JP2989491B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2989491B2
JP2989491B2 JP6224999A JP22499994A JP2989491B2 JP 2989491 B2 JP2989491 B2 JP 2989491B2 JP 6224999 A JP6224999 A JP 6224999A JP 22499994 A JP22499994 A JP 22499994A JP 2989491 B2 JP2989491 B2 JP 2989491B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
compressor
air
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6224999A
Other languages
Japanese (ja)
Other versions
JPH0886528A (en
Inventor
一豊 鏡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP6224999A priority Critical patent/JP2989491B2/en
Publication of JPH0886528A publication Critical patent/JPH0886528A/en
Application granted granted Critical
Publication of JP2989491B2 publication Critical patent/JP2989491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、2つの熱源側熱交換器
(空冷式熱交換器、水冷式熱交換器)を備えた冷凍装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system having two heat source side heat exchangers (air-cooled heat exchanger and water-cooled heat exchanger).

【0002】[0002]

【従来の技術】空冷式熱交換器と水冷式熱交換器とを並
列につないだ冷凍装置が示されたものとして、特公昭4
9−17776号公報がある。この公報で示された冷凍
装置(空気調和装置)においては、暖房運転時に外気温
が低下した場合には、冷媒を空冷式熱交換器から水冷式
熱交換器へ切り換えて流すようにしている。
2. Description of the Related Art A refrigeration system in which an air-cooled heat exchanger and a water-cooled heat exchanger are connected in parallel is disclosed in Japanese Patent Publication No.
There is JP-A-9-17776. In the refrigeration apparatus (air conditioner) disclosed in this publication, when the outside air temperature decreases during the heating operation, the refrigerant is switched from the air-cooled heat exchanger to the water-cooled heat exchanger and flows.

【0003】これによって、暖房運転時に外気温が低下
しても暖房能力の低下を極力抑えるようにしている。
[0003] Thus, even if the outside air temperature decreases during the heating operation, a decrease in the heating capacity is suppressed as much as possible.

【0004】[0004]

【発明が解決しようとする課題】このように、暖房運転
時に外気温が低下した場合に蒸発器として作用する熱交
換器を空冷式から水冷式に切り換えるため、この切り換
えにともなって水冷式熱交換器へ温水を供給するための
ボイラ等の加熱器の燃料代が急激に上昇する。又、水冷
式熱交換器を作用させる場合は空冷式熱交換器を作用さ
せないようにしているため、この暖房時の熱源は上述の
加熱器の作用にのみ依存することとなり、燃料代のアッ
プは免れない。
As described above, when the outside air temperature decreases during the heating operation, the heat exchanger acting as the evaporator is switched from the air-cooled type to the water-cooled type. The fuel cost of a heater such as a boiler for supplying hot water to the heater rises sharply. In addition, when the water-cooled heat exchanger is operated, the air-cooled heat exchanger is not operated, so that the heat source at the time of heating depends only on the operation of the heater described above. I can't escape.

【0005】これらによって、空気熱源(空冷式熱交換
器)を利用した「ヒートポンプ暖房の低ランニングコス
ト」というメリットが生かせなくなることが考えられ
る。本発明は、水熱源を利用しながらも空気熱源を利用
した低ランニングコストというメリットが十分発揮で
き、しかも空冷式熱交換器の除霜を行いながらも室内温
度の低下を小さく抑えた冷凍装置(空気調和機)を提供
することを目的としたものである。
[0005] As a result, it is considered that the advantage of "low running cost of heat pump heating" utilizing an air heat source (air-cooled heat exchanger) cannot be utilized. INDUSTRIAL APPLICABILITY The present invention provides a refrigeration system that can sufficiently exhibit the advantage of low running cost using an air heat source while using a water heat source, and that suppresses a decrease in indoor temperature while performing defrosting of an air-cooled heat exchanger ( (Air conditioner).

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、第1
の圧縮機と温水が供給され蒸発器として作用する前記第
1の圧縮機の吸込側に接続される水冷式熱交換器とから
なる第1直列回路と、前記第1直列回路と並列に接続さ
れ、第2の圧縮機と蒸発器として作用するときに前記第
2の圧縮機の吸込側に接続される空冷式熱交換器とから
なる第2直列回路とを備える室外ユニットに、室内側熱
交換器と減圧器とを備える室内ユニットをつないで構成
される空気調和機において、前記水冷式熱交換器の作用
を停止させ且つ前記空冷式熱交換器のみを蒸発器として
作用させる場合に、前記空冷式熱交換器からの冷媒を前
記第1の圧縮機へ導くための連絡管を設けたことを特徴
とする。
According to the first aspect of the present invention, there is provided the following:
Compressor and hot water are supplied and act as an evaporator.
From the water-cooled heat exchanger connected to the suction side of the compressor 1
And a first series circuit connected in parallel with the first series circuit.
When acting as a second compressor and evaporator.
2 air-cooled heat exchanger connected to the suction side of the compressor
An indoor unit having a second series circuit
An indoor unit equipped with a heat exchanger and a pressure reducer is connected
Of the water-cooled heat exchanger
And only the air-cooled heat exchanger is used as an evaporator
When operating, the refrigerant from the air-cooled heat exchanger is
A communication pipe for leading to the first compressor is provided.
And

【0007】請求項2の発明は、上記第1の発明におい
て、前記室内熱交換器を凝縮器として作用させ且つ前記
水冷式熱交換器を蒸発器として作用させる除霜運転時に
前記圧縮機から吐出された冷媒の一部を前記空冷式熱交
換器に導くホットガス除霜管を設けたことを特徴とす
る。
[0007] The invention of claim 2 is the invention according to the first invention.
Operating the indoor heat exchanger as a condenser, and
During defrosting operation when the water-cooled heat exchanger acts as an evaporator
A part of the refrigerant discharged from the compressor is used for the air-cooled heat exchange.
A hot gas defrost pipe leading to the heat exchanger.
You.

【0008】[0008]

【作用】第1の発明では空冷式熱交換器及び水冷式熱交
換器が蒸発器として作用している場合には、水冷式熱交
換器及び空冷式熱交換器からの冷媒はそれぞれ第1の圧
縮機及び第2の圧縮機に導かれ、空冷式熱交換器のみが
作用している場合には空冷式熱交換器からの冷媒は第1
の圧縮機および第2の圧縮機に導かれれる。
In the first invention, an air-cooled heat exchanger and a water-cooled heat exchanger are provided.
If the heat exchanger is acting as an evaporator,
Refrigerant from the heat exchanger and the air-cooled heat exchanger are respectively at the first pressure.
Guided to the compressor and the second compressor, only the air-cooled heat exchanger
When working, the refrigerant from the air-cooled heat exchanger
And a second compressor.

【0009】第2の発明では水冷式熱交換器の熱源が空
冷式熱交換器の除霜並びに室内暖房の熱源として用いら
れる。
In the second aspect, the heat source of the water-cooled heat exchanger is empty.
Used as a defroster for cold heat exchangers and a heat source for indoor heating
It is.

【0010】[0010]

【実施例】図1において、1は空気調和装置(冷凍装
置)で、室外ユニット2と、複数台の室内ユニット3
a,3bと、これらユニットをつなぐユニット間配管4
とから構成されている。これら室内ユニット3a,3b
には弁開度の調整が可能な減圧器(膨張弁)5と室内側
熱交換器6とが内蔵されている。この室内側熱交換器6
は利用側熱交換器とも呼ばれ、暖房運転時に凝縮器とし
て、冷房運転時に蒸発器として作用する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, reference numeral 1 denotes an air conditioner (refrigeration unit), which comprises an outdoor unit 2 and a plurality of indoor units 3;
a, 3b and inter-unit piping 4 connecting these units
It is composed of These indoor units 3a, 3b
Has a built-in pressure reducer (expansion valve) 5 and an indoor heat exchanger 6 capable of adjusting the valve opening. This indoor heat exchanger 6
Is also called a use side heat exchanger, and acts as a condenser during a heating operation and as an evaporator during a cooling operation.

【0011】71,72は第1圧縮機並びに第2圧縮機
で並列につながれており、その吐出管8は四方弁9の第
1接続口10に、その吸込管11は四方弁9の第2接続
口12に夫々接続されている。13は熱源側熱交換器
で、一般的に暖房運転時に蒸発器として、冷房運転時に
凝縮器として作用する。この熱源側熱交換器13は、水
熱源となる第1の室外熱交換器14と、空気熱源となる
第2の室外熱交換器15とから構成されている。第2の
室外熱交換器15の一端は四方弁9の第3接続口16
に、他端は第2開閉弁17を介して液管18に夫々つな
がれている。19は第2の室外熱交換器15へ送風する
ファンである。第1の室外熱交換器14の一端は第1圧
縮機71の吸込管20に、他端は第1開閉弁21を介し
て液管18に夫々つながれている。22はこの第1室外
熱交換器14に配置された水配管で、暖房運転時にボイ
ラー(図示せず)等で加熱された温水(約15℃以上)
が流れるようにしている。23は第1の圧縮機に設けら
れた逆止弁(開閉弁)で、暖房運転時において、2つの
室外熱交換器14,15を同時に作用させた場合は閉じ
て、第2の室外熱交換器15のみ作用させた場合は開放
するようになる。この動作は本発明の要旨の一つである
ため、後で詳述する。
The first and second compressors 71 and 72 are connected in parallel. The discharge pipe 8 is connected to the first connection port 10 of the four-way valve 9, and the suction pipe 11 is connected to the second connection of the four-way valve 9. Each is connected to the connection port 12. Reference numeral 13 denotes a heat source side heat exchanger, which generally acts as an evaporator during a heating operation and as a condenser during a cooling operation. The heat source-side heat exchanger 13 includes a first outdoor heat exchanger 14 serving as a water heat source and a second outdoor heat exchanger 15 serving as an air heat source. One end of the second outdoor heat exchanger 15 is connected to the third connection port 16 of the four-way valve 9.
The other end is connected to a liquid pipe 18 via a second on-off valve 17. 19 is a fan that blows air to the second outdoor heat exchanger 15. One end of the first outdoor heat exchanger 14 is connected to the suction pipe 20 of the first compressor 71, and the other end is connected to the liquid pipe 18 via the first on-off valve 21. Reference numeral 22 denotes a water pipe disposed in the first outdoor heat exchanger 14, which is heated water (about 15 ° C. or higher) heated by a boiler (not shown) or the like during a heating operation.
Is flowing. Reference numeral 23 denotes a check valve (open / close valve) provided in the first compressor, which is closed when the two outdoor heat exchangers 14 and 15 are simultaneously operated during the heating operation, and is used for the second outdoor heat exchange. When only the vessel 15 is operated, it is opened. This operation is one of the gist of the present invention, and will be described later in detail.

【0012】24はホットガス除霜管で、入口端が圧縮
機71,72の吐出管8に、出口端が第2の室外熱交換
器15と第2開閉弁17との間につながれている。25
はこのホットガス除霜管24に設けられた除霜弁で、ホ
ットガス除霜運転時に開放される。26はこの空気調和
装置1の運転を制御する制御器で、冷房運転、暖房運
転、ホットガス除霜運転、逆サイクル除霜運転等を行わ
せると共に、これらの運転に応じて四方弁9や各種の開
閉弁等を図2のように制御するものである。
A hot gas defrosting tube 24 has an inlet end connected to the discharge tube 8 of the compressors 71 and 72 and an outlet end connected between the second outdoor heat exchanger 15 and the second on-off valve 17. . 25
Is a defrost valve provided in the hot gas defrost pipe 24, and is opened during the hot gas defrost operation. Reference numeral 26 denotes a controller for controlling the operation of the air-conditioning apparatus 1. The controller 26 performs a cooling operation, a heating operation, a hot gas defrosting operation, a reverse cycle defrosting operation, and the like. Are controlled as shown in FIG.

【0013】これら各種の運転について説明する。まず
冷房運転時は四方弁9や各種の開閉弁の開閉状態を図2
のように制御すると共に室内ユニット3a,3bの減圧
器5の開度を室内負荷に応じて調整する。これによって
圧縮機71,72から吐出された冷媒は図1の破線矢印
のように流れる。そして、第2の室外熱交換器15が凝
縮器として、室内側熱交換器6が蒸発器として夫々作用
し、冷房運転を行う。ここで、第1の室外熱交換器14
は作用を停止させる。
The various operations will be described. First, during the cooling operation, the open / closed state of the four-way valve 9 and various on-off valves is shown in FIG.
And the opening degree of the decompressor 5 of the indoor units 3a and 3b is adjusted according to the indoor load. As a result, the refrigerant discharged from the compressors 71 and 72 flows as indicated by broken arrows in FIG. Then, the second outdoor heat exchanger 15 functions as a condenser, and the indoor heat exchanger 6 functions as an evaporator, and performs a cooling operation. Here, the first outdoor heat exchanger 14
Stops the action.

【0014】暖房運転は、第2の室外熱交換器15のみ
を利用した空気熱源による暖房運転(以下「高外気温暖
房」という。)と、第2の室外熱交換器15と第1の室
外熱交換器14とを併用する空気熱源+水熱源による暖
房運転(以下「低外気温暖房」という。)とがある。こ
の低外気温暖房は、高外気温暖房では十分な暖房能力が
得られないような低外気温の場合や、室内ユニット3
a,3bの運転台数の増加等により暖房負荷が増加した
場合に行われる。
The heating operation includes a heating operation using an air heat source using only the second outdoor heat exchanger 15 (hereinafter referred to as "high outdoor temperature heating"), a second outdoor heat exchanger 15 and the first outdoor heat exchanger. There is a heating operation using an air heat source and a water heat source in combination with the heat exchanger 14 (hereinafter referred to as “low outside air temperature heating”). This low outside air temperature heating is performed in a low outside air temperature where the high outside air temperature heating cannot provide a sufficient heating capacity, or in the indoor unit 3.
This is performed when the heating load increases due to an increase in the number of operating units a and 3b.

【0015】まず、高外気温暖房は図1において四方弁
9を実線状態に設定すると共に各種の開閉弁の開閉状態
を図2のように制御する。すなわち、上述の冷房運転時
の冷媒の流れと反対の冷媒の流れとなり、室内側熱交換
器6が凝縮器として、第2の室外熱交換器15が蒸発器
として夫々作用し高外気温暖房を行う。一方、低外気温
暖房は、上述の高外気温暖房と比較して第1開閉弁21
の開度を、外気温の低下状況あるいは暖房負荷の増加状
況に応じて大きくする。すなわち、制御器26からの信
号でこの第1開閉弁21の開度が調整され、これによっ
て液管18内の冷媒は第1の室外熱交換器15と第2の
室外熱交換器14とに並流する。そして、第2の室外熱
交換器15で蒸発作用を受けた冷媒は四方弁9を介して
第2圧縮機72へ吸込まれる。一方、第1の室外熱交換
器14で蒸発作用を受けた冷媒は第1圧縮機71へ吸込
まれる。ここで第2の室外熱交換器15は空冷式である
のに対し、第1の室外熱交換器14は水冷式である。一
般的に空冷式は外気温0℃、水冷式は水温15℃程度の
熱源となっているため、第1の室外熱交換器14から流
出する冷媒の圧力は、第2の室外熱交換器15から流出
する冷媒の圧力よりも高くなる。このため、この低外気
温暖房においては、逆止弁23は常に「閉」となり、第
1の室外熱交換器14から流出した冷媒と、第2の室外
熱交換器15から流出した冷媒とが、両圧縮機71,7
2の吸込側で混流することはない(一点鎖線矢印参
照)。このように、第1の室外熱交換器14を利用し
て、水熱源で冷媒を加熱し、外気温度の低下に応じて冷
媒温度が低下するおそれを少なくしている。これによっ
て第2の室外熱交換器15に流れ込む冷媒の温度の上昇
によって冷媒の密度が増加し、結果的に第2の室外熱交
換器15に流れ込む冷媒量が多くなったことと同じとな
り、第2の室外熱交換器15での冷媒の蒸発温度の低下
を低く抑え着霜しにくくできる。この結果として、低外
気でも安定した運転が行える。
First, for the high outside air temperature heating, the four-way valve 9 is set to a solid line state in FIG. 1 and the opening and closing states of various on-off valves are controlled as shown in FIG. That is, the flow of the refrigerant is opposite to the flow of the refrigerant during the above-described cooling operation, and the indoor heat exchanger 6 acts as a condenser, and the second outdoor heat exchanger 15 acts as an evaporator to perform high outdoor air temperature heating. Do. On the other hand, the low outside air temperature heating is different from the above high outside air temperature heating in that the first on-off valve 21
Is increased in accordance with the situation where the outside air temperature is decreasing or the situation where the heating load is increasing. That is, the opening degree of the first on-off valve 21 is adjusted by a signal from the controller 26, whereby the refrigerant in the liquid pipe 18 is transferred to the first outdoor heat exchanger 15 and the second outdoor heat exchanger 14. Co-current. Then, the refrigerant subjected to the evaporating action in the second outdoor heat exchanger 15 is sucked into the second compressor 72 via the four-way valve 9. On the other hand, the refrigerant having undergone the evaporating action in the first outdoor heat exchanger 14 is sucked into the first compressor 71. Here, the second outdoor heat exchanger 15 is air-cooled, while the first outdoor heat exchanger 14 is water-cooled. Generally, the air-cooled type is a heat source with an outside air temperature of 0 ° C., and the water-cooled type is a heat source with a water temperature of about 15 ° C. Therefore, the pressure of the refrigerant flowing out of the first outdoor heat exchanger 14 is equal to the second outdoor heat exchanger 15. Higher than the pressure of the refrigerant flowing out of the pump. For this reason, in this low outdoor temperature heating, the check valve 23 is always “closed”, and the refrigerant flowing out of the first outdoor heat exchanger 14 and the refrigerant flowing out of the second outdoor heat exchanger 15 are separated. , Both compressors 71, 7
No mixing occurs on the suction side of No. 2 (see dash-dotted arrow). As described above, the refrigerant is heated by the water heat source using the first outdoor heat exchanger 14, and the possibility that the refrigerant temperature decreases in accordance with the decrease in the outside air temperature is reduced. As a result, the density of the refrigerant increases due to an increase in the temperature of the refrigerant flowing into the second outdoor heat exchanger 15, and as a result, the amount of the refrigerant flowing into the second outdoor heat exchanger 15 increases, and The lowering of the evaporation temperature of the refrigerant in the second outdoor heat exchanger 15 can be suppressed to a low level to prevent frost formation. As a result, stable operation can be performed even in low outside air.

