JP2992598B2 - Lithium ion battery - Google Patents

Lithium ion battery

Info

Publication number
JP2992598B2
JP2992598B2 JP9070820A JP7082097A JP2992598B2 JP 2992598 B2 JP2992598 B2 JP 2992598B2 JP 9070820 A JP9070820 A JP 9070820A JP 7082097 A JP7082097 A JP 7082097A JP 2992598 B2 JP2992598 B2 JP 2992598B2
Authority
JP
Japan
Prior art keywords
polyvinylidene fluoride
electrolyte
separator
solvent
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9070820A
Other languages
Japanese (ja)
Other versions
JPH1064503A (en
Inventor
勝生 竹
誠一郎 松井
豊晃 兵庫
夏一郎 上林
彰 三浦
静男 前田
志郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO KUROSU KK
Original Assignee
TOYO KUROSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO KUROSU KK filed Critical TOYO KUROSU KK
Priority to JP9070820A priority Critical patent/JP2992598B2/en
Publication of JPH1064503A publication Critical patent/JPH1064503A/en
Application granted granted Critical
Publication of JP2992598B2 publication Critical patent/JP2992598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】本発明は、リチウムイオン電池の
性能向上を目的とするセパレータ及び該セパレータを用
いたリチウムイオン電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separator for improving the performance of a lithium ion battery and a lithium ion battery using the separator.

【0002】[0002]

【従来技術と解決課題】リチウムイオン電池のセパレー
タには、ポリエチレン乃至ポリプロピレン樹脂製の多孔
膜が用いられている。これらのセパレータでは、その孔
部以外は樹脂そのものであり、その樹脂部分は疎水性で
あり絶縁体でもある為、リチウムイオン電池の電解液
(電解質溶液)として一般的に使われている極性有機溶
媒やリチウム塩との親和性が無い。従って、リチウムイ
オンの移動する通路はセパレータの孔部のみであり、ポ
リマー内部を移動することは出来ない。また電極との接
触界面での馴染みが悪い為、界面電気抵抗が高い。更に
これらの疎水性セパレータは極性電解液とも馴染みが悪
く、電解液の保持性が低い為、破損等の事故に際して液
漏れを起こす危険性がある。
2. Description of the Related Art A porous film made of polyethylene or polypropylene resin is used for a separator of a lithium ion battery. In these separators, except for the pores, the resin itself is used. Since the resin portion is hydrophobic and also an insulator, a polar organic solvent generally used as an electrolyte (electrolyte solution) of a lithium ion battery is used. And no affinity with lithium salts. Therefore, the passage for lithium ions to move is only the hole of the separator, and cannot move inside the polymer. In addition, the interface resistance is high due to poor adaptation at the contact interface with the electrode. Furthermore, these hydrophobic separators are poorly compatible with polar electrolytes and have low retention of electrolytes, so there is a risk of liquid leakage in the event of damage or the like.

【0003】又ポリオレフィン系樹脂のセパレータは電
池の使用時に、何らかの事由で、電池の内部温度が上昇
すると、電解液のイオン伝導度が高くなり、暴走する事
がある。従って、このような疎水性であり、絶縁体部分
をもつセパレータの欠点を改良して電池の内部抵抗を少
なくし、安全且つ電池効率を向上させることが望まれて
いる。
[0003] When the internal temperature of the battery rises for some reason during use of the battery, the polyolefin-based resin separator increases the ionic conductivity of the electrolyte and may cause runaway. Therefore, it is desired to improve the disadvantages of such a hydrophobic separator having an insulator portion, reduce the internal resistance of the battery, and improve the safety and battery efficiency.

【0004】この要望への試みとして、ポリプロピレン
樹脂製多孔膜セパレータに親水性モノマーをグラフト重
合してリチウム電池に用いることが検討されている。Jo
urnalof Membrane Science 107(1955)155-164, J.L.Gin
este, G. Pourcell. この方法により電解液への電解質
リチウム塩の溶解濃度を上げられる事及び電極との濡れ
性が改善されると共に充放電サイクル数が向上すること
が述べられている。また、ポリプロピレン多孔膜の細孔
中にポリマー電解質を封入して、固体ポリマー電解質層
を形成することが検討されている。J. Electrochem. So
c. Vol. 142, No.3, March 1995, K. M. Abraham, M. A
lamgir. この方法では液漏れの危険は回避されるが、
電気伝導度が1〜2桁低下する。
As an attempt to meet this demand, it has been studied to graft-polymerize a hydrophilic monomer onto a polypropylene resin porous membrane separator and use it in a lithium battery. Jo
urnalof Membrane Science 107 (1955) 155-164, JLGin
este, G. Pourcell. It is described that this method can increase the dissolution concentration of the electrolyte lithium salt in the electrolyte, improve the wettability with the electrode, and increase the number of charge / discharge cycles. Further, it has been studied to form a solid polymer electrolyte layer by enclosing a polymer electrolyte in pores of a polypropylene porous membrane. J. Electrochem. So
c. Vol. 142, No. 3, March 1995, KM Abraham, M. A
lamgir. This method avoids the risk of liquid leakage,
The electrical conductivity is reduced by one to two orders of magnitude.

【0005】前記の様に、液体電解質材料に置き換え
て、電池にポリマー電解質材料を利用すると、液体電解
質材料を用いた電池にみられる液漏れの問題が解消出来
る上に、薄膜化や小型化が容易になるなどの多くの利点
がある。この様な電池としてリチウムイオン導電性高分
子電解質を用い、リチウム金属を負極活物質とするリチ
ウム電池が知られている。しかし、固体電解質はその電
気伝導度が、液体電解質の10ー2 S/cmに対し、1
ー7〜10ー8 S/cmと低い問題点がある。この問題
を解決する手段として、高分子電解質に可塑剤として極
性有機溶媒を用いる、所謂ゲル電解質が検討されている
が、その電気伝導度も10ー4 S/cmレベルが現状で
ある。その上、ゲル電解質には機械的強度が無い為、圧
力によっては電極が接触する危険がある。
As described above, if a polymer electrolyte material is used for a battery instead of a liquid electrolyte material, the problem of liquid leakage seen in a battery using a liquid electrolyte material can be solved, and a thinner film and a smaller size can be achieved. There are many benefits, such as being easier. As such a battery, a lithium battery using a lithium ion conductive polymer electrolyte and using lithium metal as a negative electrode active material is known. However, the solid electrolyte has an electric conductivity of 1 to 2 S / cm of the liquid electrolyte,
0 over 7 there is a 10 over 8 S / cm and less problems. To solve this problem, using a polar organic solvent as a plasticizer in polymer electrolytes have been studied so-called gel electrolyte, its electrical conductivity even 10 over 4 S / cm level at present. In addition, since the gel electrolyte has no mechanical strength, there is a danger that the electrodes may come into contact depending on the pressure.

【0006】[0006]

【発明の概要】本発明者等は本願の基礎出願において、
前記のセパレータの電解液保持性とイオン透過性に関し
改良を提案した。即ち、この様な高分子多孔膜の特長と
高分子電解質の特長に着目し研究を重ねた結果、ポリフ
ッ化ビニリデン微多孔膜を、セパレータ膜として、例え
ば、極性有機溶媒で膨潤させた後、含浸溶媒をリチウム
塩を含む電解液で置換したものをセパレータとし、これ
を電解質層として電池を構成すると、室温で10ー2
/cmオーダーの電気伝導度となり、高効率で安全性の
高いリチウムイオン電池への応用が可能であることを発
見した。
SUMMARY OF THE INVENTION The inventors of the present application
Improvements have been proposed for the electrolyte retention and ion permeability of the separator. That is, as a result of repeated studies focusing on the characteristics of such a polymer porous membrane and the characteristics of a polymer electrolyte, a polyvinylidene fluoride microporous membrane was swollen with a polar organic solvent, for example, as a separator membrane, and then impregnated. When the battery is constituted by using a separator in which the solvent is replaced with an electrolyte solution containing a lithium salt and using this as an electrolyte layer, at room temperature, 10-2 S
/ Cm order electrical conductivity, and found that it can be applied to highly efficient and highly safe lithium ion batteries.

【0007】上記の電導度向上の機構は判らないが、ポ
リフッ化ビニリデン樹脂は高結晶性の高分子であるか
ら、このポリマーの多孔膜は通常リチウム系電池で用い
られる極性有機溶媒には溶解しない。従って、電池内で
は膜としての形態を保持し電極の接触を阻止するセパレ
ータとしての本来の機能を果たす。一方、ポリフッ化ビ
ニリデンは極性高分子であるから極性有機溶媒に或る程
度膨潤する。即ちポリフッ化ビニリデンは極性有機溶媒
に膨潤するが、溶解しない。しかもポリフッ化ビニリデ
ンは誘電率の非常に高い高分子であるから、リチウム塩
の解離を促し、リチウムイオンの濃度を高める働きがあ
る。即ち、細孔内のイオンの通過のみでなく、細孔の隔
壁である膨潤したポリフッ化ビニリデンの内部でもイオ
ンが通過する条件が作られると推定される。
Although the mechanism for improving the conductivity is not known, since the polyvinylidene fluoride resin is a highly crystalline polymer, the porous film of this polymer does not dissolve in a polar organic solvent usually used in lithium batteries. . Therefore, in the battery, it functions as a separator which keeps the form as a membrane and prevents contact with the electrode. On the other hand, since polyvinylidene fluoride is a polar polymer, it swells to some extent in a polar organic solvent. That is, polyvinylidene fluoride swells in the polar organic solvent but does not dissolve. In addition, since polyvinylidene fluoride is a polymer having a very high dielectric constant, it has a function of promoting the dissociation of a lithium salt and increasing the concentration of lithium ions. In other words, it is presumed that conditions are created not only for the passage of ions in the pores, but also for the inside of swollen polyvinylidene fluoride which is a partition wall of the pores.

【0008】しかもポリフッ化ビニリデンは電解液で膨
潤するが、電解液に溶解しないので、細孔内の電解液の
粘性を増大させることなく電解液本来の電気伝導度を保
持することが出来る。また膨潤したポリフッ化ビニリデ
ンは電極との馴染みがよく、両電極界面での電気抵抗が
低い。リチウムイオン電池の電極は、一般的に活物質
を、ポリフッ化ビニリデンをバインダーとして銅、アル
ミの箔に結着したものであり、このポリフッ化ビニリデ
ンの存在がポリフッ化ビニリデンセパレータとの親和性
を良くし、界面電気抵抗を低くする理由となることは推
定される。更にポリフッ化ビニリデンの微多孔膜の細孔
は通常のリチウム系電解質溶液との親和性が高いので、
液の保持性がよく液漏れが起こり難いことも大きな特長
である。
Moreover, polyvinylidene fluoride swells in the electrolytic solution, but does not dissolve in the electrolytic solution, so that the original electrical conductivity of the electrolytic solution can be maintained without increasing the viscosity of the electrolytic solution in the pores. In addition, the swollen polyvinylidene fluoride has good affinity with the electrodes, and has low electric resistance at the interface between both electrodes. An electrode of a lithium ion battery is generally one in which an active material is bound to copper or aluminum foil using polyvinylidene fluoride as a binder, and the presence of this polyvinylidene fluoride improves the affinity with a polyvinylidene fluoride separator. However, it is presumed that this is a reason for lowering the interface electric resistance. Furthermore, since the pores of the microporous membrane of polyvinylidene fluoride have high affinity with ordinary lithium-based electrolyte solutions,
It is also a great feature that the liquid retention property is good and liquid leakage hardly occurs.

【0009】又電池の使用時に電池は内部温度が上昇す
ると、ポリフッ化ビニリデン微多孔膜は有機電解液を吸
収、膨潤する。この為に(1)微孔中の電解液が減少し
且つ孔径が小さくなる(2)膨潤したポリフッ化ビニリ
デンはゲル電解質になる。以上の結果、イオン伝導度が
低下し電池内部の温度上昇は阻止される。更に電池中の
有機電解液は量的に制約があるので、ポリフッ化ビニリ
デンが無限に膨潤、即ち溶解する事は無い。(3)ポリ
フッ化ビニリデンに吸い込まれた有機溶媒はゲルに働く
浸透圧により、ゲル中に保持されるので、漏出すること
は無い。(4)ゲルが負極の表面に密着するので、デン
ドライトが発生し難い、等の特長を有する。
When the internal temperature of the battery rises during use, the microporous polyvinylidene fluoride membrane absorbs and swells the organic electrolyte. For this reason, (1) the electrolyte solution in the micropores is reduced and the pore size is reduced (2) The swollen polyvinylidene fluoride becomes a gel electrolyte. As a result, the ionic conductivity decreases and the temperature inside the battery is prevented from rising. Furthermore, since the amount of the organic electrolyte in the battery is limited, polyvinylidene fluoride does not swell infinitely, that is, does not dissolve. (3) The organic solvent sucked into the polyvinylidene fluoride is retained in the gel by the osmotic pressure acting on the gel, and does not leak. (4) Since the gel adheres to the surface of the negative electrode, dendrites are less likely to be generated.

【0010】ポリフッ化ビニリデンの多孔膜は公知であ
り、その製造方法に関する先行技術は多く発表されてい
るが、その用途はポリフッ化ビニリデンの耐薬品性と耐
熱性を生かした分離膜であり、中には多孔膜の一般的な
用途として電池セパレータが述べられていても、リチウ
ムイオン電池のセパレータとして用いた場合の効果と特
長を示したものは存在しない。(特開昭49ー1265
72、50ー35265、58ー91731、64ー3
8448)
[0010] Porous membranes of polyvinylidene fluoride are known, and many prior arts relating to their production methods have been published. However, their use is as a separation membrane utilizing the chemical resistance and heat resistance of polyvinylidene fluoride. Describes a battery separator as a general use of a porous membrane, but does not show any effects and features when used as a separator of a lithium ion battery. (Japanese Patent Laid-Open No. 49-1265
72, 50-35265, 58-91731, 64-3
8448)

【0011】ポリマーを溶剤に溶解したドープを、離型
材上に流延した後、ジメチルホルムアミドを含む水(非
溶剤)中に浸漬して、電池セパレータ用の多孔膜を得る
湿式法の成膜については、本発明者等は特開平2ー27
6153号、特願平7ー46045号に示した。本願の
湿式法で得られる微多孔膜の細孔の形態は、前記の特願
平7ー46045号で説明し、図示したものを参考にし
得るが、本願では、セパレータが膨潤状態で電解液を含
浸しているので、電子顕微鏡等で拡大して観察し得る細
孔以外に膨潤した樹脂体内部のイオン通過が電導性に寄
与すると推理される点を考慮すべきである。
A dope in which a polymer is dissolved in a solvent is cast on a release material, and then immersed in water (non-solvent) containing dimethylformamide to form a porous film for a battery separator by a wet method. Are described in JP-A-2-27.
No. 6153 and Japanese Patent Application No. 7-46045. The morphology of the pores of the microporous membrane obtained by the wet method of the present application is described in the above-mentioned Japanese Patent Application No. Hei 7-46045 and can be referred to. However, in the present application, the electrolyte is prepared by swelling the separator. Consideration should be given to the fact that, because of the impregnation, the passage of ions inside the swollen resin body other than the pores that can be observed under magnification with an electron microscope or the like contributes to the conductivity.

【0012】[0012]

【実施例1】電解液及びセルの作成はアルゴンを充満し
たドライボックスの中でマニプュレータを用いて実施し
た。 1)正極の作成 正極活物質としてのLiCoO2と、導電剤としての黒鉛と、
結着剤としてのポリフッ化ビニリデンとを混合して作成
した粉末に、溶剤としてN−メチルー2ーピロリドン
を、この粉末の60重量%加え90分間混練し、これを
正極スラリーとした。このスラリーをコーティング装置
で厚さ20μmの銅箔に塗布した後、乾燥機で乾燥固化
させた後、プレスローラーを通過させて均一な厚み(0.
2mm)の正極を形成した。その後、寸法カットしリード
板を溶接して正極を完成した。
Example 1 Preparation of an electrolyte solution and a cell was carried out using a manipulator in a dry box filled with argon. 1) Preparation of positive electrode LiCoO 2 as a positive electrode active material, graphite as a conductive agent,
To a powder prepared by mixing polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone as a solvent was added at 60% by weight of the powder and kneaded for 90 minutes to prepare a positive electrode slurry. The slurry was applied to a copper foil having a thickness of 20 μm by a coating apparatus, dried and solidified by a drier, and then passed through a press roller to obtain a uniform thickness (0.
2 mm) of the positive electrode was formed. Then, the dimensions were cut and the lead plate was welded to complete the positive electrode.

【0013】2)負極の作成 リチウムイオンのドープ、脱ドープが可能な炭素質材料
としてのピッチコークスを69重量%、導電剤としての
アセチレンブラックを10重量%、結着剤としてのポリ
フッ化ビニリデン21重量%を混合して作成した粉末
に、溶剤としてN−メチルー2ーピロリドンを、この粉
末の140重量%加えて90分間混練して負極スラリー
とした。このスラリーをコーティング装置で厚さ10μ
mのアルミ箔に塗布した後、乾燥炉で乾燥固化させた
後、プレスローラーで均一な厚み(0.2mm)の負極を形
成した。その後寸法カットしリード板を溶接して負極を
完成した。
2) Preparation of Negative Electrode 69% by weight of pitch coke as a carbonaceous material capable of doping and undoping lithium ions, 10% by weight of acetylene black as a conductive agent, and polyvinylidene fluoride 21 as a binder N-methyl-2-pyrrolidone as a solvent was added to a powder prepared by mixing the powders by weight at 140% by weight, and kneaded for 90 minutes to prepare a negative electrode slurry. This slurry is coated with a coating machine to a thickness of 10μ.
After being applied to an aluminum foil having a thickness of 0.2 m and solidified in a drying oven, a negative electrode having a uniform thickness (0.2 mm) was formed with a press roller. Thereafter, dimensions were cut and the lead plate was welded to complete the negative electrode.

【0014】3)ポリフッ化ビニリデン微多孔膜の作成 ポリフッ化ビニリデン15重量部を、溶剤であるN−メ
チルー2ーピロリドン(NMP)85重量部、成膜助剤
の非イオン活性剤3重量部及びポリビニルピロリドン2
重量部と混合し90分間攪拌してドープを作成した。こ
のドープを離型紙上に流延した後、5重量部のジメチル
ホルムアミドを含む水の中に浸漬して凝固させ、その後
水洗、乾燥して、厚み25μm、多孔度60%のポリフ
ッ化ビニリデンの微多孔膜を作成した。上記成膜助剤と
しての非イオン活性剤としては:エーテル型(例ポリオ
キシエチレンオレイルエーテル)、アルキルフェノール
型(例ポリオキシエチレンノニルフェニルエーテル、ポ
リオキシエチレンセスキ 2ーエチルヘキシル フォス
フェート)、エステル型(例ポリオキシエチレンモノラ
ウレート)、ソルビタンエステル型(例ソルビタンモノ
ステアレート)等が使用可能である。
3) Preparation of Polyvinylidene Fluoride Microporous Membrane 15 parts by weight of polyvinylidene fluoride were mixed with 85 parts by weight of N-methyl-2-pyrrolidone (NMP) as a solvent, 3 parts by weight of a nonionic activator as a film forming aid, and polyvinyl Pyrrolidone 2
The resulting mixture was mixed with parts by weight and stirred for 90 minutes to prepare a dope. The dope was cast on release paper, immersed in water containing 5 parts by weight of dimethylformamide to solidify, then washed with water and dried to obtain a fine powder of polyvinylidene fluoride having a thickness of 25 μm and a porosity of 60%. A porous membrane was made. Examples of the nonionic activator as the film forming aid include: ether type (eg, polyoxyethylene oleyl ether), alkylphenol type (eg, polyoxyethylene nonylphenyl ether, polyoxyethylene sesqui-2-ethylhexyl phosphate), ester type (eg, For example, polyoxyethylene monolaurate), sorbitan ester type (eg, sorbitan monostearate) and the like can be used.

【0015】4)電解質層の作成 極性有機溶媒には、エチレンカーボネートとジメチルカ
ーボネートとジエチルカーボネートとを体積比2:2:
1で混合した溶媒を用いた。電解液としては、この溶媒
に6フッ化燐酸リチウム及び過塩素酸リチウムをそれぞ
れ1モル/1及び0.3/1の濃度に溶解したものを用
いた。湿式法で得たポリフッ化ビニリデン細孔膜を上記
溶媒に一日浸漬し、細孔中に溶媒を十分含浸乃至浸透さ
せてから、これを電解液に一日浸漬して、溶媒と電解液
を十分置換したセパレータを電解質層(正極と負極でセ
パレータを挟む構成ではセパレータは両極の間を結ぶ電
解質層となる)として用いた。
4) Preparation of Electrolyte Layer Ethylene carbonate, dimethyl carbonate and diethyl carbonate are used in a polar organic solvent in a volume ratio of 2: 2:
The solvent mixed in 1 was used. As the electrolytic solution, a solution prepared by dissolving lithium hexafluorophosphate and lithium perchlorate in a concentration of 1 mol / 1 and 0.3 / 1, respectively, in this solvent was used. The polyvinylidene fluoride microporous membrane obtained by the wet method is immersed in the solvent for one day, and the solvent is sufficiently impregnated or permeated into the pores. The sufficiently substituted separator was used as an electrolyte layer (in a configuration in which a separator is sandwiched between a positive electrode and a negative electrode, the separator becomes an electrolyte layer connecting the two electrodes).

【0016】5)電気伝導度の測定 上記で作成したセパレータを正極と負極との間に挟み、
EG&G Princeton Applied Research M378 イ
ンピーダンスシステムで測定した。周波数5Hzと100
Hzの間でインピーダンススペクトロスコピーを用いて電
気伝導度を決めた。
5) Measurement of electric conductivity The separator prepared above is sandwiched between a positive electrode and a negative electrode,
EG & G Measured on Princeton Applied Research M378 impedance system. Frequency 5Hz and 100
The electrical conductivity was determined using impedance spectroscopy between Hz.

【0017】[0017]

【比較例1】多孔膜として、Hoechst Celanease 社のCe
lgard(ポリプロピレン製で膜厚25μm、多孔度55
%)のものを用いた以外は実施例1と同様にして比較し
た。
Comparative Example 1 As a porous membrane, Ce from Hoechst Celanease was used.
lgard (made of polypropylene and having a thickness of 25 μm and a porosity of 55)
%) Was used in the same manner as in Example 1 except that the comparison was made.

【0018】[0018]

【発明の効果】上記実施例の25℃でのセパレータの電
気伝導度は7.5x10ー3 S/cmであり、比較例1
では3x10-4 S/cmであった。また、実施例1の
場合には電解液を含む膜を垂直に垂らしても液の滴下流
失はせず、比較例1の場合は液が滴下し易かった。上述
の様にポリフッ化ビニリデン微多孔膜をリチウムイオン
電池のセパレータに用いることによって、電池効率が良
く、液漏れの危険性が少ない電池を作ることが出来、そ
の電解液保持性とイオン透過性の工業的価値は極めて大
である。
The electrical conductivity of the separator at 25 ° C. in the above example was 7.5 × 10 −3 S / cm, and Comparative Example 1 was used.
Was 3 × 10 −4 S / cm. Further, in the case of Example 1, even if the film containing the electrolytic solution was dropped vertically, the solution did not drop and flow, and in the case of Comparative Example 1, the solution was easily dropped. By using a polyvinylidene fluoride microporous membrane as a separator for a lithium-ion battery as described above, a battery with good battery efficiency and a low risk of liquid leakage can be produced, and its electrolyte retention and ion permeability can be improved. The industrial value is extremely large.

【0019】[0019]

【発明の概要、続】更に本発明者等のその後の研究によ
り、ドープを離型材上に塗布し、次いで凝固に入る直前
に不織布等の極薄の補強材を積層乃至埋込みして、ポリ
フッ化ビニリデン樹脂の微多孔膜の機械特性に補強効果
をもたらすことが可能となった。即ち、本願で追加する
発明の概要は、ポリフッ化ビニリデン樹脂を溶剤に溶解
し、このドープを離型材上に流延した状態で、補強材と
しての繊維状基材を離型材上のドープの中に含浸・浸漬
して積層乃至埋込み、一体化した後、非溶剤中で凝固さ
せる湿式成膜方法で作成した、電解液保持性とイオン透
過性を有するポリフッ化ビニリデン樹脂の微多孔膜をセ
パレータ膜、及び該セパレータ膜を用いたリチウムイオ
ン電池に関する。そして、前記において、補強材として
の繊維状基材は積層、張り合わせして複合繊維状基材と
してから、離型材上のドープへの含浸・浸漬に使用する
ことに関する。
SUMMARY OF THE INVENTION Continuing with the subsequent studies by the present inventors, a dope is coated on a mold release material, and immediately before solidification, an ultra-thin reinforcing material such as a nonwoven fabric is laminated or embedded to form a polyfluoride. It has become possible to provide a reinforcing effect on the mechanical properties of the microporous membrane of vinylidene resin. That is, the outline of the invention to be added in the present application is that a polyvinylidene fluoride resin is dissolved in a solvent, and a fibrous base material as a reinforcing material is cast in the dope on the release material in a state where the dope is cast on the release material. A porous membrane of polyvinylidene fluoride resin having electrolyte retention and ion permeability, formed by a wet film forming method of solidifying or laminating in a non-solvent after being impregnated and immersed in a non-solvent, and integrated. And a lithium ion battery using the separator membrane. In the above description, the present invention relates to a method in which a fibrous base material as a reinforcing material is laminated and bonded to form a composite fibrous base material, and then used for impregnation and immersion in a dope on a release material.

【0020】上記の繊維基材による補強を実施する場合
の主な実施条件について好適な範囲を示すと次の通り。 1)ドープ調製 ポリフッ化ビニリデン樹脂:基礎発明に同じ。 ドープ中の樹脂濃度:5ー30%。 溶媒:N−メチルー2ーピロリドン(NMP)その他、
ジメチルフォルムアルデヒド(DMF)、ジメチルスル
ホキシド(DMSO)。 界面活性剤:ポリオキシエチレンセスキ 2ーエチルヘ
キシル フォスフェート、その他エーテル型、エステル
型、ソルビタエステル型非イオン活性剤。 その他の配合剤:ポリビニルピロリドン(分子量:10,0
00-1,200,000)、ポリエチレングリコール、水不溶性部
分架橋ポリエチレングリコール。 ドープ粘度:3,000-30,000 cps/20℃。
A preferred range of the main conditions for reinforcing the fiber base material is as follows. 1) Dope preparation Polyvinylidene fluoride resin: Same as the basic invention. Resin concentration in dope: 5-30%. Solvent: N-methyl-2-pyrrolidone (NMP) and others,
Dimethyl formaldehyde (DMF), dimethyl sulfoxide (DMSO). Surfactant: polyoxyethylene sesqui 2-ethylhexyl phosphate, other ether type, ester type, sorbita ester type nonionic surfactant. Other compounding agents: polyvinylpyrrolidone (molecular weight: 10,0
00-1,200,000), polyethylene glycol, water-insoluble partially crosslinked polyethylene glycol. Dope viscosity: 3,000-30,000 cps / 20 ° C.

【0021】2)繊維状基材 ポリエチレン、ポリプロピレン、又はポリプロピレンを
芯材にポリエチレンを鞘材にした繊維材料を湿式又は乾
式で混抄、混合して低融点部分をバインダーとしてシー
ト状に成形した不織布であり、重量:5ー40.0g/
2 、厚み:10ー70μm、引張り強度:タテ1.
0−2.0Kg/15mm幅、透気度:0.0−100
sec/100cc(ガーレ、JIS−P−8117)
を有し、且つ繊維基材の構成繊維がドープ溶剤の表面張
力(NMPの表面張力:41ダイン/cm,25℃)に
匹敵する表面張力を示す様に例えば、親水化処理がなさ
れている極薄不織布が好ましい。
2) Fibrous base material: A nonwoven fabric formed by mixing or mixing polyethylene, polypropylene, or a fiber material having polypropylene as a core material and polyethylene as a sheath material in a wet or dry manner and forming a low melting point portion as a binder into a sheet. Available, weight: 5-40.0 g /
m 2 , thickness: 10-70 μm, tensile strength: vertical
0-2.0Kg / 15mm width, air permeability: 0.0-100
sec / 100cc (Gurley, JIS-P-8117)
And a hydrophilic fiber is applied so that the constituent fibers of the fiber base material have a surface tension comparable to the surface tension of the dope solvent (NMP surface tension: 41 dynes / cm, 25 ° C.). Thin nonwoven fabrics are preferred.

【0022】更に補強繊維基材は構成繊維の方向がラン
ダムに配列された通常の不織布以外に、経緯直交配列の
不織布であってもよい、更に複数枚の不織布を重ね合わ
せて複合補強材を構成して用いてもよい。
Further, the reinforcing fiber base material may be a nonwoven fabric having a perpendicular arrangement in a weft direction in addition to a normal nonwoven fabric in which the directions of constituent fibers are randomly arranged. Further, a plurality of nonwoven fabrics may be laminated to form a composite reinforcing material. You may use it.

【0023】3)セパレータ膜条件 ドープ付量:5.0−40.0(dry)g/m2 膜厚み:25ー75μm 膜重さ:15.0−65.0g/m2 透気度:5ー500sec/100cc[0023] 3) separator membrane conditional doped with weight: 5.0-40.0 (dry) g / m 2 membrane thickness: 25 over 75μm film Weight: 15.0-65.0g / m 2 Air permeability: 5-500sec / 100cc

【0024】[0024]

【実施例2】実施例2で使用した不織布は、ポリエチレ
ン、ポリプロピレンを用いた混合繊維を湿式で混抄した
もの(重量:11±3g/m2、厚み:0.030−
0.032mm、透気度:0.0±1sec/100c
c(JISーP−8117)、繊維の表面張力:38ダ
イン/cm以上である。
Example 2 The nonwoven fabric used in Example 2 was obtained by wet-mixing a mixed fiber using polyethylene and polypropylene (weight: 11 ± 3 g / m 2 , thickness: 0.030−).
0.032 mm, air permeability: 0.0 ± 1 sec / 100c
c (JIS-P-8117), surface tension of fiber: 38 dynes / cm or more.

【0025】成膜条件について述べると、離型材上に流
延されたドープに繊維補強基材を積層、埋込みする以外
の条件は前記実施例1の場合と同様である。即ち、ポリ
フッ化ビニリデン15重量部を、溶剤であるN−メチル
ー2ーピロリドン(NMP)85重量部、成膜助剤の非
イオン活性剤3重量部及びポリビニルピロリドン2重量
部と混合し90分間攪拌してドープを作成した。このド
ープを離型紙上に流延した後、前記繊維基材をドープ中
に埋め込んでから、5重量部のジメチルホルムアミドを
含む水の中に浸漬して凝固させ、その後水洗、乾燥し
て、繊維補強したポリフッ化ビニリデンの微多孔膜を作
成した。
The film forming conditions are the same as in the first embodiment except that the fiber reinforced base material is laminated and embedded in the dope cast on the release material. That is, 15 parts by weight of polyvinylidene fluoride were mixed with 85 parts by weight of N-methyl-2-pyrrolidone (NMP) as a solvent, 3 parts by weight of a nonionic activator as a film-forming aid, and 2 parts by weight of polyvinylpyrrolidone, followed by stirring for 90 minutes. To make a dope. After casting the dope on release paper, the fiber base material is embedded in the dope, immersed in water containing 5 parts by weight of dimethylformamide to solidify, and then washed with water and dried to obtain a fiber. A reinforced microporous membrane of polyvinylidene fluoride was prepared.

【0026】得られた膜の性質は次の通り。 重量:19.0g/m2 厚み:41μm 透気度:18ー19sec/100cc 引張り強さ:タテ;5.14kg/50mm幅/200mm/min ヨコ;1.53kg/50mm幅/200mm/minThe properties of the obtained film are as follows. Weight: 19.0 g / m 2 Thickness: 41 μm Air permeability: 18-19 sec / 100 cc Tensile strength: Vertical; 5.14 kg / 50 mm width / 200 mm / min Horizontal; 1.53 kg / 50 mm width / 200 mm / min

【0027】電気伝導度の測定 前記の測定法で得られた結果は7.5X10ー3 S/c
m,25℃であり、実施例1の結果に相当する。
Measurement of Electric Conductivity The result obtained by the above measurement method is 7.5 × 10 −3 S / c.
m, 25 ° C., corresponding to the result of Example 1.

【0028】[0028]

【実施例3】実施例2と同様な条件でポリフッ化ビニリ
デン樹脂の付量を12.0g/m2(dry)にし、その他
の不織布、離型材、加工成膜条件は同様にして繊維補強
膜を得た。得られた膜の性質は次の通り。 重量:23.0g/m2 厚み:53μm 透気度:12ー13sec/100cc 引張り強さ:タテ;5.33kg/50mm幅/200mm/min ヨコ;1.54kg/50mm幅/200mm/min 尚、第1図に実施例3で得られた微多孔膜の断面写真を
示す。この例の膜は補強材の表裏にポリフッ化ビニリデ
ン層が生成し、補強材層は埋め込まれた構造をなしてい
る。
Example 3 A fiber reinforced film was prepared under the same conditions as in Example 2 except that the amount of the polyvinylidene fluoride resin was changed to 12.0 g / m 2 (dry), and other nonwoven fabrics, mold release materials and processing film forming conditions were the same. I got The properties of the obtained film are as follows. Weight: 23.0 g / m 2 Thickness: 53 μm Air permeability: 12-13 sec / 100 cc Tensile strength: Vertical; 5.33 kg / 50 mm width / 200 mm / min Horizontal; 1.54 kg / 50 mm width / 200 mm / min FIG. 1 shows a cross-sectional photograph of the microporous film obtained in Example 3. The membrane of this example has a structure in which polyvinylidene fluoride layers are formed on the front and back of the reinforcing material, and the reinforcing material layer is embedded.

【0029】上記実施例2、3、その他の試験例から得
られた知見。 補強繊維基材の繊維の表面張力が35ダイン/cm以
上(好ましくは38ダイン/cm以上)であれば、離型
材上のポリフッ化ビニリデンのドープは繊維基材との親
和性が良く、ドープ中に含浸・浸漬して埋込み一体化が
出来る。繊維の表面張力が35ダイン/cm未満であれ
ば、積層乃至張り合わせ状態での一体化が可能である。 ドープ付量:8.0g/m2、不織布重量:11.0
g/m2、厚み:8.0μmの組み合わせではポリフッ
化ビニリデンの微多孔膜が表裏に略均一に生成する。ド
ープ付量:10.0g/m2(dry)以上にすると、表裏
のポリフッ化ビニリデン微多孔膜の厚みが厚くなり断面
構造は表裏対称に近くなり、孔径の分布は非対称状態に
なる。又膜の対称性構造は繊維補強材の重量、厚みを変
えることでも、選択し得る。
Findings obtained from Examples 2, 3 and other test examples. If the surface tension of the fiber of the reinforcing fiber base is 35 dynes / cm or more (preferably 38 dynes / cm or more), the dope of polyvinylidene fluoride on the release material has good affinity with the fiber base, and Can be integrated by embedding and immersion in If the surface tension of the fiber is less than 35 dynes / cm, the fibers can be integrated in a laminated or bonded state. Doping amount: 8.0 g / m 2 , non-woven fabric weight: 11.0
With a combination of g / m 2 and thickness: 8.0 μm, a microporous polyvinylidene fluoride film is formed substantially uniformly on the front and back. When the doping amount is 10.0 g / m 2 (dry) or more, the thickness of the front and back polyvinylidene fluoride microporous membranes becomes large, the cross-sectional structure becomes nearly symmetrical, and the distribution of the pore diameter becomes asymmetric. The symmetrical structure of the membrane can also be selected by changing the weight and thickness of the fiber reinforcement.

【0030】[0030]

【発明の効果、続】得られた微多孔膜の機械的強度は、
工業的な電池組立て作業で要求されている強度に答える
ものであり、実用化に大きく貢献する。
The mechanical strength of the obtained microporous membrane is as follows:
It responds to the strength required in industrial battery assembly work and greatly contributes to practical application.

【0031】[0031]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 第1図は繊維補強した微多孔膜の模式断面図
を示す。1は表樹脂層、2は裏樹脂層、3は補強繊維基
材、4は空洞。裏樹脂層が離形材に接していた側であ
る。
FIG. 1 is a schematic sectional view of a fiber-reinforced microporous membrane. 1 is a front resin layer, 2 is a back resin layer, 3 is a reinforcing fiber base, and 4 is a cavity. This is the side where the back resin layer was in contact with the release material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上林 夏一郎 大阪府泉南市樽井6丁目29番1号 東洋 クロス株式会社内 (72)発明者 三浦 彰 大阪府泉南市樽井6丁目29番1号 東洋 クロス株式会社内 (72)発明者 前田 静男 大阪府泉南市樽井6丁目29番1号 東洋 クロス株式会社内 (72)発明者 渡辺 志郎 大阪府泉南市樽井6丁目29番1号 東洋 クロス株式会社内 (56)参考文献 特開 平8−250127(JP,A) 特開 平8−236097(JP,A) 米国特許5296318(US,A) (58)調査した分野(Int.Cl.6,DB名) H01M 2/16 ──────────────────────────────────────────────────続 き Continued on the front page (72) Natsuichiro Kamibayashi, Inventor 6-29-1, Tarui, Sennan-shi, Osaka Toyo Cross Co., Ltd. (72) Akira Miura 6-29-1, Tarui, Sennan-shi, Osaka, Japan Toyo Cross Co., Ltd. (72) Inventor Shizuo Maeda 6-29-1, Tarui, Sennan-shi, Osaka Toyo Cross Co., Ltd. (72) Inventor Shiro 6-29-1, Tarui, Sennan-shi, Osaka Toyo Cross Co., Ltd. (56) References JP-A-8-250127 (JP, A) JP-A-8-236097 (JP, A) US Pat. No. 5,296,318 (US, A) (58) Fields investigated (Int. Cl. 6 , DB Name) H01M 2/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリフッ化ビニリデン樹脂を溶剤に溶解
し、このドープを離形材上に流延した状態で、補強材と
しての繊維状基材を該ドープの中に含浸・浸漬して、一
体化した後、非溶剤中で凝固させる湿式成膜方法で作っ
た、電解液保持性とイオン透過性を有するポリフッ化ビ
ニリデン樹脂の微多孔膜からなるリチウムイオン電池セ
パレータ。
1. A polyvinylidene fluoride resin is dissolved in a solvent, and a fibrous base material as a reinforcing material is impregnated and immersed in the dope in a state where the dope is cast on a release material. Lithium-ion battery separator made of a microporous polyvinylidene fluoride resin having electrolyte retention and ion permeability, formed by a wet film forming method of solidifying in a non-solvent.
JP9070820A 1996-06-12 1997-03-06 Lithium ion battery Expired - Lifetime JP2992598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9070820A JP2992598B2 (en) 1996-06-12 1997-03-06 Lithium ion battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-174096 1996-06-12
JP17409696 1996-06-12
JP9070820A JP2992598B2 (en) 1996-06-12 1997-03-06 Lithium ion battery

Publications (2)

Publication Number Publication Date
JPH1064503A JPH1064503A (en) 1998-03-06
JP2992598B2 true JP2992598B2 (en) 1999-12-20

Family

ID=26411953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9070820A Expired - Lifetime JP2992598B2 (en) 1996-06-12 1997-03-06 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP2992598B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317675A (en) * 2000-03-07 2007-12-06 Teijin Ltd Separator for lithium ion secondary battery
JP2011012266A (en) * 2001-09-28 2011-01-20 Teijin Ltd Method of manufacturing composite porous film

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538866B2 (en) * 1999-06-07 2010-09-08 パナソニック株式会社 Non-aqueous electrolyte electrochemical device
TWI287556B (en) 1999-09-13 2007-10-01 Teijin Ltd Polymetaphenyleneisophthalamide-based polymer porous film, process for preparing same and separator for battery
JP2001102089A (en) * 1999-09-29 2001-04-13 Tdk Corp Solid electrolyte, electrolyte chemical device, lithium secondary cell and electricity double-layer capacitor
US6660433B2 (en) 1999-12-14 2003-12-09 Sanyo Electric Co., Ltd. Lithium secondary battery and battery device comprising same
JP2001176497A (en) 1999-12-15 2001-06-29 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP3728162B2 (en) 1999-12-15 2005-12-21 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP2001179864A (en) * 1999-12-22 2001-07-03 Fujikura Ltd Ionic conductive sheet
JP4712251B2 (en) * 2000-09-22 2011-06-29 帝人株式会社 Double-sided simultaneous coating method
JP5082177B2 (en) * 2001-08-16 2012-11-28 株式会社Gsユアサ Battery separator and battery using the same
JP4588286B2 (en) * 2001-09-28 2010-11-24 帝人株式会社 Manufacturing method of composite porous membrane
WO2009147084A1 (en) * 2008-06-02 2009-12-10 Agfa-Gevaert Process for producing an ion-permeable web-reinforced separator
CN102046302B (en) 2008-06-02 2013-07-24 爱克发-格法特公司 Apparatus and process for producing an ion-permeable web-reinforced separator and separator obtainable therewith
CN102760850A (en) * 2012-06-21 2012-10-31 中山国安火炬科技发展有限公司 High-strength lithium battery diaphragm and production method thereof
US11239532B2 (en) * 2015-08-17 2022-02-01 Celgard, Llc Battery separators and related methods
US20170062784A1 (en) 2015-08-28 2017-03-02 GM Global Technology Operations LLC Bi-layer separator and method of making the same
CN109786132A (en) * 2017-11-13 2019-05-21 北京碳阳科技有限公司 A kind of capacitor diaphragm and preparation method thereof
GB2626576A (en) * 2023-01-27 2024-07-31 Dyson Technology Ltd Electrochemical secondary cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317675A (en) * 2000-03-07 2007-12-06 Teijin Ltd Separator for lithium ion secondary battery
JP2011012266A (en) * 2001-09-28 2011-01-20 Teijin Ltd Method of manufacturing composite porous film

Also Published As

Publication number Publication date
JPH1064503A (en) 1998-03-06

Similar Documents

Publication Publication Date Title
JP2992598B2 (en) Lithium ion battery
KR100699215B1 (en) Separator for electric component and method for producing the same
EP3745492B1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP4832430B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
WO2015030230A1 (en) Protective film, separator using same, and secondary battery
JP6189011B2 (en) Separator and non-aqueous electrolyte secondary battery having the separator
GB2081604A (en) Hydrophilic polymer coated microporous membranes capable of use as a battery separator
WO2001057940A2 (en) Freestanding microporous separator including a gel-forming polymer
KR101164650B1 (en) Porous separators for secondary battery comprising cellulose nanofibrils and preparation method thereof
KR102588911B1 (en) Separator for non-aqueous secondary battery, non-aqueous secondary battery and manufacturing method of non-aqueous secondary battery
JP4676728B2 (en) Separator for electronic parts and method for manufacturing the same
WO1997048106A1 (en) Hybrid electrolyte, method for manufacturing the same, and method for manufacturing electrochemical element using the same
JPWO2019146155A1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
CN113678313A (en) Separator for nonaqueous secondary battery, method for producing same, and nonaqueous secondary battery
JPWO2020189796A1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP2013196839A (en) Nonaqueous secondary battery separator
JP4705335B2 (en) Separator for electronic parts and method for manufacturing the same
JP2006351365A (en) Separator for electronic components, and the electronic component
JP4017744B2 (en) Solid-type polymer electrolyte membrane and method for producing the same
JP5951982B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP2000133271A (en) Binder for binding electrode active material
JP2011233473A (en) Separator for nonaqueous secondary battery and battery using the same
JPH10316793A (en) Porous film prepared from vinylidene fluoride resin
JP2004204119A (en) Porous film and electrochemical element using the same
JP2011210573A (en) Separator for nonaqueous secondary battery