JP2987955B2 - Diamond or diamond-like carbon coated hard material - Google Patents
Diamond or diamond-like carbon coated hard materialInfo
- Publication number
- JP2987955B2 JP2987955B2 JP3023495A JP2349591A JP2987955B2 JP 2987955 B2 JP2987955 B2 JP 2987955B2 JP 3023495 A JP3023495 A JP 3023495A JP 2349591 A JP2349591 A JP 2349591A JP 2987955 B2 JP2987955 B2 JP 2987955B2
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- carbon
- hard material
- coating layer
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
- Chemical Vapour Deposition (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、高い基材との密着強度
を持ったダイヤモンドまたはダイヤモンド状炭素被覆層
を有するダイヤモンド被覆硬質材に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diamond-coated hard material having a diamond or diamond-like carbon coating layer having high adhesion strength to a substrate.
【0002】[0002]
【従来の技術】ダイヤモンドは極めて硬度が高く、化学
的に安定し、高い熱伝導率特性、音波伝パン速度を初め
とする数多くの優れた特性を持っているため、この特性
を生かした硬質材料、あるいはダイヤモンドまたはダイ
ヤモンド状炭素被覆硬質材料として、例えば下記のもの
が広く実用に供されている。 Al、Cuや実用に供されている各種軽金属、また
はその合金とほとんど反応しないので、これらの合金を
高速で切断し、しかも極めて良好な仕上げ面とする単結
晶ダイヤモンド、焼結ダイヤモンドあるいはダイヤモン
ド被覆切削工具、例えばスローアウエイチップ、ドリ
ル、マイクロドリル、エンドミルなどの切削工具。 耐摩耗性が高いため、高い寸法精度での長時間加工
を可能としたボンディングツールなどの各種耐摩工具。 放熱板を初めとする各種機械部品。 スピーカーを初めとする各種振動板。 各種電子部品。2. Description of the Related Art Diamond has extremely high hardness, is chemically stable, and has many excellent properties such as high thermal conductivity and sonic transmission speed. As the hard material coated with diamond or diamond-like carbon, for example, the following materials are widely used. Since it hardly reacts with Al, Cu, various light metals used in practical use, or their alloys, these alloys can be cut at high speed and have a very good finished surface. Tools, for example cutting tools such as throw-away tips, drills, microdrills, end mills. Various wear-resistant tools such as bonding tools that have high wear resistance and enable long-time machining with high dimensional accuracy. Various mechanical parts including heat sinks. Various diaphragms including speakers. Various electronic components.
【0003】そして、人工ダイヤモンドの製造法のう
ち、気相よりダイヤモンド被覆層を形成する方法として
は、μ波プラズマCVD法、RF−プラズマCVD法、
EA−CVD法、誘磁場μ波プラズマCVD法、RF熱
プラズマCVD法、DCプラズマCVD法、DCプラズ
マジェットCVD法、フィラメント熱CVD法、燃焼法
等数多くの方法が知られており、ダイヤモンド被覆硬質
材料製造の有力な方法である。[0003] Among the methods for producing artificial diamond, methods for forming a diamond coating layer from a gas phase include a microwave plasma CVD method, an RF-plasma CVD method,
Numerous methods such as EA-CVD method, induced magnetic field μ-wave plasma CVD method, RF thermal plasma CVD method, DC plasma CVD method, DC plasma jet CVD method, filament thermal CVD method, and combustion method are known. It is a powerful method of material production.
【0004】[0004]
【発明が解決しようとする課題】ところが、ダイヤモン
ド被覆硬質材料の多くは基材とダイヤモンド被覆層の密
着強度が不足しているため、ダイヤモンド被覆層が剥離
することにより寿命にいたる場合が多い。この大きな原
因として、ダイヤモンドは、あらゆる物質と中間層を持
たないため、他物質との濡れ性が悪いことが考えられ
る。高い密着強度をもつダイヤモンド被覆硬質材料を得
るべく、ダイヤモンドと同じ熱膨張係数を持った基材を
選択する方法(特公開・昭61−291493では、S
i3 N4 を主成分とする焼結体、およびSiCを主成分
とする焼結体を提案している)や、基材表面のダイヤモ
ンド被覆層形成に悪影響を及ぼす金属をエッチングによ
り除去し、基材表面のダイヤ核の発生密度を高める方法
(特開平1−201475号公報では、超硬合金の表面
を酸溶液にてエッチングし、Co金属成分を除去し、ダ
イヤモンド核のグラファイト化を抑止している)(特開
昭61−124573号公報では、ダイヤモンド砥粒ま
たは砥石により、基材表面に傷つけ処理を行ない、基材
表面でのダイヤモンドの核発生密度を向上させている)
が提案されているが、現状ではその密着強度は不十分で
ある。本発明はこれらの問題点を解消し、優れた密着強
度をもつダイヤモンド被覆硬質材料を提供することを目
的とする。However, many diamond-coated hard materials have insufficient adhesion strength between the base material and the diamond coating layer, so that the life of the diamond-coated layer is often extended by peeling of the diamond coating layer. One of the major reasons for this is that diamond has no wettability with other substances because it does not have any substance and an intermediate layer. In order to obtain a diamond-coated hard material having high adhesion strength, a method of selecting a substrate having the same coefficient of thermal expansion as diamond (Japanese Patent Publication No. 61-291493,
a sintered body mainly composed of i 3 N 4 and a sintered body mainly composed of SiC), and a metal which adversely affects the formation of a diamond coating layer on the surface of a substrate is removed by etching. A method of increasing the generation density of diamond nuclei on the surface of a base material (Japanese Unexamined Patent Publication No. Hei 1-2201475 discloses that the surface of a cemented carbide is etched with an acid solution to remove the Co metal component and suppress the graphitization of diamond nuclei. (In Japanese Patent Application Laid-Open No. 61-124573, the surface of the substrate is damaged by diamond abrasive grains or a grindstone to increase the nucleation density of diamond on the surface of the substrate.)
However, at present, the adhesion strength is insufficient. An object of the present invention is to solve these problems and to provide a diamond-coated hard material having excellent adhesion strength.
【0005】[0005]
【課題を解決するための手段】前述した通り、ダイヤモ
ンドは極めて化学的に安定しているため、あらゆる物質
と中間化合物を作らない。このため、優れた密着強度を
持つダイヤモンド被覆硬質材料を作製する場合、ダイヤ
モンド被覆層と基材がなんらかの物理的な強い力にて接
合されている状態を作り出さねばならない。本発明者
は、これを実現するため、基材表面に、機械的、または
化学的に作製され、基材と高い密着強度をもつ凸部が存
在する状態を作り出し、この基材表面にダイヤモンド被
覆層を形成し、凸部がダイヤモンド被覆層に侵入した状
態を作った場合、ダイヤモンド被覆層と基材との密着強
度が非常に高くなることを発見した。これは、ダイヤモ
ンド被覆層と基材との接触面積が増大したことと、凸部
が、ダイヤモンド被覆層のアンカー作用を持ち、ダイヤ
モンド被覆層が剥がれにくくなったためと考えられる。SUMMARY OF THE INVENTION As mentioned above, diamond is extremely chemically stable and does not produce any substances and intermediate compounds. For this reason, when producing a diamond-coated hard material having excellent adhesion strength, it is necessary to create a state in which the diamond-coated layer and the substrate are joined by some physical strong force. In order to realize this, the present inventor created a state in which a convex portion having high adhesion strength was mechanically or chemically produced on the surface of the substrate, and a diamond coating was applied to the surface of the substrate. It has been found that when a layer is formed and the projections are made to penetrate into the diamond coating layer, the adhesion strength between the diamond coating layer and the substrate becomes extremely high. It is considered that this is because the contact area between the diamond coating layer and the base material was increased, and the convex portions had an anchoring effect on the diamond coating layer, so that the diamond coating layer was hardly peeled off.
【0006】ここで述べる凹凸とは、(1)ダイヤモン
ド砥石、(2)ダイヤモンド砥粒による傷つけ処理、な
どにより形成される巨視的にみた凹凸ではなく、微小区
間内における凹凸であり、ダイヤモンド被覆層−基材界
面において、基準長さを50μmなどの微小区間とし
た。この基準長さ内における凹凸のことである。本発明
者たちは種々の凹凸状態を作り出した結果、50μmの
基準長さ内において、基材界面での面粗度が、Rmax に
て、0.5〜30μmであり、かつ凸部が、ダイヤモン
ド被覆層中に0.2μm以上侵入している状態が、密着
強度が高くなることを発見した。この表面面粗度は、ダ
イヤモンド被覆後の基材の断面をラッピング後観察し、
写真撮影を行ない、ダイヤモンド被覆層と基材の界面の
境界線を以って被覆後の基材の表面面粗度(Rmax )と
する。[0006] The irregularities described herein are not macroscopic irregularities formed by (1) diamond grinding stones, (2) scratching treatment with diamond abrasive grains, etc., but are irregularities in a minute section. -At the substrate interface, the reference length was a minute section such as 50 µm. The irregularities within this reference length. The present inventors have created various concavities and convexities, and as a result, within a reference length of 50 μm, the surface roughness at the substrate interface is 0.5 to 30 μm in Rmax, and the projections are diamond. It has been found that a state in which 0.2 μm or more penetrates into the coating layer increases the adhesion strength. This surface roughness is observed after lapping the cross section of the substrate after diamond coating,
A photograph is taken, and the surface roughness (Rmax) of the coated substrate is determined based on the boundary between the interface between the diamond coating layer and the substrate.
【0007】ここで、コーティング初期、チップ表面全
体にダイヤモンド核の発生を促すため、一般に行われて
いるダイヤモンド砥粒による傷つけ処理を行うことが望
ましい。この際、砥粒を物理的に押し付け、傷をつける
方法では、作製した凸部が欠損、破壊される可能性があ
るため、本基材とダイヤモンド砥粒を水、エチルアルコ
ール、アセトンなどの溶媒の中に投じ、溶液に超音波振
動を与えることにより傷つけ処理を行うことが望まし
い。この傷つけ処理により、基材表面の凸部および凸で
ない部分全体に均等にダイヤモンド核発生する。これに
より、凸部がダイヤモンド被覆層に侵入した状態を作る
ことが可能となった。Here, in the early stage of coating, in order to promote the generation of diamond nuclei on the entire surface of the chip, it is desirable to carry out a commonly-used scratching treatment with diamond abrasive grains. At this time, in the method of physically pressing and scratching the abrasive grains, since the produced convex portion may be broken or broken, the present base material and the diamond abrasive grains are mixed with a solvent such as water, ethyl alcohol, acetone or the like. It is desirable to perform a damaging treatment by applying ultrasonic vibration to the solution. The scratched or damaged only process, uniformly generated diamond nuclei throughout partial non protrusions and projections of the substrate surface. This makes it possible to create a state in which the protrusions have penetrated the diamond coating layer.
【0008】基材に凹凸を作る具体的方法としては、 基材表面に柱状晶および/または針状晶を析出する
方法 エッチングによりエッチングされやすいバインダー
を取り除く方法 基材にマスクを施してからエッチングし、そのあ
と、マスクを取り除く方法 レーザー等による物理的加工による方法など、基材
に応じて適当な方法を選択する。の方法は基材に何ら
かの熱処理を施し、表面に基材成分による柱結晶または
針状結晶を自由成長させるか、および/または2次結晶
発生を促進するものであり、の方法は、酸、アルカリ
に対する腐食性の異なる硬質相と結合相により構成する
素材に対して有効であり、の方法はホトマスクを用い
任意のパターンにマスクを設けた後、エッチングにより
マスクを取り除く方法である。As a specific method of forming irregularities on the substrate, a method of depositing columnar crystals and / or needles on the surface of the substrate, a method of removing a binder which is easily etched by etching, a method of applying a mask to the substrate, and then etching the substrate. Then, a method of removing the mask An appropriate method is selected according to the base material, such as a method of physical processing using a laser or the like. Is a method of subjecting the substrate to any heat treatment to allow free growth of columnar crystals or needle-like crystals on the surface of the substrate component and / or accelerating the generation of secondary crystals. This method is effective for a material composed of a hard phase and a binder phase having different corrosiveness to the above. The method is to provide a mask in an arbitrary pattern using a photomask and then remove the mask by etching.
【0009】凸部を構成する材料としては、窒化珪素結
晶、窒化珪素を含む結晶、サイアロン、炭化珪素、炭化
珪素を含む物質、タングステン、タングステンの炭化物
もしくは炭窒化物、タングステンと他の1種もしくは2
種以上の金属の炭化物または炭窒化物およびこれらを含
む物質からなる群から選ばれる。そして、これら凹凸部
を形成する物質は基材と一体で同一材料であることが好
ましく、同一材料で組成が異なってもよい。[0009] As the material constituting the convex portion, silicon nitride crystal, crystal containing silicon nitride, sialon, silicon carbide, a substance containing silicon carbide, tungsten, carbide or carbonitride of tungsten, tungsten and one or more of 2
It is selected from the group consisting of carbides or carbonitrides of at least one kind of metal and substances containing these. It is preferable that the substance forming the uneven portion is formed of the same material integrally with the base material, and the same material may have a different composition.
【0010】本発明によるダイヤモンドおよび/または
ダイヤモンド状炭素被覆層−基材界面の状態を模式的に
示すと図1のようになる。すなわち、該界面には巨視的
なうねりが認められるが、図2のようにこれを擬似的に
直線とみなしRmax を算出する。FIG. 1 schematically shows the state of the interface between the diamond and / or diamond-like carbon coating layer and the substrate according to the present invention. That is, although macroscopic undulation is recognized at the interface, this is regarded as a pseudo straight line as shown in FIG. 2 and Rmax is calculated.
【0011】いずれにしても、このようにして形成され
る凸部は、ダイヤモンドおよび/またはダイヤモンド状
炭素被覆層−基材界面において、基準長さを50μmと
した時、この基準長さ内において、基材界面での面粗度
が、Rmax にて、0.5〜30μmにあることが必要
で、該凸部がダイヤモンド被覆層中に侵入長さ0.2μ
m以上を以って侵入していることが好ましい。基材界面
での面粗さが、Rmax にて、0.5以下の場合、密着強
度の向上は見られず、30μmを越えると逆に密着強度
の低下が見られた。また、凸部の最大侵入深さが0.2
μm以下の場合、密着強度はほぼ変わらない。In any case, when the reference length is set to 50 μm at the interface between the diamond and / or the diamond-like carbon coating layer and the base material, when the reference length is 50 μm, It is necessary that the surface roughness at the interface of the base material is 0.5 to 30 μm in Rmax, and the protrusion has a penetration length of 0.2 μm in the diamond coating layer.
It is preferable to invade with m or more. When the surface roughness at the interface of the base material was 0.5 or less in Rmax, no improvement in the adhesion strength was observed, and when it exceeded 30 μm, a decrease in the adhesion strength was observed. Also, the maximum penetration depth of the projection is 0.2
When it is less than μm, the adhesion strength is not substantially changed.
【0012】基材は、超硬合金、サーメット、Al2 O
3 、窒化珪素、炭化珪素など各種セラミックを始めとす
る硬質材料であれば何でも可能である。この中で、特
に、窒化珪素、炭化珪素、炭化チタン、窒化チタン、炭
窒化チタンのようなTiの化合物および/またはTiの
化合物を含む物質、タングステンの炭化物および/また
はタングステン合金の炭化物および/またはこれらを含
む物質による凹凸が存在する場合、高い密着強度を示す
ことも判った。さらに、凸部の形状がアスペクト比1.
5以上の柱状結晶である場合や、針状結晶である場合、
さらに密着強度が高くなることも判った。The substrate is made of cemented carbide, cermet, Al 2 O
3. Any hard material such as various ceramics such as silicon nitride and silicon carbide can be used. Among them, in particular, a compound of Ti and / or a substance containing a compound of Ti, such as silicon nitride, silicon carbide, titanium carbide, titanium nitride, and titanium carbonitride, carbide of tungsten and / or carbide of tungsten alloy and / or It was also found that when there is unevenness due to a substance containing these, high adhesion strength is exhibited. Furthermore, the shape of the projection has an aspect ratio of 1.
In the case of 5 or more columnar crystals or needle-like crystals,
It was also found that the adhesion strength was further increased.
【0013】なお、ダイヤモンド被覆層の層厚に関して
は、0.1μm以下では被覆層による耐摩耗性など諸性
能の向上が認められず、また200μm以上の被覆層を
形成した場合でも、もはや大きな性能の向上が認められ
ないため、0.1μm〜200μmが望ましい。Regarding the thickness of the diamond coating layer, when the coating thickness is 0.1 μm or less, no improvement in various properties such as abrasion resistance is recognized by the coating layer, and even when the coating layer having a thickness of 200 μm or more is formed, the performance is no longer large. 0.1 μm to 200 μm is desirable because no improvement in the thickness is observed.
【0014】ここまで、被覆層がダイヤモンドである場
合を中心に、説明を行ってきたが、ダイヤモンド被覆層
中にダイヤモンド状炭素、およびその他の結晶構造をと
るダイヤモンドを含む場合、およびこれらの単層または
多層以上にて構成されている場合でも、全く同様の効果
が認められる。またダイヤモンド被覆層またはダイヤモ
ンド状炭素被覆層がホウ素、窒素などの異種原子を含む
場合も同様の効果が得られる。次に本発明を実施例によ
り具体的に説明する。The description so far has focused on the case where the coating layer is diamond. However, when the diamond coating layer contains diamond-like carbon and other diamonds having a crystal structure, and when these single layers are used. Alternatively, even in the case of a multi-layer structure or more, the same effect can be obtained. The same effect can be obtained when the diamond coating layer or the diamond-like carbon coating layer contains different kinds of atoms such as boron and nitrogen. Next, the present invention will be described specifically with reference to examples.
【0015】[0015]
【実施例】母材として、窒化珪素基のセラミック(具体
的にはSi3 N4 −4wt%Al 2 O3 −4wt%Zr
O2 −3wt%Y2 O3 )で形状がSPG422のスロ
ーアウエイチップを作製した。本チップを、1800
℃、5atmのN2 ガス雰囲気にて、30分間熱処理を
行ったところ、チップ表面には短径2μm、長径8μ
m、アスペクト比4の窒化珪素の柱状結晶および針状結
晶が発生した。本チップを、2gの粒径8〜16μmの
ダイヤモンド砥粒とともにエチルアルコール中に投じ、
15分間超音波振動を与えた。このようにして作製した
チップを、2.45GHzのμ波プラズマCVD装置を
用いて、1000℃に加熱し、全圧を80Torrとし
た水素−メタン2%の混合プラズマ中にて8時間保持
し、層厚10μmのダイヤモンド被覆切削チップを作製
した。また、比較のため、同一形状、同一組成で熱処理
を行わなかったため、表面に窒化珪素の柱状晶が存在し
ないチップにダイヤモンド被覆層を設けた比較チップを
準備した。(比較チップには、超音波処理は行わなかっ
た)なお、本試験において、基材の表面に析出した被覆
層は、ラマン分光分析法によって、ダイヤモンド被覆層
であることを確認した。EXAMPLES As a base material, a silicon nitride-based ceramic (concrete) was used.
Typically SiThreeNFour-4wt% Al TwoOThree-4wt% Zr
OTwo-3wt% YTwoOThree) Is a slot of SPG422
A way chip was prepared. 1800
C, 5 atm NTwoHeat treatment in gas atmosphere for 30 minutes
As a result, the chip surface has a minor axis of 2 μm and a major axis of 8 μm.
m, silicon nitride columnar crystals and needle-like crystals with an aspect ratio of 4
Crystals formed. This chip is used for a 2 g particle size of 8 to 16 μm.
Throw in ethyl alcohol with diamond abrasive grains,
Ultrasonic vibration was applied for 15 minutes. Made in this way
The chip is mounted on a 2.45 GHz microwave plasma CVD device.
And heated to 1000 ° C, and the total pressure was 80 Torr.
For 8 hours in a mixed plasma of 2% hydrogen and methane
To produce a diamond-coated cutting tip with a layer thickness of 10 μm
did. Also, for comparison, heat treatment with the same shape and the same composition
Was not performed, and columnar crystals of silicon nitride existed on the surface.
A comparative chip with a diamond coating layer
Got ready. (No ultrasonic treatment was applied to the comparison chip
In this test, the coating deposited on the surface of the substrate
The layer is coated with a diamond coating by Raman spectroscopy.
Was confirmed.
【0016】これらの切削チップを用いて、 被削材 : Al−24wt%Si合金(ブロック
材) 切削速度 : 400m/min 送り : 0.1mm/rev. 切込み : 0.5mm の条件にて断続切削を行い、3分後および10分後の逃
げ面摩耗量、切り刃の摩耗状態、被削材の溶着状態を観
察したところ、本発明切削チップは、切削開始10分後
の切れ刃観察において、逃げ面摩耗量は0.03mm
で、正常摩耗であり、また被削材の溶着はほとんど見ら
れなかった。これに対して比較チップでは、切削開始3
分後の切れ刃観察において、ダイヤモンド被覆層の大き
な剥離が見られ、逃げ面摩耗量も0.12mmとなり、
被削材も大きく溶着しているため切削を中止した。Using these cutting tips, work material: Al-24 wt% Si alloy (block material) Cutting speed: 400 m / min Feed: 0.1 mm / rev. Cutting: Intermittent cutting was performed under the condition of 0.5 mm, and after 3 minutes and 10 minutes, the flank wear amount, the cutting blade wear state, and the welded state of the work material were observed. In observation of the cutting edge 10 minutes after the start of cutting, the amount of flank wear was 0.03 mm.
And normal wear, and almost no welding of the work material was observed. On the other hand, in the comparative tip, cutting start 3
In the cutting edge observation after a minute, a large peeling of the diamond coating layer was observed, and the flank wear amount was also 0.12 mm.
Cutting was stopped because the work material was also largely welded.
【0017】切削試験後のチップを切断、ラッピング
後、基材−ダイヤモンド被覆層界面を光学顕微鏡にて観
察した所、本発明切削チップにおいては、窒化珪素の柱
状晶がダイヤモンド被覆層に最大3μmの深さにて侵入
し、また、50μmの基準長さ内において微視的面粗度
はRmax で3〜5μmとなった。比較チップにおいて
は、基材−ダイヤモンド被覆層界面に、窒化珪素の柱状
晶は存在せず、また基材のダイヤモンド被覆層中への侵
入は観察されなかった。After cutting and lapping the chip after the cutting test, the interface between the substrate and the diamond coating layer was observed with an optical microscope. As a result, in the cutting tip of the present invention, columnar crystals of silicon nitride had a maximum diameter of 3 μm in the diamond coating layer. It penetrated at a depth, and within a reference length of 50 μm, the microscopic surface roughness was 3 to 5 μm in Rmax. In the comparative chip, no columnar crystal of silicon nitride was present at the interface between the substrate and the diamond coating layer, and no penetration of the substrate into the diamond coating layer was observed.
【0018】実施例2 母材として、炭化珪素ウイスカーセラミック(具体的に
はAl2 O3 −35vol%SiCウイスカー5wt%
ZrO2 )で形状がSPG422のスローアウエイチッ
プを作製した。本チップを、溶融NaOHと接触させ、
エッチングを行うことにより、チップ表面には短径1μ
m、長径8μmの炭化珪素ウイスカーの針状結晶が露出
した。本チップを、2gの粒径8〜16μmのダイヤモ
ンド砥粒とともにエチルアルコール中に投じ、15分間
超音波振動を与えた。このようにして作製したチップ
を、2.45GHzのμ波プラズマCVD装置を用い
て、1000℃に加熱し、全圧を80Torrとした水
素−メタン2%の混合プラズマ中にて8時間保持し、層
厚8μmのダイヤモンド被覆切削チップを作製した。ま
た、比較のため、同一形状、同一組成でエッチング処理
を行わなかったため、表面に炭化珪素ウイスカーの針状
晶が存在しないチップにダイヤモンド被覆層を設けた比
較チップを準備した(比較チップには、超音波処理は行
わなかった)。なお、本試験において、基材の表面に析
出した被覆層は、ラマン分光分析法によって、ダイヤモ
ンド被覆層であることを確認した。Example 2 A silicon carbide whisker ceramic (specifically, Al 2 O 3 -35 vol% SiC whisker 5 wt%) was used as a base material.
ZrO 2 ) was used to produce a throwaway chip having a shape of SPG422. This chip is brought into contact with molten NaOH,
By etching, the chip surface has a minor axis of 1μ.
m, needle-like crystals of silicon carbide whiskers having a major axis of 8 μm were exposed. This chip was thrown into ethyl alcohol together with 2 g of diamond abrasive grains having a particle size of 8 to 16 μm, and subjected to ultrasonic vibration for 15 minutes. The chip manufactured in this manner was heated to 1000 ° C. using a 2.45 GHz microwave plasma CVD apparatus, and was held for 8 hours in a mixed plasma of 2% hydrogen-methane at a total pressure of 80 Torr. A diamond-coated cutting tip having a layer thickness of 8 μm was produced. Also, for comparison, a comparative chip was prepared in which a diamond coating layer was provided on a chip having no needle-like crystal of silicon carbide whiskers on the surface because the etching treatment was not performed with the same shape and the same composition. No sonication was performed). In this test, it was confirmed that the coating layer deposited on the surface of the substrate was a diamond coating layer by Raman spectroscopy.
【0019】これらの切削チップを用いて、 被削材 : Al−24wt%Si合金(ブロック
材) 切削速度 : 400m/min 送り : 0.1mm/rev. 切込み : 0.5mm の条件にて断続切削を行い、3分後および10分後の逃
げ面摩耗量、切り刃の摩耗状態、被削材の溶着状態を観
察したところ、本発明切削チップは、切削開始10分後
の切れ刃観察において、逃げ面摩耗量は0.05mm
で、正常摩耗であり、また被削材の溶着はほとんど見ら
れなかった。これに対して比較チップでは、切削開始3
分後の切れ刃観察において、ダイヤモンド被覆層の大き
な剥離が見られ、逃げ面摩耗量も0.16mmとなり、
被削材も大きく溶着しているため切削を中止した。Using these cutting tips, work material: Al-24 wt% Si alloy (block material) Cutting speed: 400 m / min Feed: 0.1 mm / rev. Cutting: Intermittent cutting was performed under the condition of 0.5 mm, and after 3 minutes and 10 minutes, the flank wear amount, the cutting blade wear state, and the welded state of the work material were observed. In observation of the cutting edge 10 minutes after the start of cutting, the flank wear was 0.05 mm.
And normal wear, and almost no welding of the work material was observed. On the other hand, in the comparative tip, cutting start 3
In the cutting edge observation after a minute, a large peeling of the diamond coating layer was observed, and the flank wear amount was also 0.16 mm.
Cutting was stopped because the work material was also largely welded.
【0020】切削試験後のチップを切断、ラッピング
後、基材−ダイヤモンド被覆層界面を光学顕微鏡にて観
察した所、本発明切削チップにおいては、炭化珪素ウイ
スカーがダイヤモンド被覆層に最大3.5μmの深さに
て侵入し、界面において、50μmの基準長さ内におい
ての微視的面粗度は、Rmax にて、4〜5μmであっ
た。なお比較チップにおいては、基材−ダイヤモンド被
覆層界面に、炭化珪素ウイスカーは存在せず、また基材
のダイヤモンド被覆層中への侵入は観察されなかった。After cutting and lapping the chip after the cutting test, the interface between the substrate and the diamond coating layer was observed with an optical microscope. As a result, in the cutting tip of the present invention, silicon carbide whiskers were applied to the diamond coating layer at a maximum of 3.5 μm. It penetrated at a depth, and at the interface, the microscopic surface roughness within a reference length of 50 μm was 4 to 5 μm in Rmax. In the comparative chip, no silicon carbide whiskers were present at the interface between the substrate and the diamond coating layer, and no penetration of the substrate into the diamond coating layer was observed.
【0021】実施例3 母材として、JIS−K10超硬合金(具体的にはWC
−5%Co)で形状がSPG422のスローアウエイチ
ップを作製した。本チップを、鏡面加工した後、レーザ
ー加工により、 (1)深さ3.0μm、幅1.5μmの溝を、2μm間
隔の格子状に加工 (2)深さ6.0μm、幅3.0μmの溝を、3μm間
隔の格子状に加工 した本発明チップ(1)〜(2)を作製した。おのお
の、計算上の微視的Rmax は、それぞれ3、6μmとな
る。前記と同様、本チップを、2gの粒径8〜16μm
のダイヤモンド砥粒とともにエチルアルコール中に投
じ、15分間超音波振動を与えた。このようにして作製
したチップの表面に公知の熱フィラメントCVD法を用
いて、 反応管容器 : 直径200mmの石英管 フィラメント材質 : 金属W フィラメント温度 : 2400℃ フィラメント−チップ表面間距離 : 7.0mm 全圧 : 100Torr 雰囲気ガス : H2 −1.5%CH4 ガス 時間 : 7時間 の条件にて、6μmのダイヤモンド被覆層を形成した。
また、比較のため、同一形状、同一組成でレーザー加工
処理を行わなかったチップに、ダイヤモンド被覆層を設
けた比較チップを準備した(比較チップには、超音波処
理は行わなかった)。なお、本試験において、基材の表
面に析出した被覆層は、ラマン分光分析法によって、ダ
イヤモンド被覆層であることを確認した。Example 3 JIS-K10 cemented carbide (specifically, WC
(-5% Co) to form a throwaway chip having a shape of SPG422. This chip is mirror-finished and then laser-processed. (1) Grooves having a depth of 3.0 μm and a width of 1.5 μm are formed into a lattice shape at intervals of 2 μm. The chips (1) and (2) of the present invention in which the grooves were processed into a lattice shape at 3 μm intervals were produced. In each case, the calculated microscopic Rmax is 3, 6 μm. In the same manner as described above, this chip is
And the mixture was poured into ethyl alcohol together with the diamond abrasive grains, and subjected to ultrasonic vibration for 15 minutes. Using a known hot filament CVD method on the surface of the chip thus produced, a reaction tube container: a quartz tube having a diameter of 200 mm Filament material: Metal W Filament temperature: 2400 ° C. Distance between filament and chip surface: 7.0 mm Pressure: 100 Torr Atmospheric gas: H 2 -1.5% CH 4 gas Time: 7 hours A 6 μm diamond coating layer was formed.
For comparison, a comparative chip having a diamond coating layer provided on a chip having the same shape and the same composition but not subjected to the laser processing was prepared (the comparative chip was not subjected to ultrasonic treatment). In this test, it was confirmed that the coating layer deposited on the surface of the substrate was a diamond coating layer by Raman spectroscopy.
【0022】これらの切削チップを用いて、 被削材 : Al−12wt%Si合金(丸棒) 切削速度 : 1000m/min 送り : 0.15mm/rev. 切込み : 1.5mm の条件にて断続切削を行い、5分後および30分後の逃
げ面摩耗量、切り刃の摩耗状態、被削材の溶着状態を観
察したところ、本発明切削チップ(1)〜(4)は、切
削開始10分後の切れ刃観察において、逃げ面摩耗量は
それぞれ0.02、0.03で、正常摩耗であり、また
被削材の溶着はほとんど見られなかった。これに対して
比較チップでは、切削開始5分後の切れ刃観察におい
て、ダイヤモンド被覆層の大きな剥離が見られ、逃げ面
摩耗量も0.24mmとなり、被削材も大きく溶着して
いるため切削を中止した。Using these cutting tips, work material: Al-12 wt% Si alloy (round bar) Cutting speed: 1000 m / min Feed: 0.15 mm / rev. Cutting: Intermittent cutting was performed under the condition of 1.5 mm, and after 5 minutes and 30 minutes, the amount of flank wear, the state of wear of the cutting blade, and the state of welding of the work material were observed. In (4) to (4), when the cutting edge was observed 10 minutes after the start of cutting, the flank wear amounts were 0.02 and 0.03, respectively, indicating normal wear, and almost no welding of the work material was observed. . On the other hand, in the comparative tip, when the cutting edge was observed 5 minutes after the start of cutting, a large peeling of the diamond coating layer was observed, the flank wear was 0.24 mm, and the work material was also largely welded. Ceased.
【0023】切削試験後のチップを切断、ラッピング
後、基材−ダイヤモンド被覆層界面を光学顕微鏡にて観
察した所、本発明切削チップにおいては、基材である超
硬合金がダイヤモンド被覆層に最大3μmの深さにて侵
入しており、また、50μm基準範囲内での微視的面粗
度は、それぞれ、Rmax で2.8、6.1μmとなり、
被覆前測定した値とほぼ同じになっていることを確認し
た。比較チップにおいては、基材のダイヤモンド被覆層
中への侵入および凹凸の存在は観察されなかった。After cutting and lapping the chip after the cutting test, the interface between the base material and the diamond coating layer was observed with an optical microscope. It penetrates at a depth of 3 μm, and the microscopic surface roughness within the 50 μm reference range is 2.8 and 6.1 μm in Rmax, respectively.
It was confirmed that the value was almost the same as the value measured before coating. In the comparative chip, no intrusion into the diamond coating layer of the base material and the presence of irregularities were not observed.
【0024】[0024]
【発明の効果】本発明ダイヤモンドおよび/またはダイ
ヤモンド状炭素被覆硬質材料においては、いずれも従来
のダイヤモンドおよび/またはダイヤモンド状炭素被覆
硬質材料と比べると、良好な耐剥離性を持つことがわか
る。本実施例1、2における方法は、基材の特性を生か
した表面処理であるが、本実施例3における方法は基材
を選ばない応用力に優れた方法であるため、炭化珪素、
Al2O3 を主体とした各種セラミック、サーメットな
どを基材とした場合も、良好な結果が得られることは、
十分予想できる。また、本実施例は、切削工具の場合を
紹介したが、TABツールなどの耐摩工具や機械部品に
応用した場合も、良好な結果が得られることは、十分予
想できる。そのほか、エンドミル、ドリル、プリント基
板穴あけ用ドリル、リーマーにも応用できる。It can be seen that the diamond and / or diamond-like carbon-coated hard material of the present invention has better peeling resistance as compared with the conventional diamond and / or diamond-like carbon-coated hard material. The methods in Examples 1 and 2 are surface treatments that make use of the characteristics of the base material. However, since the method in Example 3 is a method excellent in applied power regardless of the base material, silicon carbide,
Even when various ceramics mainly composed of Al 2 O 3 , cermets and the like are used as base materials, good results can be obtained.
Can be expected enough. In this embodiment, the case of the cutting tool has been introduced. However, it can be expected that good results can be obtained also when applied to a wear-resistant tool such as a TAB tool or a mechanical part. In addition, it can be applied to end mills, drills, drills for drilling printed circuit boards, and reamers.
【図1】本発明の被覆層−基材界面の状態を模式的に示
す概念図である。FIG. 1 is a conceptual diagram schematically showing a state of a coating layer-substrate interface of the present invention.
【図2】図1に示めされる状態を直線に擬似化した説明
図である。FIG. 2 is an explanatory diagram in which the state shown in FIG. 1 is simulated as a straight line.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C30B 29/04 C30B 29/04 P Q (58)調査した分野(Int.Cl.6,DB名) C23C 16/00 - 16/56 C23C 14/00 - 14/58 C01B 31/06 C04B 41/87 C30B 29/04 ──────────────────────────────────────────────────続 き Continuation of front page (51) Int.Cl. 6 identification code FI C30B 29/04 C30B 29/04 P Q (58) Field surveyed (Int.Cl. 6 , DB name) C23C 16/00-16 / 56 C23C 14/00-14/58 C01B 31/06 C04B 41/87 C30B 29/04
Claims (8)
/またはダイヤモンド状炭素被覆層を形成してなる被覆
硬質材料において、 (1)基材表面に微視的凹凸が存在し、 (2)凸部が、ダイヤモンドおよび/またはダイヤモン
ド状炭素被覆層−基材界面において、基準長さを50μ
mとしたとき、この基準長さ内の面粗度がRmaxにて
0.5〜30μmであり、 (3)ダイヤモンドおよび/またはダイヤモンド状炭素
被覆層中に、凸部が少なくとも0.2μm侵入してお
り、 (4)かつ侵入する物質の形状が、アスペクト比が1.
5以上の柱状形状である ことを特徴とするダイヤモンド
またはダイヤモンド状炭素被覆硬質材料。1. A coated hard material formed by forming a diamond and / or diamond-like carbon coating layer on the surface of a hard material, wherein (1) microscopic unevenness is present on the surface of the base material, and (2) convex portions. Has a reference length of 50 μm at the diamond and / or diamond-like carbon coating layer-substrate interface.
when the m, Ri 0.5~30μm der surface roughness in the reference length is at Rmax, (3) diamond and / or diamond-like carbon
At least 0.2 μm of protrusions penetrate into the coating layer
Ri, (4) and the shape of the invading material, the aspect ratio is 1.
A diamond or diamond-like carbon-coated hard material having a columnar shape of 5 or more .
/またはダイヤモンド状炭素被覆層を形成してなる被覆
硬質材料において、 (1)基材表面に微視的凹凸が存在し、 (2)凸部が、ダイヤモンドおよび/またはダイヤモン
ド状炭素被覆層−基材界面において、基準長さを50μ
mとしたとき、この基準長さ内の面粗度がRmaxにて
0.5〜30μmであり、 (3) ダイヤモンドおよび/またはダイヤモンド状炭素
被覆層中に、凸部が少なくとも0.2μm侵入してお
り、 (4)かつ侵入する物質の形状が針状形状である ことを
特徴とするダイヤモンドまたはダイヤモンド状炭素被覆
硬質材料。2. The method according to claim 1, wherein the surface of the hard material has diamond and
// Coating formed by forming diamond-like carbon coating layer
In the hard material, (1) microscopic unevenness is present on the surface of the base material, and (2) the projection is formed of diamond and / or diamond.
The reference length is 50 μm at the interface between the carbon coating layer and the substrate.
m, the surface roughness within this reference length is Rmax
Is 0.5 to 30 m, (3) diamond and / or diamond-like carbon-coated layer, contact convex portion is at least 0.2μm intrusion
Ri, (4) and wherein the to holder Iyamondo or diamond-like carbon-coated hard material that shapes of the invading material is needle-shaped.
化珪素を含む結晶および/またはサイアロンであること
を特徴とする請求項1または2記載のダイヤモンドまた
はダイヤモンド状炭素被覆硬質材料。3. The diamond or diamond-like carbon-coated hard material according to claim 1, wherein the projection is a crystal and / or a sialon containing a silicon nitride crystal and / or a silicon nitride.
素を含む物質で構成されることを特徴とする請求項1ま
たは2記載のダイヤモンドまたはダイヤモンド状炭素被
覆硬質材料。4. The diamond or diamond-like carbon-coated hard material according to claim 1, wherein the projections are made of silicon carbide and / or a substance containing silicon carbide.
ングステンの炭化物または炭窒化物、(3)タングステ
ンと他の1種または2種以上の金属の炭化物または炭窒
化物および(4)これらを含む物質からなる群から選ば
れる少なくとも1種の材料で構成されることを特徴とす
る請求項1または2記載のダイヤモンドまたはダイヤモ
ンド状炭素被覆硬質材料。5. The method according to claim 1, wherein the convex portions are (1) tungsten, (2) a carbide or carbonitride of tungsten, (3) a carbide or carbonitride of tungsten and one or more other metals, and (4) 3. The diamond or diamond-like carbon-coated hard material according to claim 1, wherein the hard material is composed of at least one material selected from the group consisting of substances containing these.
ーメット、(3)Al 2 O 3 、窒化珪素、炭化珪素など
の各種セラミック、または(4)これらの複合材料であ
ることを特徴とする請求項1〜5の何れかに記載のダイ
ヤモンドまたはダイヤモンド状炭素被覆硬質材料。 6. A hard material comprising: (1) a cemented carbide;
-Met, (3) Al 2 O 3 , silicon nitride, silicon carbide, etc.
Of various ceramics, or (4) a composite material of
A die according to any one of claims 1 to 5, wherein
Hard material coated with diamond or diamond-like carbon.
被覆層と基材との境界部において、凹凸部を形成する物
質が、基材と一体同一材料であることを特徴とする請求
項1〜6の何れかに記載のダイヤモンドまたはダイヤモ
ンド状炭素被覆硬質材料。 7. Diamond or diamond-like carbon
An object that forms irregularities at the boundary between the coating layer and the substrate
The quality is the same material as the substrate.
Item 7. A diamond or a diamond according to any one of Items 1 to 6.
Hard carbon-coated hard material.
被覆層と基材との境界部において、凹凸部を形成する物
質が、基材と同一材料であるが、組成が異なる物質であ
ることを特徴とする請求項1〜7の何れかに記載のダイ
ヤモンドまたはダイヤモンド状炭素被覆硬質材料。 8. Diamond or diamond-like carbon
An object that forms irregularities at the boundary between the coating layer and the substrate
It is the same material as the base material, but with a different composition.
The die according to any one of claims 1 to 7, wherein
Hard material coated with diamond or diamond-like carbon.
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3023495A JP2987955B2 (en) | 1991-02-18 | 1991-02-18 | Diamond or diamond-like carbon coated hard material |
PCT/JP1991/001359 WO1992005904A1 (en) | 1990-10-05 | 1991-10-04 | Hard material clad with diamond, throwaway chip, and method of making said material and chip |
EP91917335A EP0504424B1 (en) | 1990-10-05 | 1991-10-04 | Hard material clad with diamond, throwaway chip, and method of making said material and chip |
DE69131846T DE69131846T2 (en) | 1990-10-05 | 1991-10-04 | HARD MATERIAL CLOTHED WITH DIAMOND, DISPOSABLE INSERT, AND METHOD FOR PRODUCING THIS MATERIAL AND INSERT |
KR1019920701315A KR950013501B1 (en) | 1990-10-05 | 1991-10-04 | Drill of diamond-coated sintered body |
US07/910,094 US5328761A (en) | 1990-10-05 | 1991-10-04 | Diamond-coated hard material, throwaway insert and a process for the production thereof |
PCT/JP1991/001542 WO1992014689A1 (en) | 1991-02-18 | 1991-11-11 | Diamond-clad hard material, throwaway tip, and method of making said material and tip |
CA 2074482 CA2074482C (en) | 1991-02-18 | 1991-11-11 | Diamond-coated hard material, throwaway insert and a process for the production thereof |
CA002060823A CA2060823C (en) | 1991-02-08 | 1992-02-07 | Diamond-or diamond-like carbon-coated hard materials |
EP92301144A EP0500253B2 (en) | 1991-02-18 | 1992-02-12 | Diamond- or diamond-like carbon coated hard materials |
DE69223075T DE69223075T3 (en) | 1991-02-18 | 1992-02-12 | Diamond-coated or diamond-coated carbon-coated hard materials |
US08/178,622 US5391422A (en) | 1991-02-18 | 1994-01-07 | Diamond- or Diamond-like carbon-coated hard materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3023495A JP2987955B2 (en) | 1991-02-18 | 1991-02-18 | Diamond or diamond-like carbon coated hard material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04263074A JPH04263074A (en) | 1992-09-18 |
JP2987955B2 true JP2987955B2 (en) | 1999-12-06 |
Family
ID=12112083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3023495A Expired - Lifetime JP2987955B2 (en) | 1990-10-05 | 1991-02-18 | Diamond or diamond-like carbon coated hard material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2987955B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69425459T2 (en) * | 1993-05-25 | 2001-04-12 | Ngk Spark Plug Co., Ltd. | Ceramic-based substrate and process for its manufacture |
US5585176A (en) | 1993-11-30 | 1996-12-17 | Kennametal Inc. | Diamond coated tools and wear parts |
EP0984077A3 (en) | 1998-09-04 | 2003-08-13 | Ngk Spark Plug Co., Ltd | Diamond-coated hard metal member |
KR20100086527A (en) * | 2009-01-23 | 2010-08-02 | 한국과학기술연구원 | Ceramic body coated with diamond layer and preparation method thereof using two-phase composite |
JP2014104551A (en) * | 2012-11-28 | 2014-06-09 | Osg Corp | Cutting tool and manufacturing method thereof |
JP6515387B2 (en) * | 2015-09-15 | 2019-05-22 | 日本製鉄株式会社 | Carbide tool and method of manufacturing the same |
-
1991
- 1991-02-18 JP JP3023495A patent/JP2987955B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04263074A (en) | 1992-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5391422A (en) | Diamond- or Diamond-like carbon-coated hard materials | |
EP0503822B2 (en) | A diamond- and/or diamond-like carbon-coated hard material | |
KR950004663B1 (en) | Cutting tool of polycrystalline diamond and method of manufacturing the same | |
EP0504424B1 (en) | Hard material clad with diamond, throwaway chip, and method of making said material and chip | |
JPS61124573A (en) | Diamond-coated base material and its production | |
JP2987955B2 (en) | Diamond or diamond-like carbon coated hard material | |
JP2867694B2 (en) | Polycrystalline diamond cutting tool and its manufacturing method | |
JP3448884B2 (en) | Artificial diamond coating | |
JP2987956B2 (en) | Diamond or diamond-like carbon coated hard material | |
JPS61109628A (en) | Diamond coated tool | |
JP2964669B2 (en) | Boron nitride coated hard material | |
JP2557560B2 (en) | Polycrystalline diamond cutting tool and manufacturing method thereof | |
JP3519260B2 (en) | Hard member coated with diamond film with excellent peel resistance | |
JP3235206B2 (en) | Diamond cutting tool and manufacturing method thereof | |
JPH04261703A (en) | Polycrystal diamond cutting tool | |
CA2074482C (en) | Diamond-coated hard material, throwaway insert and a process for the production thereof | |
JP2987963B2 (en) | Boron nitride coated hard material | |
JP2987964B2 (en) | Boron nitride coated hard material | |
JPH0671503A (en) | Diamond cutting tool and its manufacture | |
JP3033169B2 (en) | Diamond-coated indexable insert and method for producing the same | |
JPH08151297A (en) | Production of diamond | |
JP3067259B2 (en) | Diamond coated hard material and method for producing the same | |
JPH0544036A (en) | Diamond coated hard material | |
JPH0788713A (en) | Drill covered with carbon film and manufacture thereof | |
JPH05253757A (en) | Diamond cutting tool and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071008 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081008 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091008 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101008 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111008 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111008 Year of fee payment: 12 |