【0016】このように、冷房運転における室外ユニッ
ト2内の冷媒の流れ(破線矢印)と、低外気温暖房運転
における室外ユニット2内の冷媒の流れ(一点鎖線矢
印)とを比較すると、冷房運転時は第2の室外熱交換器
15にのみ冷媒を流し、(低外気温)暖房運転時は第1
並びに第2の室外熱交換器14,15へ冷媒を流すよう
にしている。このように冷媒を流すことによって、冷房
運転はいわゆる「空気熱源方式」、暖房運転は、いわゆ
る「空気熱源方式+水熱源方式」として冷房能力よりも
暖房能力の方が大きくなるようにしている。従って、冷
房能力よりも暖房能力が大きく望まれる日本の風土にマ
ッチしたものとなる。
As described above, when the flow of the refrigerant in the outdoor unit 2 during the cooling operation (dashed arrow) is compared with the flow of the refrigerant in the outdoor unit 2 during the low outdoor temperature heating operation (dashed line arrow), the cooling operation is performed. At the time, the refrigerant flows only through the second outdoor heat exchanger 15, and during the (low outdoor air temperature) heating operation, the first refrigerant flows through the first outdoor heat exchanger 15.
In addition, the refrigerant flows to the second outdoor heat exchangers 14 and 15. By flowing the refrigerant in this manner, the cooling operation is a so-called “air heat source system”, and the heating operation is a so-called “air heat source system + water heat source system” so that the heating capacity is larger than the cooling capacity. Therefore, it matches the climate of Japan where the heating capacity is more desirable than the cooling capacity.

【0017】次に、低外気温暖房運転における室外ユニ
ット2内の冷媒の流れ(一点鎖線矢印)と、高外気温暖
房における室外ユニット内の冷媒の流れ(実線矢印)と
を比較すると、高外気温暖房時に第2の室外熱交換器1
5で蒸発作用を受けた冷媒は2つの圧縮機71,72へ
並流する(吸込まれる)。一方、低外気温暖房時は、上
述したように第2室外熱交換器15からの冷媒は第2圧
縮機72へ、第1室外熱交換器14からの冷媒は第1圧
縮機71へと流れるようにしている。これを言い換えれ
ば、第1の圧縮機71と第1の蒸発器(第1室外熱交換
器)71とを直列につないだ第1直列回路と、第2の圧
縮機72と第2の蒸発器(第2室外熱交換器)15とを
直列につないだ第2直列回路とを並列に接続し、第2
(いずれか一方)の蒸発器15のみ作用させる場合は、
この第2の蒸発器15からの冷媒を2つの圧縮機71,
72へ並流させるようにしたものであり、このため、逆
止弁23が設けられた第1圧縮機71の吸込管が連絡管
24となる。
Next, when the flow of the refrigerant in the outdoor unit 2 in the low outdoor air temperature heating operation (dashed line arrow) is compared with the flow of the refrigerant in the outdoor unit in the high outdoor air temperature heating (solid arrow), 2nd outdoor heat exchanger 1 during heating
The refrigerant having undergone the evaporating action in 5 flows into (comes into) the two compressors 71 and 72 in parallel. On the other hand, during low outdoor temperature heating, the refrigerant from the second outdoor heat exchanger 15 flows to the second compressor 72 and the refrigerant from the first outdoor heat exchanger 14 flows to the first compressor 71 as described above. Like that. In other words, a first series circuit in which the first compressor 71 and the first evaporator (first outdoor heat exchanger) 71 are connected in series, a second compressor 72 and a second evaporator (A second outdoor heat exchanger) 15 and a second series circuit connected in series,
When only one of the evaporators 15 is operated,
The refrigerant from the second evaporator 15 is divided into two compressors 71,
The suction pipe of the first compressor 71 provided with the check valve 23 serves as the communication pipe 24.

【0018】このように低外気温暖房運転時において、
夫々の室外熱交換器14,15から流出された冷媒は夫
々の圧縮機71,72へ吸込まれるようにして冷媒の混
流を防止したので、第1開閉弁21や第2開閉弁17の
開度は夫々の圧縮機71,72や室外熱交換器14,1
5の能力に見合った調整を行って、各熱源を有効に利用
することができる。
As described above, during the low outside air temperature heating operation,
Since the refrigerant flowing out of the outdoor heat exchangers 14 and 15 is sucked into the respective compressors 71 and 72 to prevent the refrigerant from being mixed, the first on-off valve 21 and the second on-off valve 17 are opened. The degree is determined by the compressors 71 and 72 and the outdoor heat exchangers 14 and 1 respectively.
The adjustment corresponding to the capacity of the above 5 can be performed so that each heat source can be used effectively.

【0019】上述した2つの暖房運転によって第2室外
熱交換器15に霜が生成された場合は、ホットガス除霜
もしくは逆サイクル除霜を行って、この生成された霜を
溶かす。このホットガス除霜は、外気温が比較的高い場
合や、生成された霜の量が少ない場合に行うものであ
る。一方、逆サイクル除霜は、外気温が比較的低い場合
や生成された霜の量が多い場合に行う。
When frost is generated in the second outdoor heat exchanger 15 by the two heating operations described above, hot gas defrost or reverse cycle defrost is performed to melt the generated frost. This hot gas defrosting is performed when the outside air temperature is relatively high or when the amount of generated frost is small. On the other hand, reverse cycle defrosting is performed when the outside air temperature is relatively low or when the amount of generated frost is large.

【0020】まず、ホットガス除霜時は、基本的には図
3の実線矢印で示すように低外気温暖房と略同一であ
り、相違点は、第2圧縮機72の運転を間欠にする(O
N−OFF)ことと、ファン19の運転を停止するこ
と、並びに除霜弁25を開放することである。この除霜
弁25の開放によって圧縮機71,72から吐出された
冷媒(ホットガス冷媒)の一部は第2室外熱交換器15
に導かれ、これによって第2室外熱交換器15に生成さ
れていた霜を溶かす。このホットガス除霜運転時には、
圧縮機71,72から吐出された冷媒は室内熱交換器6
にも導かれ、且つ第1室外熱交換器14の水熱源が除霜
並びに室内暖房のための熱源として用いられるため、除
霜時間の短縮や室内温度の低下を小さく抑えられる。
First, at the time of hot gas defrosting, it is basically the same as the low outside air temperature heating as shown by the solid line arrow in FIG. 3, and the difference is that the operation of the second compressor 72 is intermittent. (O
N-OFF), stopping the operation of the fan 19, and opening the defrost valve 25. A part of the refrigerant (hot gas refrigerant) discharged from the compressors 71 and 72 by the opening of the defrost valve 25 is supplied to the second outdoor heat exchanger 15.
To melt the frost generated in the second outdoor heat exchanger 15. During this hot gas defrosting operation,
The refrigerant discharged from the compressors 71 and 72 is supplied to the indoor heat exchanger 6.
In addition, since the water heat source of the first outdoor heat exchanger 14 is used as a heat source for defrosting and indoor heating, a reduction in defrosting time and a decrease in indoor temperature can be suppressed.

【0021】一方、逆サイクル除霜時は、各種の弁等を
図2で示すようにして第1圧縮機71のみ運転させる。
これによって第1圧縮機71から吐出された冷媒は図3
の破線矢印のように流れる。すなわち、第1の圧縮機7
1から吐出された冷媒は四方弁9を介して第2室外熱交
換器15に流入し、ここで除霜を行う。その後、第2開
閉弁17を介して液管18に導かれ、第1開閉弁21を
介して第1室外熱交換器14で加熱される。そして第1
の圧縮機71へ吸込まれる。このため第1室外熱交換器
14の水熱源が除霜並びに室内暖房(後述する)のため
の熱源として用いられるので、上述のホットガス除霜時
と同様に除霜時間の短縮や室内温度の低下を小さく抑え
ることができる。ここで、液管18内の冷媒の一部は減
圧器5を介して室内熱交換器に流れ込むため暖房運転が
継続されることは言うまでもない。
On the other hand, at the time of reverse cycle defrosting, only the first compressor 71 is operated as shown in FIG.
As a result, the refrigerant discharged from the first compressor 71 is as shown in FIG.
It flows like a dashed arrow. That is, the first compressor 7
The refrigerant discharged from 1 flows into the second outdoor heat exchanger 15 via the four-way valve 9 and performs defrosting here. Thereafter, the liquid is guided to the liquid pipe 18 via the second on-off valve 17, and is heated by the first outdoor heat exchanger 14 via the first on-off valve 21. And the first
Into the compressor 71. For this reason, the water heat source of the first outdoor heat exchanger 14 is used as a heat source for defrosting and indoor heating (to be described later). The decrease can be kept small. Here, it goes without saying that a part of the refrigerant in the liquid pipe 18 flows into the indoor heat exchanger via the decompressor 5, so that the heating operation is continued.

【0022】このように、逆サイクル除霜運転時におい
て、ホットガス冷媒(の一部)を第2室外熱交換器(空
冷式熱交換器)15から第1室外熱交換器(水冷式熱交
換器)14へ流すようにしたので、この除霜用並びに暖
房用の熱源として第1室外熱交換器14の水熱源が用い
られ、除霜時間の短縮化やこの除霜運転時の室内温度の
低下を小さく抑えることができる。
As described above, during the reverse cycle defrosting operation, the hot gas refrigerant (part of the hot gas refrigerant) is transferred from the second outdoor heat exchanger (air-cooled heat exchanger) 15 to the first outdoor heat exchanger (water-cooled heat exchanger). 14), the water heat source of the first outdoor heat exchanger 14 is used as a heat source for the defrosting and for heating, thereby shortening the defrosting time and controlling the room temperature during the defrosting operation. The decrease can be kept small.

【0023】尚、この実施例において第1室外熱交換器
14はいわゆる「水冷式熱交換器」を、第2室外熱交換
器15はいわゆる「空冷式熱交換器」を夫々採用した
が、本発明は、これらに限定されるものではなく熱源の
温度が異なるものを用いた熱交換器であれば良い。すな
わち、2つの室外熱交換器13をいずれも「水冷式熱交
換器」としても良く。この場合は、ボイラからこの水冷
式熱交換器へ供給される水温を変える。
In this embodiment, the first outdoor heat exchanger 14 employs a so-called "water-cooled heat exchanger" and the second outdoor heat exchanger 15 employs a so-called "air-cooled heat exchanger". The invention is not limited to these, but may be any heat exchanger using a heat source having a different temperature. That is, both of the two outdoor heat exchangers 13 may be “water-cooled heat exchangers”. In this case, the temperature of the water supplied from the boiler to the water-cooled heat exchanger is changed.

【0024】図4は、第1の発明の冷凍装置の基本的な
冷媒回路を示す。この図において図1に示した部品と同
一部品には同一符号を記してその説明は省略した。すな
わち、冷房運転時に第2室外熱交換器15のみ使用し
(実線矢印参照)、暖房運転時は第1並びに第2室外熱
交換器14,15を使用する(破線矢印参照)ようにし
たもので、これによって暖房能力を冷房能力よりもアッ
プさせることができる。
FIG. 4 shows a basic refrigerant circuit of the refrigeration apparatus of the first invention. In this figure, parts that are the same as the parts shown in FIG. That is, only the second outdoor heat exchanger 15 is used during the cooling operation (see the solid arrow), and the first and second outdoor heat exchangers 14 and 15 are used during the heating operation (see the broken arrow). Thus, the heating capacity can be made higher than the cooling capacity.

【0025】図5は、第2の発明の冷凍装置の基本的な
冷媒回路を示す。この図において、図1に示した部品と
同一部品には同一符号を記してその説明は省略した。す
なわち1つの蒸発器(室外熱交換器)15のみ使用する
場合はこの蒸発器15から吐出された冷媒は、逆止弁2
3の開放によって2つの圧縮機71,72へ並流され
る。一方2つの蒸発器14,15を使用する場合は、逆
止弁23の閉鎖によって夫々の蒸発器14,15から吐
出された冷媒は、この蒸発器と直列につながれた夫々の
圧縮機71,72へ別々に流れ込むようにしている。
FIG. 5 shows a basic refrigerant circuit of the refrigeration apparatus of the second invention. In this figure, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. That is, when only one evaporator (outdoor heat exchanger) 15 is used, the refrigerant discharged from the evaporator 15 is supplied to the check valve 2.
By opening 3, the compressors are co-flowed to the two compressors 71 and 72. On the other hand, when the two evaporators 14 and 15 are used, the refrigerant discharged from each of the evaporators 14 and 15 by closing the check valve 23 is supplied to each of the compressors 71 and 72 connected in series with the evaporator. To flow separately.

【0026】図6は本発明の他の実施例を示すもので、
図1の実施例との相違点は、室外ユニット2において
四方弁を廃止した点と、ユニット間配管を2本から3
本にした点である。すなわち、ユニット間配管41は高
圧ガス管42と低圧ガス管43と液管44とから構成さ
れており、高圧ガス管42は圧縮機71,72の吐出管
8と第2室外熱交換器15の一端45とにつながれてい
る。低圧ガス管43は圧縮機71,72の吸込管46と
第2室外熱交換器15の他端47とにつながれている。
尚、液管18は上述の実施例と同様な接続状態となって
いる。
FIG. 6 shows another embodiment of the present invention.
The difference from the embodiment of FIG. 1 is that the four-way valve is eliminated in the outdoor unit 2 and that the piping between the units is reduced from two to three.
It is a book. That is, the unit-to-unit pipe 41 is composed of a high-pressure gas pipe 42, a low-pressure gas pipe 43, and a liquid pipe 44, and the high-pressure gas pipe 42 is connected to the discharge pipe 8 of the compressors 71 and 72 and the second outdoor heat exchanger 15. It is connected to one end 45. The low-pressure gas pipe 43 is connected to the suction pipe 46 of the compressors 71 and 72 and the other end 47 of the second outdoor heat exchanger 15.
The liquid pipe 18 is in the same connection state as in the above-described embodiment.

【0027】室内ユニット3a,3b(側)における相
違点は室内熱交換器6の一端を分岐して、夫々の分岐管
48,49は高圧もしくは低圧開閉弁50,51を介し
て夫々高圧ガス管42並びに低圧ガス管43につながれ
ている点である。このような構成によって室内ユニット
3a,3bは冷房もしくは暖房運転が自由に選択するこ
とができる。すなわち、室内ユニット3aを冷房運転さ
せる場合は低圧開閉弁51を開放する。これによって液
管18からの液冷媒が室内熱交換器6に流入して、この
室内熱交換器6が蒸発作用を行って、室内ユニット3a
が冷房運転を行う。
The difference between the indoor units 3a and 3b (side) is that one end of the indoor heat exchanger 6 is branched, and the respective branch pipes 48 and 49 are connected to high-pressure gas pipes via high-pressure or low-pressure on-off valves 50 and 51, respectively. 42 and a low-pressure gas pipe 43. With such a configuration, the indoor units 3a and 3b can freely select a cooling operation or a heating operation. That is, when performing the cooling operation of the indoor unit 3a, the low-pressure on-off valve 51 is opened. As a result, the liquid refrigerant from the liquid pipe 18 flows into the indoor heat exchanger 6, and the indoor heat exchanger 6 performs an evaporating action, and the indoor unit 3a
Performs the cooling operation.

【0028】一方、室内ユニット3bを暖房運転させる
場合は、高圧開閉弁48を開放する。これによって、高
圧ガス管42からのガス冷媒が室内熱交換器6に流入し
て、この室内熱交換器6が凝縮作用を行って室内ユニッ
ト3bが暖房運転を行う。ここで、室外ユニット2の運
転状態は、上述の各室内ユニットの冷房負荷と暖房負荷
との大きさに応じて変えられる。すなわち、冷房負荷の
方が暖房負荷よりも大きい場合は、冷房主体運転とな
り、この場合は開閉弁52の開放によって冷媒は図6の
実線矢印のように流れる。
On the other hand, when heating the indoor unit 3b, the high-pressure on-off valve 48 is opened. As a result, the gas refrigerant from the high-pressure gas pipe 42 flows into the indoor heat exchanger 6, the indoor heat exchanger 6 performs a condensing action, and the indoor unit 3b performs a heating operation. Here, the operating state of the outdoor unit 2 is changed according to the cooling load and the heating load of each indoor unit described above. That is, when the cooling load is larger than the heating load, the cooling-main operation is performed. In this case, the refrigerant flows as indicated by the solid arrow in FIG.

【0029】又暖房負荷の方が冷房負荷よりも大きい場
合は、暖房主体運転となり、この場合は開閉弁53の開
放によって冷媒は図7の実線矢印のように流れる。この
際第2室外熱交換器15は蒸発器として作用している
が、この室外熱交換器15で十分熱が汲み上げきれない
場合は、開閉弁21を開放して、液管18から第2室外
熱交換器15へ流れ込む。冷媒の一部を第1室外熱交換
器14へ導いて、ここで蒸発作用を行う。このように室
外ユニット2が冷房主体運転時には第1室外熱交換器1
4を使用せず、暖房主体運転時にこの第1室外熱交換器
14を使用する。
When the heating load is larger than the cooling load, the operation becomes the heating main operation. In this case, the refrigerant flows as indicated by the solid line arrow in FIG. At this time, the second outdoor heat exchanger 15 functions as an evaporator. However, if the heat cannot be sufficiently pumped up by the outdoor heat exchanger 15, the on-off valve 21 is opened and the second outdoor heat exchanger 15 It flows into the heat exchanger 15. A part of the refrigerant is guided to the first outdoor heat exchanger 14, where it performs an evaporating action. As described above, when the outdoor unit 2 is in the cooling main operation, the first outdoor heat exchanger 1
4, the first outdoor heat exchanger 14 is used during the heating main operation.

【0030】[0030]

【発明の効果】請求項1の発明によれば、低外気温時に
は、空冷式熱交換器及び水冷式熱交換器を同時に利用し
て室内ユニットにおいて暖房を行うことができると共
に、高外気温時には空冷式熱交換器のみを用いて暖房を
行うことができる。
According to the first aspect of the present invention, when the outside air temperature is low,
Uses an air-cooled heat exchanger and a water-cooled heat exchanger simultaneously.
Can be heated in the indoor unit
In addition, at high outside temperatures, heating is performed using only air-cooled heat exchangers.
It can be carried out.

【0031】請求項2の発明によれば、水冷式熱交換器
の熱源が空冷式熱交換器の除霜並びに室内暖房の熱源と
して用いられ、室内の暖房を行いながら空冷式熱交換器
の除霜運転が行える。
According to the second aspect of the present invention, the water-cooled heat exchanger
Heat source is the defrost of the air-cooled heat exchanger and the heat source for indoor heating
Air-cooled heat exchanger while heating the room
Defrosting operation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の冷凍装置の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus of the present invention.

【図2】図1に示した各種の弁の開閉状態を示す説明図
である。
FIG. 2 is an explanatory diagram showing an open / close state of various valves shown in FIG.

【図3】図1に示した運転状態とは異なる運転状態を示
す冷媒回路図である。
FIG. 3 is a refrigerant circuit diagram showing an operation state different from the operation state shown in FIG. 1;

【図4】本発明の基本的な一つの冷媒回路図である。FIG. 4 is a basic refrigerant circuit diagram of the present invention.

【図5】本発明の基本的な他の冷媒回路図である。FIG. 5 is another basic refrigerant circuit diagram of the present invention.

【図6】本発明の他の実施例を示す冷媒回路図である。FIG. 6 is a refrigerant circuit diagram showing another embodiment of the present invention.

【図7】図6に示した運転状態とは異なる運転状態を示
す冷媒回路図である。
FIG. 7 is a refrigerant circuit diagram showing an operation state different from the operation state shown in FIG. 6;

【符号の説明】[Explanation of symbols]

5 減圧器 6 利用側(室内側)熱交換器 13 熱源側熱交換器 14 室外熱交換器(第1の蒸発器:水冷式熱交換
器) 15 室外熱交換器(第2の蒸発器:空冷式熱交換
器) 24 連絡管
5 Decompressor 6 User side (indoor side) heat exchanger 13 Heat source side heat exchanger 14 Outdoor heat exchanger (first evaporator: water-cooled heat exchanger) 15 Outdoor heat exchanger (second evaporator: air-cooled) Type heat exchanger) 24 connecting pipe

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1の圧縮機と温水が供給され蒸発器と
して作用する前記第1の圧縮機の吸込側に接続される水
冷式熱交換器とからなる第1直列回路と、前記第1直列
回路と並列に接続され、第2の圧縮機と蒸発器として作
用させるときに前記第2の圧縮機の吸込側に接続される
空冷式熱交換器とからなる第2直列回路とを備える室外
ユニットに、室内側熱交換器と減圧器とを備える室内ユ
ニットをつないで構成される空気調和機において、 前記水冷式熱交換器の作用を停止させ且つ前記空冷式熱
交換器のみを蒸発器として作用させる場合に、前記空冷
式熱交換器からの冷媒を前記第1の圧縮機の吸込側へ導
くための連絡管を設けたことを特徴とする空気調和機。
An evaporator provided with a first compressor and hot water;
Connected to the suction side of the first compressor acting as
A first series circuit comprising a cold heat exchanger;
Connected in parallel with the circuit and acting as a second compressor and evaporator
Connected to the suction side of the second compressor when used
An outdoor having a second series circuit including an air-cooled heat exchanger
An indoor unit equipped with an indoor heat exchanger and a decompressor
In an air conditioner constituted by connecting knits, the operation of the water-cooled heat exchanger is stopped and the air-cooled heat exchanger is stopped.
When only the exchanger acts as an evaporator, the air cooling
The refrigerant from the heat exchanger to the suction side of the first compressor
An air conditioner characterized by providing a communication pipe for connection.
【請求項2】 前記室内熱交換器を凝縮器として作用さ
せ且つ前記水冷式熱交換器を蒸発器として作用させる除
霜運転時に前記圧縮機から吐出された冷媒の一部を前記
空冷式熱交換器に導くホットガス除霜管を設けたことを
特徴とする請求項1に記載の空気調和機。
2. The indoor heat exchanger acting as a condenser.
And the water-cooled heat exchanger acts as an evaporator.
Part of the refrigerant discharged from the compressor during the frost operation is
The installation of a hot gas defrost pipe leading to an air-cooled heat exchanger
The air conditioner according to claim 1, characterized in that:
JP6224999A 1994-09-20 1994-09-20 Air conditioner Expired - Fee Related JP2989491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6224999A JP2989491B2 (en) 1994-09-20 1994-09-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6224999A JP2989491B2 (en) 1994-09-20 1994-09-20 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0886528A JPH0886528A (en) 1996-04-02
JP2989491B2 true JP2989491B2 (en) 1999-12-13

Family

ID=16822504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6224999A Expired - Fee Related JP2989491B2 (en) 1994-09-20 1994-09-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP2989491B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020904A2 (en) 2012-08-02 2014-02-06 Mitsubishi Electric Corporation Air-conditioning apparatus including unit for increasing heating capacity

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603848B2 (en) 2001-10-23 2004-12-22 ダイキン工業株式会社 Refrigeration equipment
JP4774858B2 (en) * 2005-08-16 2011-09-14 パナソニック株式会社 Air conditioner
GB2450755B (en) 2007-07-06 2012-02-29 Greenfield Energy Ltd Geothermal energy system and method of operation
JP4946948B2 (en) * 2008-03-31 2012-06-06 三菱電機株式会社 Heat pump air conditioner
JP5634071B2 (en) * 2010-01-12 2014-12-03 三菱電機株式会社 Air conditioner and defrosting operation method of air conditioner
CN103328910B (en) * 2011-01-27 2015-08-19 三菱电机株式会社 The control method of heat pump assembly and heat pump assembly
GB2488797A (en) 2011-03-08 2012-09-12 Greenfield Master Ipco Ltd Thermal Energy System and Method of Operation
JP5372072B2 (en) * 2011-06-08 2013-12-18 三菱電機株式会社 HEAT PUMP DEVICE AND HEAT PUMP DEVICE CONTROL METHOD
WO2013171803A1 (en) 2012-05-18 2013-11-21 三菱電機株式会社 Heat pump device
US11009247B2 (en) * 2017-06-27 2021-05-18 Mitsubishi Electric Corporation Air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020904A2 (en) 2012-08-02 2014-02-06 Mitsubishi Electric Corporation Air-conditioning apparatus including unit for increasing heating capacity
EP2975339A2 (en) 2012-08-02 2016-01-20 Mitsubishi Electric Corporation Air-conditioning apparatus including unit for increasing heating capacity
US9316421B2 (en) 2012-08-02 2016-04-19 Mitsubishi Electric Corporation Air-conditioning apparatus including unit for increasing heating capacity
EP3591315A1 (en) 2012-08-02 2020-01-08 Mitsubishi Electric Corporation Air-conditioning apparatus including unit for increasing heating capacity

Also Published As

Publication number Publication date
JPH0886528A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
JPS63210577A (en) Integrated heat pump and hot-water supply device
WO2008032558A1 (en) Refrigeration device
JP2989491B2 (en) Air conditioner
JP7455211B2 (en) air conditioner
JP7541101B2 (en) Air Conditioning Equipment
KR100822432B1 (en) Air conditioner having auxiliary exchanger
JP3138154B2 (en) Air conditioner
JP4155699B2 (en) Air conditioner and operation method thereof
JP3723824B2 (en) Air conditioner
JP3511161B2 (en) Air conditioner
JP7394876B2 (en) air conditioner
JP2800428B2 (en) Air conditioner
JP2698735B2 (en) Engine heat pump system
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JP3123873B2 (en) Air conditioner
JP4201488B2 (en) Refrigeration equipment
JP2001336856A (en) Air conditioning apparatus
KR100643689B1 (en) Heat pump air-conditioner
JP3791019B2 (en) Air conditioner
JP3326322B2 (en) Air conditioner and air conditioner system equipped with this air conditioner
JP3307532B2 (en) Cold / hot water supply device
JP3227643B2 (en) Heat recovery type air conditioner
JP2001336858A (en) Air conditioning apparatus
JP3213992B2 (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees