the substrate.
(A) the innermost layer of the coating layer adjacent to the substrate has a thickness of 0.1 to
(B) the average crack interval in the coating film on the ridge and / or the rake face of the cutting edge on the mirror-polished cross-sectional structure of the tool, the average crack interval in the coating film on the flank face; (C) Among the cracks in the coating film on the cutting edge ridge and / or the rake face, the tip of the crack on the substrate side is in the innermost layer of titanium nitride or in the upper layer than titanium nitride or between the layers. (D) the average length of the cracks in the coating film at the cutting edge ridge and / or the rake face is shorter than the average value of the coating film thickness at the flank face. A coated hard metal cutting tool characterized by the above-mentioned.
ンとその直上層の界面である請求項1に記載の被覆超硬
合金製切削工具。2. The coated cemented carbide cutting tool according to claim 1, wherein the interface between the layers is the interface between the innermost layer of titanium nitride and the layer immediately above it.
3〜30μmのアスペクト比5以上の柱状晶からなる炭
窒化チタン、さらにその上層に0.5〜10μmのアル
ミナが少なくとも一層被覆されていることを特徴とする
請求項1又は2に記載の被覆超硬合金製切削工具。3. An upper layer of the innermost layer of titanium nitride is coated with titanium carbonitride having a thickness of 3 to 30 μm and comprising columnar crystals having an aspect ratio of 5 or more, and at least one layer of alumina of 0.5 to 10 μm is further coated thereon. The coated cemented carbide cutting tool according to claim 1 or 2, wherein
覆膜中の亀裂のうち、前記基体側の亀裂の先端が前記最
内層の窒化チタン内、前記柱状晶からなる炭窒化チタン
内、もしくは前記窒化チタンと前記柱状晶からなる炭窒
化チタンとの界面にあるものが50%以上であることを
特徴とする請求項3に記載の被覆超硬合金製切削工具。4. Among the cracks in the coating film on the ridge portion and / or rake face of the cutting edge, the tip of the crack on the substrate side is in the innermost layer titanium nitride, in the columnar crystal titanium carbonitride, 4. The coated cemented carbide cutting tool according to claim 3, wherein an amount at an interface between the titanium nitride and the titanium carbonitride composed of the columnar crystal is 50% or more. 5.
覆膜中の亀裂のうち、前記基体側の亀裂の先端が前記最
内層の窒化チタン内、前記柱状晶からなる炭窒化チタン
内、もしくは前記窒化チタンと前記柱状晶からなる炭窒
化チタンとの界面にあるものが80%以上であることを
特徴とする請求項1〜4のいずれかに記載の被覆超硬合
金製切削工具。5. A crack in the coating film on the ridge portion and / or the rake face of the cutting edge, wherein the tip of the crack on the substrate side is in the innermost layer titanium nitride, in the columnar crystal titanium carbonitride, The coated cemented carbide cutting tool according to any one of claims 1 to 4, wherein an amount at an interface between the titanium nitride and the titanium carbonitride composed of the columnar crystal is 80% or more.
0μmのアルミナ、さらにその上層に厚み3〜30μm
のアスペクト比5以上の柱状晶からなる炭窒化チタン、
さらにその上層に0.5〜10μmのアルミナが被覆さ
れていることを特徴とする請求項1又は2に記載の被覆
超硬合金製切削工具。6. An upper layer of titanium nitride of 3 to 2
0 μm alumina, 3 to 30 μm thick on top
A titanium carbonitride comprising columnar crystals having an aspect ratio of 5 or more,
3. The coated cemented carbide cutting tool according to claim 1, wherein the upper layer is further coated with alumina of 0.5 to 10 [mu] m.
覆膜中の亀裂間隔の平均値は10μm以下であることを
特徴とする請求項1〜6のいずれかに記載の被覆超硬合
金製切削工具。7. The coated cemented carbide according to claim 1, wherein an average value of a crack interval in the coating film on the ridge portion and / or the rake face of the cutting edge is 10 μm or less. Cutting tools.
くい面の被覆膜中の亀裂間隔のうち、亀裂間隔の狭いほ
うの平均値をX、逃げ面の被覆膜中の亀裂間隔の平均値
をYとしたとき、Y/Xの値が2以上の関係を満たすこ
とを特徴とする請求項1〜7のいずれかに記載の被覆超
硬合金製切削工具。8. The average value of the smaller of the crack intervals among the crack intervals in the coating film on the cutting edge ridge portion or the rake face on the sectional structure is X, and the average value of the crack intervals in the coating film on the flank face. The coated cemented carbide cutting tool according to any one of claims 1 to 7, wherein when the value is Y, the value of Y / X satisfies a relationship of 2 or more.
覆膜中の亀裂のうち、前記被覆膜の表面側の亀裂の先端
が被覆膜表面に貫通していないものが50%以上である
ことを特徴とする請求項1〜8のいずれかに記載の被覆
超硬合金製切削工具。9. Of the cracks in the coating film on the ridge and / or the rake face, at least 50% of the cracks on the surface side of the coating film do not penetrate the surface of the coating film. The coated cemented carbide cutting tool according to any one of claims 1 to 8, wherein:
被覆膜中の亀裂のうち、前記柱状晶からなる炭窒化チタ
ン膜にのみ存在し、その上下の被覆層に貫通していない
ものが50%以上であることを特徴とする請求項3〜9
のいずれかに記載の被覆超硬合金製切削工具。10. Among the cracks in the coating film on the ridge portion and / or the rake face of the cutting edge, there are cracks that exist only in the titanium carbonitride film made of the columnar crystals and do not penetrate the coating layers above and below. It is at least 50%.
The coated cemented carbide cutting tool according to any one of the above.
ことを特徴とする請求項1〜10のいずれかに記載の被
覆超硬合金製切削工具。11. The coated cemented carbide cutting tool according to claim 1, wherein a surface of said cemented carbide has a β-removed layer.
ティング後に機械的に導入されたことを特徴とする請求
項1〜11のいずれかに記載の被覆超硬合金製切削工
具。12. A coated cemented carbide cutting tool according to claim 1, wherein cracks in the coating film at the edge of the cutting edge are mechanically introduced after coating.
CN化合物を反応ガスとするCVD法によって800℃
以上1000℃以下の温度で被覆されたことを特徴とす
る請求項3〜12のいずれかに記載の被覆超硬合金製切
削工具。13. The titanium carbonitride comprising columnar crystals is formed at a temperature of 800 ° C. by a CVD method using an organic CN compound as a reaction gas.
The coated cemented carbide cutting tool according to any one of claims 3 to 12, wherein the coated tool is coated at a temperature of at least 1000 ° C.
ある請求項1〜13のいずれかに記載の被覆超硬合金製
切削工具。14. The coated cemented carbide cutting tool according to claim 1, wherein the total thickness of the coating film is in the range of 3 to 50 μm.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30189898A JP3022518B2 (en) | 1997-11-06 | 1998-10-23 | Coated cemented carbide tool |
IL13080398A IL130803A (en) | 1997-11-06 | 1998-11-06 | Coated cemented carbide cutting tool |
US09/331,857 US6187421B1 (en) | 1997-11-06 | 1998-11-06 | Coated tool of cemented carbide |
PCT/JP1998/005004 WO1999024198A1 (en) | 1997-11-06 | 1998-11-06 | Coated tool of cemented carbide |
EP98951716A EP0965404B1 (en) | 1997-11-06 | 1998-11-06 | Coated tool of cemented carbide |
DE69831219T DE69831219T2 (en) | 1997-11-06 | 1998-11-06 | TOOL COATED WITH SINTER CARBIDE |
KR1019997006095A KR100587444B1 (en) | 1997-11-06 | 1998-11-06 | Coated Tool of Cemented Carbide |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30431297 | 1997-11-06 | ||
JP9-304312 | 1997-11-06 | ||
JP30189898A JP3022518B2 (en) | 1997-11-06 | 1998-10-23 | Coated cemented carbide tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11197907A JPH11197907A (en) | 1999-07-27 |
JP3022518B2 true JP3022518B2 (en) | 2000-03-21 |
Family
ID=26562921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30189898A Expired - Lifetime JP3022518B2 (en) | 1997-11-06 | 1998-10-23 | Coated cemented carbide tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3022518B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2759360B1 (en) * | 2011-09-22 | 2019-02-13 | Tungaloy Corporation | Surface-coated cutting tool |
KR102214182B1 (en) | 2016-12-26 | 2021-02-09 | 교세라 가부시키가이샤 | Cutting insert |
-
1998
- 1998-10-23 JP JP30189898A patent/JP3022518B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11197907A (en) | 1999-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100587444B1 (en) | Coated Tool of Cemented Carbide | |
EP1455003B1 (en) | Coated cemented carbide insert | |
EP1952920B1 (en) | Cutting tip of cutting edge replacement type | |
US5776588A (en) | Coated hard alloy tool | |
EP1609883A2 (en) | Coated metal cutting tool | |
KR100847715B1 (en) | Cutting tool insert and method for use thereof | |
EP1724039A1 (en) | Coated cutting tool | |
JP3658949B2 (en) | Coated cemented carbide | |
WO2010071585A1 (en) | Improved coated cutting insert for rough turning | |
JP3658948B2 (en) | Coated cemented carbide | |
JP3374599B2 (en) | Hard wear-resistant composite coated cutting tool | |
JP3061041B2 (en) | Coated cemented carbide tool | |
JP3022518B2 (en) | Coated cemented carbide tool | |
JP4351521B2 (en) | Surface coated cutting tool | |
JP3346335B2 (en) | Coated cemented carbide tool | |
JP3424263B2 (en) | Coated hard alloy members | |
JP3022519B1 (en) | Coated cemented carbide tool | |
JP3360565B2 (en) | Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance | |
JP2001009605A (en) | Coated tool | |
JP4484500B2 (en) | Surface coated cutting tool | |
JPH11236671A (en) | Throw away cutting tip made of surface-coated cemented carbide excellent in chipping resistance | |
JP2001152209A (en) | High adhesion surface coated sintered member and its producing method | |
JPH09291378A (en) | Coated cemented carbide | |
JP2002239808A (en) | Surface covered cemented carbide cutting tool | |
JPH058103A (en) | Cutting tool member made of surface-coated tungsten carbide base sintered alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19991214 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090114 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090114 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100114 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110114 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110114 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120114 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120114 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130114 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130114 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140114 Year of fee payment: 14 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |