JP3019655B2 - Power converter - Google Patents
Power converterInfo
- Publication number
- JP3019655B2 JP3019655B2 JP5058374A JP5837493A JP3019655B2 JP 3019655 B2 JP3019655 B2 JP 3019655B2 JP 5058374 A JP5058374 A JP 5058374A JP 5837493 A JP5837493 A JP 5837493A JP 3019655 B2 JP3019655 B2 JP 3019655B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- power
- group
- voltage
- power converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Inverter Devices (AREA)
- Rectifiers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、一般産業,電力用,車
両用など大容量半導体電力変換器を使用した装置に係
り、とくに多重変圧器を使用して大容量化した電力変換
器を使用する分野において利用可能である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device using a large-capacity semiconductor power converter for general industry, electric power, vehicles and the like, and particularly to a power converter using a large capacity using multiple transformers. It can be used in the field where
【0002】[0002]
【従来の技術】半導体電力変換器の大容量化の方法とし
ては例えばアイ・イー・イー・イー,トランズアクショ
ン オン マグネティクス,26巻,5号(1990
年)2247頁から2249頁(IEEE Trans Magnetics Vo
l.26,No.5(1990),pp2247−224
9)において論じられているように2台の変圧器を使用
して2台の変換器を多重接続するという方法がある。2
台の変換器を位相差30度で運転して大容量化,低高調
波化を図るものである。2. Description of the Related Art As a method of increasing the capacity of a semiconductor power converter, for example, IEE, Transaction on Magnetics, Vol. 26, No. 5, 1990
Years 2247 to 2249 (IEEE Trans Magnetics Vo
l.26, No.5 (1990), pp2247-224
As discussed in 9), there is a method of multiplexing two converters using two transformers. 2
One of the converters is operated at a phase difference of 30 degrees to achieve a large capacity and low harmonics.
【0003】また、電気学会「半導体電力変換回路」1
00頁から101頁において論じられているように、千
鳥巻線変圧器を用いて高調波を低減する方法もある。[0003] The Institute of Electrical Engineers of Japan, "Semiconductor Power Conversion Circuit" 1
As discussed on pages 00-101, there are also methods of reducing harmonics using a staggered winding transformer.
【0004】[0004]
【発明が解決しようとする課題】しかし、上記方法によ
るとさらに高調波を低減する方法については未検討で、
さらに多重化する変換器の台数を増やす場合の効果的方
法あるいは各変換器の運転位相をどのようにすれば高調
波を低減できるかなどについては述べられていない。ま
た、千鳥巻線変圧器を用いる場合には変圧器の構造が複
雑になる。However, a method for further reducing harmonics according to the above method has not been studied.
Further, it does not describe an effective method for increasing the number of converters to be multiplexed, or how to reduce the harmonics by changing the operation phase of each converter. Also, when using a staggered winding transformer, the structure of the transformer becomes complicated.
【0005】本発明の目的は、2のn乗台(n≧2、整
数)の変換器を、特殊な巻線を用いない変圧器を使用し
て多重化することにより、より高調波の少ない大容量電
力変換器を得ることにある。An object of the present invention is to multiplex converters of the order of 2 to the power of n (n ≧ 2, an integer) using a transformer that does not use a special winding, thereby reducing harmonics. It is to obtain a large capacity power converter.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、自己消弧素子を使用した三相電力変換器の2のn乗
台(n≧2、整数)の出力を三相変圧器を用いて多重化
した電力変換装置において、2の(n−1)乗台の電力変
換器群Aはデルタ・オープンスター結線三相変圧器のデ
ルタ結線側に夫々接続し、他の2の(n−1)乗台の電力
変換器群Bはデルタ・オープンデルタ結線三相変圧器の
デルタ結線側に夫々接続し、前記B群の各三相変圧器の
オープンデルタ巻線は同一相で直列接続してデルタ結線
し、前記A群の各三相変圧器のオープンスター巻線は同
一相で直列接続し、該スター巻線の直列接続巻線の各々
一端は前記B群の前記デルタ結線された接続点に各々接
続し、前記スター巻線の直列接続巻線の他端より電力を
出力し、前記A群とB群の三相変圧器の入力側に接続さ
れる前記A群とB群の電力変換器は基本波の出力電圧が
30度の位相差で駆動する電圧位相制御手段を備えた電
力変換装置とする。さらに、各群の電力変換器それぞれ
においても電圧位相を変えるようにする。In order to achieve the above-mentioned object, the output of a n-th power of 2 (n ≧ 2, an integer) of a three-phase power converter using a self-extinguishing element is converted to a three-phase transformer. In the multiplexed power converter, the power converter group A of the (2−1) -th power stage is connected to the delta connection side of the delta open-star connection three-phase transformer, respectively, and the other two (n) are connected. -1) The power converter group B of the platform is connected to the delta connection side of the delta / open delta connection three-phase transformer, respectively, and the open delta windings of the three-phase transformers of the group B are connected in series in the same phase. The open star windings of the three-phase transformers of the group A are connected in series in the same phase, and one end of each of the series-connected windings of the star windings is connected to the delta connection of the group B. Each connected to a connection point, and outputs power from the other end of the series connection winding of the star winding. The power converters of the groups A and B connected to the input side of the three-phase transformer of the group B are provided with a power converter having voltage phase control means for driving the output voltage of the fundamental wave with a phase difference of 30 degrees. I do. Further, the voltage phase is changed in each group of power converters.
【0007】例えば、変換器が8台(n=3)の場合に
は各群4台の位相をそれぞれ変えて運転する。この場
合、各群の4台をA1,A2,A3,A4とB1,B2,
B3,B4とすると、A群についてA1 とA2 間,A3 と
A4 間の運転位相差をともにφ1 にする。さらにA
1(A2)とA3(A4)間の運転位相差をφ2 にする。す
なわち、A1を基準(0°)にするとA2をφ1,A3をφ
2,A4をφ1+φ2で運転する。B群についても同様の関
係とする。この場合、φ1,φ2の値を、2台の変換器の
出力電圧に含まれる第(12×i±1)次高調波(i=
1,2,3,…)が逆相になるように180°/(12
×i±1)(i=1,2,3,…)という値に設定す
る。For example, when the number of converters is eight (n = 3), the operation is performed by changing the phases of four units in each group. In this case, the four units in each group are A 1 , A 2 , A 3 , A 4 and B 1 , B 2 ,
Assuming that B 3 and B 4 , the operation phase differences between A 1 and A 2 and between A 3 and A 4 for the group A are both φ 1 . Further A
The operation phase difference between 1 (A 2 ) and A 3 (A 4 ) is set to φ 2 . That is, when A 1 is a reference (0 °), A 2 is φ 1 and A 3 is φ
The 2, A 4 is operated at φ 1 + φ 2. The same relation is applied to the group B. In this case, the values of φ 1 and φ 2 are converted to the (12 × i ± 1) -order harmonics (i = 12) included in the output voltages of the two converters.
180 ° / (12) so that 1, 2, 3,.
× i ± 1) (i = 1, 2, 3,...).
【0008】[0008]
【作用】A,B群の電力変換器の出力電圧の位相差を3
0度とすることで第5,7,17,19,29,31…
といった系列の高調波成分を零にできる。さらにφ1,φ
2,…,φn-1の値を上記のように選ぶことにより2台の
変換器間で高調波が逆相で加算されるため多重化により
これらの成分を理論上零にすることができる。以上によ
り2のn乗台の電力変換器により装置を大容量化できか
つ高調波を低減することができる。The phase difference between the output voltages of the power converters of groups A and B is 3
By setting it to 0 degree, the fifth, seventh, 17, 19, 29, 31 ...
Can be set to zero. Furthermore, φ 1 , φ
By selecting the values of 2 ,..., Φ n-1 as described above, harmonics are added in opposite phases between the two converters, so that these components can be made theoretically zero by multiplexing. . As described above, the capacity of the device can be increased and harmonics can be reduced by the 2n power converters.
【0009】[0009]
【実施例】以下、本発明の実施例を図を使用して説明す
る。図1には8台の変換器を用いて多重化する場合の構
成を示す。直流電源4を共通に8台の変換器10〜17
を並列接続する。変換器10〜13をデルタ・オープン
スター結線の三相変圧器20〜23によりオープン巻線
側を直列接続する。変換器14〜17をデルタ・オープ
ンデルタ結線の三相変圧器24〜27によりオープン巻
線側を直列接続する。前者の変換器群100と後者の変
換器群200をさらに直列接続し、さらに負荷または電
力系統3へ接続する。以下、変換器側の変圧器巻線を一
次巻線、負荷側または電力系統側の巻線を二次巻線と呼
ぶ。パルス発生回路710〜717の出力は運転位相差
付加回路700〜707を介して変換器10〜17へゲ
ートパルスとして入力される。運転位相差付加回路70
0〜707の位相設定値を0°,φ1,φ2,φ1+φ2,
30°,30°+φ1,30°+φ2,30°+φ1+φ
2 とする。運転位相差付加回路700〜707はタイマ
ーを使用して容易に実現でき、各々運転位相に相当する
時間遅延を発生させればよい。通常はマイクロコンピュ
ータを使用してソフトウェア処理をするので、特別な回
路を付加しなくとも容易に実現できる。図2には変圧器
20〜27の巻線構成を示す。一次巻線は全てデルタ接
続して、第3次高調波成分を零にする。二次巻線を図の
ように直列接続して三相出力端子U,V,Wを得る。巻
線群a1〜a8,b1〜b8,c1〜c8と巻線群A1
〜A4,B1〜B4,C1〜C4および巻線群A5〜A
8,B5〜B8,C5〜C8の巻数比を1:a:√3a
に選び、変換器10と14,11と15,12と16,
13と17をそれぞれ位相差30度で運転する。こうす
ると変圧器二次側線間電圧vUVの第5,7,17,1
9,29,31…次成分を理論上零にすることができ
る。以上により変圧器二次側線間電圧vUVに含まれる高
調波成分を第(12×i±1)次成分のみにすることが
できる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration in the case of multiplexing using eight converters. DC power supply 4 is shared by eight converters 10 to 17
Are connected in parallel. The converters 10 to 13 are connected in series on the open winding side by three-phase transformers 20 to 23 of delta open star connection. The converters 14 to 17 are connected in series on the open winding side by three-phase transformers 24 to 27 having a delta / open delta connection. The former converter group 100 and the latter converter group 200 are further connected in series, and further connected to the load or the power system 3. Hereinafter, the transformer winding on the converter side is referred to as a primary winding, and the winding on the load side or the power system side is referred to as a secondary winding. Outputs of the pulse generation circuits 710 to 717 are input as gate pulses to the converters 10 to 17 via the operation phase difference adding circuits 700 to 707. Operation phase difference adding circuit 70
The phase setting values of 0 to 707 are set to 0 °, φ 1 , φ 2 , φ 1 + φ 2 ,
30 °, 30 ° + φ 1 , 30 ° + φ 2, 30 ° + φ 1 + φ
Assume 2 . The operation phase difference adding circuits 700 to 707 can be easily realized using a timer, and may generate a time delay corresponding to each operation phase. Normally, software processing is performed using a microcomputer, so that it can be easily realized without adding a special circuit. FIG. 2 shows a winding configuration of the transformers 20 to 27. All the primary windings are delta-connected to make the third harmonic component zero. Secondary windings are connected in series as shown to obtain three-phase output terminals U, V, and W. Winding group a1-a8, b1-b8, c1-c8 and winding group A1
To A4, B1 to B4, C1 to C4 and winding groups A5 to A
8, the turns ratio of B5 to B8 and C5 to C8 is 1: a: √3a
And converters 10 and 14, 11 and 15, 12 and 16,
13 and 17 are each operated at a phase difference of 30 degrees. In this case, the fifth, seventh, seventeenth, and seventeenth voltages of the transformer secondary side line voltage v UV are obtained.
9, 29, 31 ... The next component can be made theoretically zero. As described above, the harmonic component included in the transformer secondary-side line voltage v UV can be made only the (12 × i ± 1) -order component.
【0010】一般的に変圧器一次電圧vは高調波成分の
和として次式のように表すことができる。Generally, a transformer primary voltage v can be expressed as the following equation as a sum of harmonic components.
【0011】[0011]
【数1】 (Equation 1)
【0012】この時、変圧器二次側線間電圧vUVには第
(12×i±1)次高調波成分のみが含まれるから、次
式のように表わすことができる。[0012] In this case, the transformer secondary side inter-line voltage v UV first (12 × i ± 1) because contains only the following harmonic component can be expressed by the following equation.
【0013】[0013]
【数2】 (Equation 2)
【0014】(数2)式でk1 ,k12i±1は各次成分の
電圧低減係数であり、(数3)式に示す。In the equation (2), k 1 and k 12i ± 1 are voltage reduction coefficients of the respective components, and are shown in the equation (3).
【0015】[0015]
【数3】 (Equation 3)
【0016】図3に示すように、運転位相差付加回路7
00〜707の設定値を変換器群100では全て0度、
変換器群200では30度(φ1=φ2=0°)とすれ
ば、各群1台の変換器で構成した場合の4倍の出力電圧
が得られ、変換器の大容量化を図ることができる。この
場合(数3)式の電圧低減係数は全て「1」となる。次
に各群の4台の変換器を異なった位相で運転する場合を
考える。図1に示したように、変換器10を基準(0
°)とし変換器11をφ1,変換器12をφ2,変換器1
3をφ1+φ2で運転する。変換器群200についても同
様の関係とする。こうすると変換器10と変換器11
間,変換器12と変換器13間の運転位相差はφ1、変
換器10,11と変換器12,13間の運転位相差はφ
2となる。φ1とφ2 を180°/(12×i±1)に設
定すれば、2台のインバータで発生する第(12×i±
1)次高調波電圧が逆相となり多重化により打ち消すこ
とができるので、理論上この成分を零にすることができ
る。φ1とφ2を異なった値にすれば2種類の次数の高調
波成分を零にすることができる。通常は、高調波フィル
タ設備を小型化するため低い次数の成分から除去してい
く。従って、11次,13次成分を零にするようにφ2
=180°/11,φ1=180°/13とする。この
場合にはk11=k13=0となり、11次,13次成分を
零にできる。図4にはφ1,φ2の選び方と電圧低減係数
k12i±1の関係を示す。As shown in FIG. 3, the operation phase difference adding circuit 7
The set values of 00 to 707 are all 0 degrees in the converter group 100,
If the converter group 200 is set at 30 degrees (φ 1 = φ 2 = 0 °), an output voltage four times that in the case of one converter in each group can be obtained, and the capacity of the converter can be increased. be able to. In this case, all of the voltage reduction coefficients in equation (3) are “1”. Next, consider the case where the four converters in each group are operated at different phases. As shown in FIG. 1, the converter 10 is referenced (0
°), converter 11 is φ 1 , converter 12 is φ 2 , converter 1
3 is operated at φ 1 + φ 2 . The same applies to the converter group 200. In this case, the converter 10 and the converter 11
The operating phase difference between converters 12 and 13 is φ 1 , and the operating phase difference between converters 10 and 11 and converters 12 and 13 is φ
It becomes 2 . If φ 1 and φ 2 are set to 180 ° / (12 × i ± 1), the (12 × i ± 1) generated by two inverters
1) Since the next higher harmonic voltage becomes out of phase and can be canceled by multiplexing, this component can be reduced to zero theoretically. By setting φ 1 and φ 2 to different values, the harmonic components of the two orders can be made zero. Usually, in order to reduce the size of the harmonic filter equipment, components are removed from low-order components. Therefore, φ 2 is set so that the eleventh and thirteenth components are zero.
= 180 ° / 11 and φ 1 = 180 ° / 13. In this case, k 11 = k 13 = 0, and the 11th and 13th order components can be made zero. FIG. 4 shows the relationship between the selection of φ 1 and φ 2 and the voltage reduction coefficient k 12i ± 1 .
【0017】前記実施例では、φ1=180°/13,
φ2=180°/11(図4のケース1)としたが、図
4から、iが異なるようにφ1とφ2を選択する。例え
ば、図5に示したようにφ1=180°/25,φ2=1
80°/13(ケース5)とすれば、図4からk25とk
13を零にでき、さらにこれ以外の次数の電圧低減係数k
11とk23も小さくできる。従って、高調波成分を全体に
低減できるという効果がある。これは、12×i±1の
iが同一で複号が異なる場合、180°/(12×i+
1)と180°/(12×i−1)の値の差が少ないた
め、180°/(12×i+1)の運転位相差で第(1
2×i+1)次高調波を逆相にして打ち消せば、他方の
第(12×i−1)次高調波もほぼ逆相の関係になるか
らである。In the above embodiment, φ 1 = 180 ° / 13,
Although φ 2 = 180 ° / 11 (case 1 in FIG. 4), φ 1 and φ 2 are selected from FIG. 4 so that i is different. For example, as shown in FIG. 5, φ 1 = 180 ° / 25, φ 2 = 1
If 80 ° / 13 (case 5), k 25 and k from FIG.
13 can be made zero, and the voltage reduction coefficients k of other orders
11 and k 23 can also be reduced. Therefore, there is an effect that harmonic components can be reduced as a whole. This is because when i of 12 × i ± 1 is the same and the decryption is different, 180 ° / (12 × i +
1) and the difference between the values of 180 ° / (12 × i−1) is small.
This is because if the (2 × i + 1) -order harmonics are reversed in phase and canceled, the other (12 × i−1) -order harmonics also have a substantially reversed-phase relationship.
【0018】前記実施例では特定の次数の高調波成分を
零にするように運転位相差を設定したが、特定次数を零
にしない場合の実施例を以下で説明する。高調波低減係
数はφ1とφ2の関数であり、(数3)に示すようにCOS
(nφ1/2)とCOS(nφ2/2)の積で表わすことができ
る。COS(nφ/2)とφの関係を図6に示す。(a)は
n=11、(b)はn=13、(c)はn=23、
(d)はn=25の場合を示す。横軸は運転位相差φ
で、2つの値を選択することができる。この値をφ1 ,
φ2 とする。第11,13次成分を低減するためには一
方のφを領域2付近に、第23,25次成分を低減する
ためには他方のφを領域1付近に設定すればよいことが
わかる。領域1,2付近の拡大を図7に示す。(a)は
|COS(23φ/2)|と|COS(25φ/2)|の値を示
し、(b)は|COS(11φ/2)|と|COS(13φ/
2)|の値を示す。仮に第11次高調波だけに着目して
零にするためにφ1,φ2のうち一方の値を180°/1
1(領域2の右端)、他方を0°とすると|COS(11
φ/2)|=0,|COS(13φ/2)|=0.28 と
なる。従って、|k11|=0,|k13|=0.28となり
第13次高調波成分低減の効果は28%となる。逆に第
13次高調波だけに着目して零にするためにφ1,φ2の
うち一方の値を180°/13(領域2の左端)、他方を
0°とすると|COS(11φ/2)|=0.24,|COS
(13φ/2)|=0となる。従って、|k11|=0.24,|
k13|=0となり第11次高調波成分低減の効果は24
%となる。同様のことが領域1においても言える。
φ1.φ2のうち一方の値を180°/23(領域1の右
端)他方を0°とすると|COS(23φ/2)|=0とな
り第23次高調波を零にできるものの|k25|=0.1
4 となり第25次高調波低減の効果は14%となる。
逆に、一方の値を180°/25(領域1の左端)他方
を0°とすると|COS(23φ/2)|=0.13となり第
25次高調波を零にできるものの|k23|=0.13 とな
り第23次高調波低減の効果は13%となる。前記実施
例では、各領域において、左右端の値を選択する方法を
述べたものであったが、各領域の間の値を選択するほう
が、どちらも零にはできないものの2つの関数の値は同
時に小さくできる。例えば、中間の値として領域1では
180°/24とすると|COS(23φ/2)|=|COS
(25φ/2)|=0.065 となり、両端の値を選択し
た場合の約1/2となる。領域2では180°/12と
すると|COS(11φ/2)|=|COS(13φ/2)|
=0.13となり、両端の値を選択した場合の約1/2
となる。最終的には2つの領域から選択した値の積が高
調波低減係数k12i±1 となるから、領域1においては
180°/24,領域2において180°/12と運転位
相差を設定すれば、第11,13,23,25次といっ
た低次の成分を全体的に低減することができる。この場
合、各次数の高調波低減係数は|k11|≒0.10,|
k13|≒0.09,|k23|≒0.07,|k25|≒0.07
となり、どの次数の成分も平均して低減することができ
る。In the above embodiment, the operation phase difference is set so as to make the harmonic component of a specific order zero. An embodiment in which the specific order is not made zero will be described below. Harmonic reduction factor is a function of phi 1 and phi 2, COS as shown in equation (3)
Can be expressed by the product of (nφ 1/2) and COS (nφ 2/2). FIG. 6 shows the relationship between COS (nφ / 2) and φ. (A) n = 11, (b) n = 13, (c) n = 23,
(D) shows the case where n = 25. The horizontal axis is the operation phase difference φ
Thus, two values can be selected. This value is φ 1 ,
and φ 2. It can be seen that one φ should be set near the region 2 to reduce the 11th and 13th order components, and the other φ should be set near the region 1 to reduce the 23rd and 25th order components. FIG. 7 shows an enlargement in the vicinity of the regions 1 and 2. (A) shows the values of | COS (23φ / 2) | and | COS (25φ / 2) |, and (b) shows the values of | COS (11φ / 2) | and | COS (13φ /
2) Indicates the value of |. To make it zero by focusing only on the eleventh harmonic, one of φ 1 and φ 2 is set to 180 ° / 1
1 (the right end of area 2) and the other 0 °, | COS (11
φ / 2) | = 0, and | COS (13φ / 2) | = 0.28. Therefore, | k 11 | = 0, | k 13 | = 0.28, and the effect of reducing the 13th harmonic component is 28%. Conversely, if one of the values of φ 1 and φ 2 is set to 180 ° / 13 (the left end of the area 2) and the other is set to 0 ° in order to make it zero by focusing only on the 13th harmonic, | COS (11φ / 2) | = 0.24, | COS
(13φ / 2) | = 0. Therefore, | k 11 | = 0.24, |
k 13 | = 0, and the effect of reducing the eleventh harmonic component is 24
%. The same can be said for region 1.
φ 1 . Assuming that one of the values of φ 2 is 180 ° / 23 (the right end of region 1) and the other is 0 °, | COS (23φ / 2) | = 0, and that the 23rd harmonic can be made zero, but | k 25 | = 0.1
4 and the effect of reducing the 25th harmonic is 14%.
Conversely, if one value is 180 ° / 25 (the left end of region 1) and the other is 0 °, | COS (23φ / 2) | = 0.13, and although the 25th harmonic can be made zero, | k 23 | = 0.13, and the effect of reducing the 23rd harmonic is 13%. In the above-described embodiment, the method of selecting the left and right end values in each region has been described. However, it is better to select a value between the respective regions, but the values of the two functions can be set to zero, although neither can be set to zero. Can be reduced at the same time. For example, assuming that an intermediate value is 180 ° / 24 in region 1, | COS (23φ / 2) | = | COS
(25φ / 2) | = 0.065, which is about の of the value when both ends are selected. Assuming 180 ° / 12 in region 2, | COS (11φ / 2) | = | COS (13φ / 2) |
= 0.13, which is about 1/2 of the value when both ends are selected
Becomes Eventually, the product of the values selected from the two regions will be the harmonic reduction coefficient k 12i ± 1 , so if the operation phase difference is set to 180 ° / 24 in region 1 and 180 ° / 12 in region 2 , 11th, 13th, 23rd, and 25th-order components can be reduced as a whole. In this case, the harmonic reduction coefficient of each order is | k 11 | ≒ 0.10, |
k 13 | ≒ 0.09, | k 23 | ≒ 0.07, | k 25 | ≒ 0.07
And the components of any order can be reduced on average.
【0019】前記実施例では、各領域の値として180
°/(12×i)という値を選んだが、各領域のちょう
ど中間の値を選択してもほぼ同様の効果が得られる。φ
1 を180°/25と180°/23の間、φ2 を1
80°/13と180°/11の間に値を選べばよい。In the above embodiment, the value of each area is 180
Although a value of ° / (12 × i) is selected, almost the same effect can be obtained by selecting a value exactly in the middle of each region. φ
1 between 180 ° / 25 and 180 ° / 23, φ 2
The value may be selected between 80 ° / 13 and 180 ° / 11.
【0020】以上の実施例では、n=3、すなわち変換
器台数が8台の場合であったが、16台(n=4),3
2台(n=5)と増加した場合には、選択可能な角度φ
の個数が3,4と増え、その分、高調波低減の効果がさ
らに大きくなる。16台の場合の選択可能な角度は
φ1 ,φ2 ,φ3 の3種類で、これらを組み合わせて、
各変換器の運転位相を図8に示したようにする。In the above embodiment, n = 3, that is, the case where the number of converters is 8, 16 units (n = 4), 3
When the number increases to two (n = 5), selectable angle φ
Increases to 3 or 4, and the effect of harmonic reduction is further increased accordingly. In the case of 16 units, there are three selectable angles, φ 1 , φ 2 , φ 3 ,
The operation phase of each converter is as shown in FIG.
【0021】また、パルス幅(PWM)制御を併用すれ
ば、(数2)式における変換器1台で発生する高調波電
圧V12i±1そのものを少なくできるので、さらに高調波
を低減することができる。Further, if the pulse width (PWM) control is used together, the harmonic voltage V 12i ± 1 itself generated by one converter in the equation (2) can be reduced, so that the harmonics can be further reduced. it can.
【0022】以上の実施例では、逆変換器側の構成を多
重化して負荷側あるいは電力系統側の高調波電圧を低減
したが、順変換器側も同様の構成にした図9のような主
回路構成にも適用できる。電力系統6に順変換器を接続
し、直流部のコンデンサ4,5を介して逆変換器へ接続
する。本実施例では、電力系統6側の高調波をも低減で
きるので同一電力系統に接続された機器に対する高調波
障害を低減できるという効果がある。In the above embodiment, the configuration on the inverter side is multiplexed to reduce the harmonic voltage on the load side or the power system side, but the forward converter side has the same configuration as in FIG. It can be applied to a circuit configuration. The forward converter is connected to the power system 6 and connected to the inverter via the capacitors 4 and 5 in the DC section. In the present embodiment, the harmonics on the power system 6 side can also be reduced, so that there is an effect that harmonic interference with respect to devices connected to the same power system can be reduced.
【0023】[0023]
【発明の効果】本発明によれば、変圧器を用いて多重化
することにより電力変換器の容量を単器容量の2のn乗
倍に大容量化できるとともに出力電圧に含まれる高調波
成分を減らすことができ、その分、他機器へ与える高調
波障害を減らすことができるという効果がある。また、
これによって、発生高調波を除去するためのフィルタの
設備容量を減らすことができるという効果もある。According to the present invention, by multiplexing using a transformer, the capacity of the power converter can be increased to 2 @ n times the capacity of a single unit, and the harmonic component contained in the output voltage can be increased. Therefore, there is an effect that harmonic interference given to other devices can be reduced accordingly. Also,
This also has the effect of reducing the installed capacity of a filter for removing generated harmonics.
【図1】本発明の一実施例の主回路構成図である。FIG. 1 is a configuration diagram of a main circuit according to an embodiment of the present invention.
【図2】本発明の一実施例の変圧器巻線構成図である。FIG. 2 is a configuration diagram of a transformer winding according to an embodiment of the present invention.
【図3】本発明の動作を説明する電圧波形を示す図であ
る。FIG. 3 is a diagram showing voltage waveforms for explaining the operation of the present invention.
【図4】運転位相差と電圧低減係数の関係を示す図であ
る。FIG. 4 is a diagram showing a relationship between an operation phase difference and a voltage reduction coefficient.
【図5】本発明の動作を説明する電圧波形を示す図であ
る。FIG. 5 is a diagram showing voltage waveforms for explaining the operation of the present invention.
【図6】各次数ごとの運転位相差と電圧低減係数の関係
を示す図である。FIG. 6 is a diagram illustrating a relationship between an operation phase difference and a voltage reduction coefficient for each order.
【図7】各次数ごとの運転位相差と電圧低減係数の関係
を示す拡大図である。FIG. 7 is an enlarged view showing a relationship between an operation phase difference and a voltage reduction coefficient for each order.
【図8】本発明の他の実施例を示す主回路構成図であ
る。FIG. 8 is a main circuit configuration diagram showing another embodiment of the present invention.
【図9】本発明の他の実施例を示す主回路構成図であ
る。FIG. 9 is a main circuit configuration diagram showing another embodiment of the present invention.
3…負荷あるいは電力系統、φ1,φ2,φ3,…,φn-1
…位相差、k1 …基本波低減係数、k12i±1…第(12
×i±1)次高調波成分低減係数、700〜707…運
転位相差付加回路、a…変圧器巻数比、710〜717
…パルス発生回路。3 ... load or power system, φ 1, φ 2, φ 3, ..., φ n-1
... Phase difference, k 1 ... Basic wave reduction coefficient, k 12i ± 1 ...
× i ± 1) Reduction coefficient of higher harmonic component, 700 to 707: operation phase difference adding circuit, a: transformer turns ratio, 710 to 717
... Pulse generation circuit.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 植田 明照 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (56)参考文献 特開 昭63−7167(JP,A) 特開 平3−215171(JP,A) 特開 平2−101968(JP,A) 特開 平6−276747(JP,A) 実開 昭49−125226(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02M 7/42 - 7/98 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Akiteru Ueda 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Hitachi Research Laboratory (56) References JP-A-63-7167 (JP, A) JP-A-3-3 215171 (JP, A) JP-A-2-101968 (JP, A) JP-A-6-276747 (JP, A) Japanese Utility Model Laid-Open No. 49-125226 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H02M 7 /42-7/98
Claims (7)
2のn乗台(n≧2,整数)の出力を三相変圧器を用い
て多重化し、2の(n−1)乗台の電力変換器群Aはデル
タ・オープンスター結線三相変圧器のデルタ結線側に夫
々接続し、他の2の(n−1)乗台の電力変換器群Bはデ
ルタ・オープンデルタ結線三相変圧器のデルタ結線側に
夫々接続し、前記B群の各三相変圧器のオープンデルタ
巻線は同一相で直列接続してデルタ結線し、前記A群の
各三相変圧器のオープンスター巻線は同一相で直列接続
し、該スター巻線の直列接続巻線の各々一端は前記B群
の前記デルタ結線された接続点に各々接続し、前記スタ
ー巻線の直列接続巻線の他端より電力を出力する電力変
換装置において、各電力変換器の基本波の出力電圧位相
制御手段を各変換器ごとに備えたことを特徴とする電力
変換装置。1. A three-phase power converter using a self-turn-off device, multiplexes the outputs of the power of 2.sup.n (n.gtoreq.2, an integer) using a three-phase transformer, and multiplexes the outputs of two (n-1). The power converter group A of the platform is connected to the delta connection side of the delta-open star connection three-phase transformer, respectively, and the power converter group B of the other 2 (n-1) platform is delta-open delta connection. The three-phase transformers are respectively connected to the delta connection side, and the open delta windings of the three-phase transformers of the B group are connected in series in the same phase to form a delta connection, and the three-phase transformers of the A group are opened. The star windings are connected in series in the same phase, one end of each of the series connected windings of the star winding is connected to each of the delta-connected connection points of the group B, and In a power converter that outputs power from the other end, an output voltage phase control unit of a fundamental wave of each power converter is connected to each converter. A power converter, comprising:
手段において、前記A群の任意の1台の電力変換器の出
力電圧位相を基準とし、前記基準と残りの各電力変換器
の出力電圧との間の位相差を互いに異なるものとし、前
記B群の各電力変換器の出力電圧位相は、前記A群の各
電力変換器の出力電圧位相に対してそれぞれ30度の位
相差を持たせたことを特徴とする電力変換装置。2. The voltage phase control means for a power converter according to claim 1, wherein an output of any one of the power converters of the group A is output.
The power voltage phase as a reference, the reference and each of the remaining power converters
And the mutually different shall the phase difference between the output voltage, the output voltage phase of each power converter of the B group, each of said group A
A power converter, wherein a phase difference of 30 degrees is provided for each output voltage phase of the power converter.
意の1台の電力変換器の電圧位相を基準とし、残りの電
力変換器の電圧位相は180°/(12×i±1)(i
=1,2,…,n−1)で得られる中のn−1種類の角
度に基づいて設定することを特徴とする電力変換装置。3. The voltage phase of any one of the power converters of each group is based on the voltage phase of any one of the power converters, and the voltage phase of the remaining power converters is 180 ° / (12 × i ± 1). ) (I
= 1, 2,..., N−1).
圧位相は180°/(12×i±1)(i=1,2,
…,n−1)における±の複号を各iにわたって一方の
みに選択することを特徴とする電力変換装置。4. The method according to claim 3, wherein the voltage phase of the remaining power converter is 180 ° / (12 × i ± 1) (i = 1, 2, 2).
.., N−1), wherein only one of the ± signs in each of i is selected over i.
意の1台の電力変換器の電圧位相を基準とし、残りの電
力変換器の電圧位相は、各i(=1,2,…,n−1)に
ついて180°/(12×i+1)から180°/(12
×i−1)の中間から選択した値を有するn−1種類の
角度およびこれらを組み合わせの和をとってできる(2
の(n−1)乗−n)種類の角度に基づいて設定する電圧
位相制御手段を前記2のn乗台の三相電力変換器ごとに
備えたことを特徴とする電力変換装置。5. The method according to claim 1, wherein the voltage phase of any one of the power converters in each group is set as a reference, and the voltage phases of the remaining power converters are i (= 1, 2, 2, 3). .., N−1) from 180 ° / (12 × i + 1) to 180 ° / (12
Xi-1), and n-1 types of angles having values selected from the middle of xi-1) and their sums are obtained (2
(N-1) -th power converter, wherein voltage phase control means for setting based on (n) kinds of angles are provided for each of the 2n-th three-phase power converters.
意の1台の電力変換器の電圧位相を基準とし、残りの電
力変換器の電圧位相は、各i(=1,2,…,n−1)
について180°×{1/(12×i+1)+1/(1
2×i−1)}/2なる(n−1)種類の角度およびこ
れらを組み合わせてできる(2の(n−1)乗−n)種
類の角度に基づいて電圧位相制御手段の位相を設定する
ことを特徴とする電力変換装置。6. The method according to claim 1, wherein the voltage phase of any one of the power converters of each group is set as a reference, and the voltage phases of the remaining power converters are each i (= 1, 2, 2). ..., n-1)
180 ° × {1 / (12 × i + 1) + 1 / (1
The phase of the voltage phase control means is set based on (n-1) kinds of angles of 2 × i-1)} / 2 and (2 (n-1) th power-n) kinds of angles formed by combining these angles. A power conversion device characterized in that:
意の1台の電力変換器の電圧位相を基準とし、残りの電
力変換器の電圧位相は、各i(=1,2,…,n−1)
について180°/(12×i)なる(n−1)種類の
角度およびこれらを組み合わせてできる(2の(n−
1)乗−n)種類の角度に基づいて電圧位相制御手段の
位相を設定することを特徴とする電力変換装置。7. The method according to claim 1, wherein the voltage phase of any one of the power converters in each group is set as a reference, and the voltage phases of the remaining power converters are i (= 1, 2, 2, 3). ..., n-1)
(N-1) types of angles of 180 ° / (12 × i) and combinations of these (2 (n−
1) The power conversion apparatus, wherein the phase of the voltage phase control means is set based on the power-n) types of angles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5058374A JP3019655B2 (en) | 1992-07-23 | 1993-03-18 | Power converter |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-196740 | 1992-07-23 | ||
JP19674092 | 1992-07-23 | ||
JP5058374A JP3019655B2 (en) | 1992-07-23 | 1993-03-18 | Power converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0690565A JPH0690565A (en) | 1994-03-29 |
JP3019655B2 true JP3019655B2 (en) | 2000-03-13 |
Family
ID=26399425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5058374A Expired - Lifetime JP3019655B2 (en) | 1992-07-23 | 1993-03-18 | Power converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3019655B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014196013A1 (en) | 2013-06-04 | 2014-12-11 | 東芝三菱電機産業システム株式会社 | Power conversion device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5304374B2 (en) * | 2009-03-26 | 2013-10-02 | 富士電機株式会社 | Noise reduction method for power conversion system |
-
1993
- 1993-03-18 JP JP5058374A patent/JP3019655B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014196013A1 (en) | 2013-06-04 | 2014-12-11 | 東芝三菱電機産業システム株式会社 | Power conversion device |
EP3389174A1 (en) | 2013-06-04 | 2018-10-17 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Power conversion device |
Also Published As
Publication number | Publication date |
---|---|
JPH0690565A (en) | 1994-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6340851B1 (en) | Modular transformer arrangement for use with multi-level power converter | |
EP1311058B1 (en) | Frequency power converter | |
JP3663455B2 (en) | Solar power converter | |
KR100198207B1 (en) | A static converter system | |
US5337227A (en) | Harmonic neutralization of static inverters by successive stagger | |
WO1993023913A1 (en) | Optimized high power voltage sourced inverter system | |
WO1993023914A1 (en) | Harmonic blocking converter system | |
US4225914A (en) | Frequency converters | |
DE10108766A1 (en) | Pulse width modulation controlled power conversion unit | |
JPH04125072A (en) | Power converter | |
CN112421975A (en) | Multilevel power converter with AFE power cell phase control | |
US5050058A (en) | Family of power converters using rectifier transformers connected in series on the primary side | |
JP2000166251A (en) | Power conversion device | |
JPH0815394B2 (en) | Connection / control method of multiple coupling inverter device | |
US3641417A (en) | Input filter circuit for cycloconverter apparatus | |
JP3019655B2 (en) | Power converter | |
JP2016214009A (en) | Power converter | |
Tekwani et al. | Five-level inverter scheme for an induction motor drive with simultaneous elimination of common-mode voltage and DC-link capacitor voltage imbalance | |
JP2018182841A (en) | Multilevel power conversion circuit | |
JP3160792B2 (en) | Power converter | |
JPH11122953A (en) | Voltage-type inverter | |
JP2783204B2 (en) | Control method of PWM converter | |
US3999112A (en) | Polyphase frequency converter | |
CN117730476A (en) | Cell-based multilevel converter with multiple modes of operation and associated control method | |
JPH10290568A (en) | Multiplex pulse width modulation cycloconverter and control method therefor |