JP2970340B2 - Explosion-proof sealing plate for sealed batteries - Google Patents

Explosion-proof sealing plate for sealed batteries

Info

Publication number
JP2970340B2
JP2970340B2 JP5241112A JP24111293A JP2970340B2 JP 2970340 B2 JP2970340 B2 JP 2970340B2 JP 5241112 A JP5241112 A JP 5241112A JP 24111293 A JP24111293 A JP 24111293A JP 2970340 B2 JP2970340 B2 JP 2970340B2
Authority
JP
Japan
Prior art keywords
explosion
plate
valve body
proof valve
proof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5241112A
Other languages
Japanese (ja)
Other versions
JPH06215747A (en
Inventor
善一郎 伊藤
邦夫 鶴田
哲哉 村上
幸正 丹羽
守 飯田
靖 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5241112A priority Critical patent/JP2970340B2/en
Publication of JPH06215747A publication Critical patent/JPH06215747A/en
Application granted granted Critical
Publication of JP2970340B2 publication Critical patent/JP2970340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、密閉型電池ことにリチ
ウム二次電池等の高エネルギー密度を有する電池の封口
に用いる、防爆封口板の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an explosion-proof sealing plate used for sealing a battery having a high energy density such as a sealed battery, particularly a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、AV機器あるいはパソコン等の電
子機器のポータブル化、コードレス化が急速に進んでお
り、これらの駆動用電源には、高容量化した各種のアル
カリ蓄電池、あるいはリチウム二次電池に代表される非
水二次電池等に、高エネルギー密度で負荷特性の優れた
密閉型電池としての期待が大きい。しかし、密閉型電池
は充電器を含めた機器の故障、あるいは誤使用等によ
り、電池内に異常にガスが発生して内圧が過大になり、
電池が破裂したり、使用機器等に損傷を与えることがあ
った。従って一般には、電池内圧が設定値を超えると、
ガスを排出して電池の破裂等を防止する、防爆安全装置
を付加している。一般には、封口板の内蓋板に設けた弁
孔を弾性弁体で押圧閉塞し、所定圧力で開閉するように
した復帰式の防爆封口板を用いるか、もしくは薄肉部を
設けた内蓋板(例えば、実開昭59-61465号公報)、ある
いは図16に示したように、薄い刺通可能な金属ダイヤ
フラム(実開昭54-137734号公報)、または金属と合成
樹脂のラミネートシート(実公昭59-15398号公報)など
の薄板状弁体42aを、キャップ状などの外部端子蓋と
一体にして、電池内圧が所定置以上に上昇すると、前記
薄板状弁体が点線42bのように湾曲し、刃突起43に
よって破断してガスを排出する、非復帰式の防爆封口板
が用いられている。密閉型アルカリ蓄電池系では両者
が、また電解液に有機溶媒を用い高密封性を要求され
る、非水二次電池系では後者が主に採用されている。
2. Description of the Related Art In recent years, portable and cordless electronic devices such as AV devices and personal computers have been rapidly advanced, and various types of high-capacity alkaline storage batteries or lithium secondary batteries have been used as power sources for driving these devices. Non-aqueous secondary batteries such as those described above have high expectations as sealed batteries having high energy density and excellent load characteristics. However, in sealed batteries, due to failure of equipment including the charger or misuse, gas is abnormally generated in the battery and the internal pressure becomes excessive,
The battery could explode or damage the equipment used. Therefore, in general, when the battery internal pressure exceeds the set value,
An explosion-proof safety device is added to prevent gas explosion by discharging gas. Generally, a return-type explosion-proof sealing plate in which a valve hole provided in an inner lid plate of a sealing plate is pressed and closed with an elastic valve body and opened and closed at a predetermined pressure, or an inner lid plate provided with a thin portion (For example, Japanese Utility Model Application Laid-Open No. 59-61465), or as shown in FIG. 16, a thin pierceable metal diaphragm (Japanese Utility Model Application Laid-Open No. 54-137734), or a laminate sheet of metal and synthetic resin (real When the internal pressure of the battery rises above a predetermined level, the thin plate-shaped valve body 42a is bent as shown by a dotted line 42b. Then, a non-returnable explosion-proof sealing plate is used, which is broken by the blade projection 43 to discharge gas. Both are used in a sealed alkaline storage battery system, and the latter is mainly used in a non-aqueous secondary battery system in which an organic solvent is required for an electrolyte and high sealing performance is required.

【0003】ところが、上述した高エネルギー密度の密
閉型二次電池を用いたときは、前記のような機器のトラ
ブルによって、過大な電圧・電流で充電・放電あるいは
外部短絡されると、エネルギー密度の高いこれらの電池
では、急激に温度上昇し、ガスが多量に発生しやすく、
前記防爆封口板を備えていても、発生したガスあるいは
電解液蒸気などを排気しきれずに、電池破裂に至るもの
があった。上記高エネルギー密度電池の中でも、非水二
次電池、殊に負極に炭素材あるいはリチウム等を、正極
にはリチウム含有金属酸化物(例えばLiCoO2)あ
るいは金属酸化物等を用い、電解液に有機溶媒を用いた
リチウム二次電池は、このような危険性が大きく、過充
電、過大電流充電、外部短絡等により、封口部の破損あ
るいは電池の破裂を生じることがあった。
However, when the above-described sealed secondary battery having a high energy density is used, if the battery is charged / discharged or excessively short-circuited with an excessive voltage / current due to the trouble of the above-described equipment, the energy density is reduced. In these high batteries, the temperature rises sharply and gas is likely to be generated in large quantities,
Even when the explosion-proof sealing plate is provided, the generated gas or electrolyte vapor cannot be exhausted completely, which may lead to battery rupture. Among the above high energy density batteries, non-aqueous secondary batteries, in particular, a carbon material or lithium for the negative electrode, a lithium-containing metal oxide (eg, LiCoO 2 ) or a metal oxide for the positive electrode, and an organic A lithium secondary battery using a solvent has such a large danger, and the sealing portion may be damaged or the battery may be ruptured due to overcharge, excessive current charge, external short circuit, or the like.

【0004】前記問題点の対策の一つとして、カメラの
駆動電源等に使用される円筒形リチウム一次電池に見ら
れるように、上記した薄板状弁体を備えた電池の封口板
あるいは封口体内に、例えば、実開平4-46359号公報、
米国特許4,855,195号、あるいは特開平2-207450号公報
(米国特許4,971,867号)の従来例等に開示されている
如く、薄いリング状、あるいは平板状のPTC素子(PT
C=Positive TemperatureCoefficientの略語)を、外部
端子板と蓋板等の間に装着する方法がある。このPTC
素子は設定値以上の電流が流れる等により、所定の温度
域を超えると桁違いに電気抵抗値が増大する正温度係数
の抵抗素子であって、例えばレイケム社から「ポリスイ
ッチ」の商品名で市販されているものがある。
As one of measures against the above problem, as seen in a cylindrical lithium primary battery used as a power supply for driving a camera or the like, a sealing plate or a sealing body of a battery provided with the above-mentioned thin valve element is provided. For example, Japanese Utility Model Laid-Open No. 4-46359,
As disclosed in U.S. Pat. No. 4,855,195 or Japanese Patent Application Laid-Open No. 2-207450 (U.S. Pat. No. 4,971,867), a thin ring-shaped or flat PTC element (PTC element) is disclosed.
C = abbreviation of Positive Temperature Coefficient) between the external terminal plate and the cover plate. This PTC
The element is a positive temperature coefficient resistance element whose electrical resistance value increases by orders of magnitude when exceeding a predetermined temperature range due to the flow of a current equal to or greater than a set value, for example, from Raychem under the product name of `` Polyswitch '' Some are commercially available.

【0005】前述のようにPTC素子を内蔵させると、
例えば直径14〜17mmの電池に適用した場合、PTC
素子の構成条件にもよるが、約2.5〜4アンペア(以
下、Aと記す)以上の大きい電流が流れると、PTC素
子は短時間で動作温度に達して抵抗値が増大し、通電電
流は50〜200mA程度に大幅に減少維持される。従っ
て外部短絡あるいは過大電流での誤使用による、電池の
著しい損傷は防止することができる。しかし、上記リチウ
ム二次電池では、充電器故障等による無制御での過充
電、あるいは逆充電、多数直列過放電などの操作をされ
た場合、前記PTC素子の動作電流以下の電流値であっ
ても、電池の安全許容電流を超え、電池内圧力が上昇し
て破断弁が作動することが多いが、さらに継続して電池
に電流が流れた場合、電解液及び活物質の分解等を伴い
ながら電池温度が急激に上昇して、発火あるいは爆発的
破損に至るものが多くあり、破断弁にPTC素子を付加
した安全機構を装着しても、この問題点は残されてい
た。このように、電池に不適合な通電を継続することに
よって生ずる異常反応等により、過大量のガスあるいは
蒸気を発生させ、電池を破壊に至らせる現象を防止する
には、電池内圧を検知して通電電流を完全に遮断するの
が確実な手段であり、電池あるいは電池と類似構成の電
解コンデンサーを対象に幾つかの提案がなされている。
次にその一例を示す。
When the PTC element is built in as described above,
For example, when applied to a battery having a diameter of 14 to 17 mm, the PTC
When a large current of about 2.5 to 4 amperes (hereinafter referred to as A) or more flows, the PTC element reaches an operating temperature in a short time and the resistance value increases, depending on the configuration conditions of the element. Is greatly reduced and maintained at about 50 to 200 mA. Therefore, remarkable damage to the battery due to an external short circuit or erroneous use with an excessive current can be prevented. However, in the above-mentioned lithium secondary battery, when an operation such as overcharge without control due to a charger failure or the like, reverse charge, multiple series overdischarge, or the like is performed, the current value is equal to or less than the operating current of the PTC element. Also, the safety valve current exceeds the allowable current, the internal pressure of the battery rises, and the break valve often operates.However, if the current continues to flow through the battery, the decomposition of the electrolyte and the active material may occur. In many cases, the battery temperature rises sharply, resulting in ignition or explosive damage. Even if a safety mechanism in which a PTC element is added to a break valve is installed, this problem remains. As described above, in order to prevent a phenomenon that an excessive amount of gas or vapor is generated due to an abnormal reaction caused by continuing unsuitable power supply to the battery and the battery is destroyed, the battery internal pressure is detected and the power supply is performed. It is a reliable means to completely cut off the current, and several proposals have been made for a battery or an electrolytic capacitor having a similar structure to a battery.
Next, an example is shown.

【0006】米国特許4,992,344号あるいは同4,937,153
号などに開示されているものは、アルカリマンガン乾電
池などの二重缶封口方式の電池において、発電要素を収
納した内缶底部に、外部端子板を外装ケース等によって
接触固定せて導通させ、異常通電等によって前記内缶内
部に多量にガスが発生し内缶底面が外方に膨張変形する
と、前記外部端子板との接触が断たれて電流が遮断され
る構造としたものであり、通電による電池破損等の防止
を図ったものである。また上記二重缶封口方式におい
て、外部端子板と内缶底面の間に常時は外周縁が上方に
反った形状のリング状反転ばね接触片を挿入して接触導
通をさせ、内缶底面が膨張変形するとその押し上げ圧力
によって、前記反転ばね接触片が反転して接触が断た
れ、電流を遮断する案がある(米国特許4,028,478号な
ど)。
US Pat. No. 4,992,344 or 4,937,153
In the case of a double-sealed battery such as an alkaline manganese dry battery, an external terminal plate is contacted and fixed to the bottom of the inner can containing the power generating element with an outer case or the like to conduct electricity. When a large amount of gas is generated inside the inner can by energization or the like and the bottom surface of the inner can expands and deforms outward, the contact with the external terminal plate is cut off and the current is interrupted. This is to prevent battery damage and the like. In the double can sealing method, a ring-shaped inverting spring contact piece whose outer peripheral edge is always warped upward is inserted between the external terminal plate and the inner can bottom to make contact conduction, and the inner can bottom expands. When it is deformed, the pushing-up pressure causes the reversing spring contact piece to be reversed and the contact to be broken, thereby interrupting the current (US Pat. No. 4,028,478).

【0007】また米国特許3,617,386号、同5,026,615号
に見られるように、中央部に接点端子(裏面側に一方の
電極リード板を接続する)を備えた絶縁性で可撓性を有
するダイアフラム(樹脂封口体)と、その外方に空間部
を形成するように配設したキャップ状の外部端子板と
で、電池容器を密封すると共に、前記空間部に、両端が
外方に反った弾性金属接触板(スイッチばね)を挿入し
て、前記接点端子と外部端子板とを常時は接触導通させ
る構造、もしくは前記のものにおいて、ダイアフラムと
して中央部に接点端子を有し一方の電極の集電体を兼ね
た金属薄板製のものを用い、その外方に環状の絶縁リン
グを配設する構造としたものであり、電池内ガス圧力が
上昇すると、前記ダイアフラムは外方に膨張変形して前
記弾性金属接触板を平面状に変形させ、前記の接触導通
を断って電流を遮断する案がある。
As shown in US Pat. Nos. 3,617,386 and 5,026,615, an insulating and flexible diaphragm (resin) having a contact terminal at the center (one electrode lead plate is connected to the back side). The battery container is sealed by a sealing body) and a cap-shaped external terminal plate disposed so as to form a space outside thereof, and an elastic metal contact with both ends warped outward in the space. A structure in which a plate (switch spring) is inserted so that the contact terminal and the external terminal plate are always in contact with each other, or the above-mentioned structure has a contact terminal in the center as a diaphragm and a current collector for one electrode. It is made of a thin metal plate that also serves as a structure, and an annular insulating ring is provided outside thereof. When the gas pressure in the battery rises, the diaphragm expands and deforms outward and the elastic metal Flat contact plate Deformed, there is a proposal to cut off the current turned down the contact conduction.

【0008】またリチウム−酸化硫黄一次電池におい
て、封口体内部に所定圧力でガスを排気する復帰式弁機
構に加えて、極板群の中心に配設され正極キャップ端子
に接続された導電性チューブ下部端を、電池容器の底板
内面に絶縁して設けた正極リード接点に当接させて導通
回路を形成し、電池内圧力が異常上昇すると、前記電池
容器底板が外方に膨張変形して前記当接部を離間させ、
導通回路を遮断するものがある(米国特許3,939,011
号)。上記と異なる方式として、ピン状レバー(突起)
を外面側中央部に備えた弾性金属製のダイアフラムを内
蓋に用い、その上面に前記レバーが貫通する孔を設けた
外部端子板を被せて封口体とするものがあり、この封口
体を用いた電池を使用する際に、機器あるいは充電器の
電池ホルダーとして、その端子部にマイクロスイッチな
どの外部スイッチを備えたものを用い、異常通電によっ
て電池内圧力が上昇すると、前記ダイアフラムの外方膨
張と共にピン状レバーが外部端子板外面より突出して、
前記外部スイッチを押して作動させ、通電電流を遮断す
る案がある(米国特許3,622,397号)。
In addition, in the lithium-sulfur oxide primary battery, in addition to a reset valve mechanism for exhausting gas at a predetermined pressure inside the sealing body, a conductive tube disposed at the center of the electrode group and connected to the positive electrode cap terminal. The lower end is brought into contact with a positive electrode lead contact provided insulated on the inner surface of the bottom plate of the battery container to form a conduction circuit, and when the pressure inside the battery rises abnormally, the bottom plate of the battery container expands and deforms outward, and Separate the contact part,
Some interrupt the conducting circuit (US Pat. No. 3,939,011).
issue). As a method different from the above, a pin-shaped lever (projection)
An elastic metal diaphragm provided at the center of the outer surface side is used as an inner lid, and an upper surface thereof is covered with an external terminal plate provided with a hole through which the lever is provided to form a sealing body. When using a battery that has been used, use a battery holder equipped with an external switch such as a micro switch as the battery holder of the device or charger. If the pressure inside the battery rises due to abnormal energization, the diaphragm expands outward. At the same time, the pin-shaped lever protrudes from the outer surface of the external terminal board,
There is a plan to turn on the external switch to cut off the current (US Pat. No. 3,622,397).

【0009】一方、電解コンデンサーにおいても、通電
時の異常ガス発生による破裂損傷を防止する手段とし
て、封口蓋に設けた外部端子に接続された両電極のリー
ド片を内圧上昇によって外方に湾曲変形する封口蓋の張
力によって切断して、通電電流を遮断する方法が提案さ
れている。
On the other hand, in an electrolytic capacitor as well, as a means for preventing rupture damage due to abnormal gas generation during energization, the lead pieces of both electrodes connected to the external terminals provided on the sealing lid are bent outward by an increase in internal pressure. A method has been proposed in which a current is cut off by the tension of a sealing lid to be cut off.

【0010】一つの形態は、封口蓋に絶縁して設けた外
部端子に一端を固定した端子棒の他端を、電池容器内に
固定された剛性材質の遮断板の貫通孔を介して導出し、
その先端にコンデンサー素子のリード板を溶接等によっ
て固着した構造、あるいは前記端子棒の中間の一部を細
くする等によって弱点部を設けると共に、前記遮断板を
貫通して導出した先端に鍔部を設け、この鍔部に前記リ
ード板を固着した構造、または剛性材質の絶縁板に内部
端子を設けた端子板をコンデンサー素子上に固定し、前
記封口蓋の外部端子と内部端子を切り欠きを設ける等で
弱点部を形成した金属箔リード板を各端子に溶接するな
どで固着接続したもの等があり、通電によりコンデンサ
ー内のガス圧力が上昇して封口蓋が外方に湾曲変形する
と、前二者は封口蓋の張力と遮断板の切断作用を受け
て、端子棒とリード板が剥離する、あるいは端子棒の弱
点部が破断して電流を遮断し、後者は金属箔リード板が
破断して電流を遮断するものである(実開昭49-105852
号公報、実開昭49-110253号公報、実開昭47-11336号公報
など)。
In one embodiment, the other end of the terminal rod, one end of which is fixed to an external terminal provided insulated on the sealing lid, is led out through a through hole of a rigid blocking plate fixed in the battery container. ,
A structure in which a lead plate of a capacitor element is fixed to the end by welding or the like, or a weak point is provided by, for example, thinning a middle part of the terminal rod, and a flange is formed at the end that is led out through the blocking plate. A structure in which the lead plate is fixed to the flange portion, or a terminal plate in which internal terminals are provided on an insulating plate of a rigid material is fixed on the capacitor element, and the external terminal and the internal terminal of the sealing lid are notched. When the gas pressure inside the capacitor rises due to energization and the sealing lid bends outward and deforms, In response to the tension of the sealing lid and the cutting action of the blocking plate, the terminal bar and the lead plate are peeled off, or the weak portion of the terminal bar breaks and interrupts the current, and the latter breaks the metal foil lead plate. Cut off current A shall (Japanese Utility Model 49-105852
JP, JP-A-49-110253, JP-A-47-11336, etc.).

【0011】別の形態は、コンデンサー容器を外部端子
を設けた外ケース及び有底の内ケースからなる二重ケー
スとして、内圧力上昇時のコンデンサーの外観変形を防
止したものであり、外ケース内に収納され、周囲を樹脂
充填されたコンデンサー素子の片方の端面部に、底面を
有する金属性内ケース、または底面に設けた孔を塞ぎガ
ス圧力で移動する栓状の弁体と、その上面に橋渡し固定
したリード片とを備えた絶縁材製の内ケースを倒立状態
で被せて空間部を形成し、前記空間部にガス圧力が発生
した場合には、前記内ケース底面の変形を利用して、内
ケース内面に溶接接続したコンデンサー素子リード片を
張力破断する、または前記弁体がガス圧力により移動し
て橋渡しリード片を破断して、コンデンサー素子と外部
端子の間の電気回路を遮断する提案がある(実開昭57-2
6835号公報)。
In another embodiment, the capacitor case is formed as a double case including an outer case provided with an external terminal and an inner case having a bottom to prevent the appearance of the capacitor from being deformed when the internal pressure rises. In a metal inner case having a bottom surface, or a plug-shaped valve body that moves with gas pressure by closing a hole provided in the bottom surface, A space portion is formed by covering an inner case made of an insulating material with a bridge piece and a lead piece fixed in an inverted state, and when gas pressure is generated in the space portion, utilizing the deformation of the bottom surface of the inner case. The lead of the capacitor element welded to the inner surface of the inner case is broken by tension, or the valve element is moved by gas pressure to break the bridging lead, and the electric circuit between the capacitor element and the external terminal is broken. There is a proposal to cut off the (Japanese Utility Model 57-2
No. 6835).

【0012】また最近では、密閉型二次電池、その中で
もリチウム二次電池の過充電あるいは短絡時に生じる発
火、爆発を防止するために、電池内圧力が上昇すると作
動して電流を遮断する安全装置が、特開平2-112151号公
報、特開平2-288063号公報、(米国特許4,943,497号)
等に提案されている。これは前述した実開昭49-105852
号公報等に示された機構と類似のものであり、封口蓋の
代わりに内蓋を兼ねた安全弁を用い、また遮断板に相当
するリード遮断用ストリッパーを用いている。図18
(A)は電流遮断作動前を、図18(B)は作動後の状
態を示す実施例の側断面図である。図18(A)により
その構成を示すと、82は電池内圧の上昇によって外方
に変形する内蓋を兼ねた金属製の安全弁、84は絶縁体
83を介して安全弁に接して取り付けたリード遮断用ス
トリッパー、86は排気孔86aを設けたキャップ状の
外部端子板であり、正極板から導出されたリード板87
は、前記リード遮断用ストリッパーの孔85に挿通され
た、前記安全弁の突起82aの先端に溶接接続されてい
る。そして、正極リード板87は前記ストリッパー84
の下面及び安全弁の突起82aを橋渡しする状態となっ
ている。過充電等の通電によって、電池内のガス圧力が
所定値を超えると、前記安全弁の変形と共に前記溶接部
分に引張応力が生じるが、正極リード板87は前記スト
リッパー84に遮られ、図18(B)に示すように安全
弁の突起から剥離または破断して外れ、通電電流が遮断
される。なお、この安全装置に関して、樹脂製の中間嵌
合体を用い、前記安全弁と前記ストリッパーを凹凸嵌合
により取り付けるようにして組立作業性を向上させる
(特開平2-288063号公報)。また前記ストリッパーに複
数の通気孔を設ける、及び安全弁の表面に円弧とその終
端から外方に伸びた線状の薄肉部を設けて安全性の向上
を図る(実開平4-24262号公報)等の改良案も提案され
ている。
In recent years, in order to prevent ignition or explosion that occurs when an overcharge or short circuit occurs in a sealed secondary battery, especially a lithium secondary battery, a safety device that operates and shuts off current when the battery pressure increases. However, JP-A-2-112151, JP-A-2-88063, (US Pat. No. 4,943,497)
And so on. This is the above-mentioned actual opening 49-105852
This is similar to the mechanism shown in Japanese Patent Application Laid-Open Publication No. H10-15064, in which a safety valve also serving as an inner lid is used instead of a sealing lid, and a lead blocking stripper corresponding to a blocking plate is used. FIG.
FIG. 18A is a side sectional view of the embodiment before the current interruption operation, and FIG. 18B is a state after the operation. FIG. 18A shows the structure. Reference numeral 82 denotes a metal safety valve also serving as an inner lid that is deformed outward due to an increase in battery internal pressure, and reference numeral 84 denotes a lead cut-off mounted in contact with the safety valve via an insulator 83. Stripper 86 is a cap-shaped external terminal plate provided with an exhaust hole 86a, and a lead plate 87 derived from the positive electrode plate.
Is welded to the tip of the projection 82a of the safety valve, which is inserted into the hole 85 of the stripping stripper. The positive electrode lead plate 87 is connected to the stripper 84.
And the projection 82a of the safety valve is bridged. When the gas pressure in the battery exceeds a predetermined value due to current supply such as overcharging, a tensile stress is generated in the welded portion together with the deformation of the safety valve. However, the positive electrode lead plate 87 is blocked by the stripper 84, and the stripper 84 shown in FIG. As shown in ()), the protrusion of the safety valve peels or breaks and comes off, so that the current is interrupted. Regarding this safety device, an assembling workability is improved by using a resin-made intermediate fitting body and mounting the safety valve and the stripper by concave and convex fitting (Japanese Patent Laid-Open No. 2-288063). Also, a plurality of ventilation holes are provided in the stripper, and a circular arc and a linear thin portion extending outward from the end of the arc are provided on the surface of the safety valve to improve safety (Japanese Utility Model Laid-Open No. 4-426262). Improvements have also been proposed.

【0013】[0013]

【発明が解決しようとする課題】上述のような電流遮断
機構を設けた安全装置を用いれば、従来の破断弁あるい
はPTC素子と破断弁からなる安全装置では解決できな
かった、連続した過充電、逆充電等によって生ずる電池
の破裂、発火問題が解消可能である。しかし、高エネル
ギー密度を要望される小型、小径の密閉型二次電池、殊
にリチウム二次電池等に、上述した各種の電流遮断機構
を適用し、小型の電子機器等に用いようとした場合、電
池頭部の外部端子板等が変形する、遮断機構のスペース
効率が悪く電池エネルギー密度が低下する。また接触不
完全による回路抵抗の増大、不安定化または使用中落下
衝撃等による断線など、信頼性が低下しやすい。また、
遮断機構の生産安定性、特に電池量産時に組立品質が低
下しやすいものがある、などの課題があった。
The use of a safety device provided with the above-described current interruption mechanism, which cannot be solved by a conventional safety device comprising a break valve or a PTC element and a break valve, requires continuous overcharging, It is possible to solve the problem of battery rupture and ignition caused by reverse charging or the like. However, when the above-described various current interrupting mechanisms are applied to a small, small-diameter sealed secondary battery requiring a high energy density, particularly a lithium secondary battery or the like, and an attempt is made to use the same in a small electronic device or the like. In addition, the external terminal plate or the like on the battery head is deformed, the space efficiency of the shutoff mechanism is poor, and the battery energy density is reduced. In addition, reliability tends to decrease, such as an increase in circuit resistance due to incomplete contact, instability, or disconnection due to a drop impact during use. Also,
There have been problems such as the production stability of the shut-off mechanism, in particular, the quality of the assembly tends to deteriorate during mass production of batteries.

【0014】従来の電流遮断機構の初例に示した米国特
許4,992,344号、同4,028,478号などに示された二重缶封
口方式のものは、容積効率が悪くなりエネルギー密度が
低下する。また小型化した場合は加工精度上の問題など
で、接触抵抗及び作動状態が不安定となりやすい。次の
米国特許5,026,615号、同3,617,386号等の反った弾性金
属接触板とダイアフラムを用いたスイッチ方式は、小径
の電池に適用した場合、組立工程が複雑となって組立作
業性が低下し、接触抵抗も不安定となりやすい。また遮
断機構を収納する封口部分の容積占有率が大きくなりや
すい。米国特許3,939,011号に示されたものは、キャッ
プ端子に接続された導電性チューブ下部端を、電池容器
底面に設けた正極リード接点に当接導通させる方式であ
るため、電池組立精度の影響を受けて接触不良あるいは
遮断作動圧変動を生じやすい。また、電池容器底面等に
外部衝撃を受けると遮断作動、不良を生じたり、遮断時
に電池は底面が膨張して大きくなるなどの課題があっ
た。
The double can-sealing type disclosed in US Pat. Nos. 4,992,344 and 4,028,478, which are the first examples of the conventional current interrupting mechanism, has poor volumetric efficiency and lower energy density. In addition, when the size is reduced, the contact resistance and the operating state are likely to be unstable due to problems in processing accuracy and the like. In the following U.S. Pat.Nos. 5,026,615 and 3,617,386, a switch system using a warped elastic metal contact plate and a diaphragm, when applied to a small-diameter battery, the assembly process becomes complicated, and the assembly workability is reduced, and Resistance tends to be unstable. In addition, the volume occupancy of the sealing portion accommodating the blocking mechanism tends to increase. U.S. Pat.No. 3,939,011 discloses a method in which a lower end of a conductive tube connected to a cap terminal is brought into contact with a positive lead contact provided on a bottom surface of a battery container, and thus is affected by battery assembly accuracy. Contact failure or fluctuations in the cutoff operating pressure are likely to occur. Further, when an external impact is applied to the bottom surface of the battery container or the like, there is a problem that a shut-off operation or a failure occurs, or the bottom surface of the battery expands and becomes large when shutting off.

【0015】以上述べた従来の提案のものは接触導通式
であるため、組立時の精度及び保存環境の影響を受けて
接触抵抗値が変動しやすく、正常使用時の充・放電特性
を低下させるので、高エネルギー密度を要求される電池
には不適当なものであった。上述各例とは異なる構造と
して、米国特許3,622,397号に記載された、電池側のピ
ン状レバーの動きで外部スイッチを作動させる方式は、
電池構成は簡単になるが、スイッチを設けた専用の電池
ホルダー以外では機能せず、危険性が残るので実用上問
題がある。
Since the conventional proposal described above is a contact conduction type, the contact resistance value is liable to fluctuate due to the influence of the accuracy at the time of assembly and the storage environment, and the charge / discharge characteristics during normal use are reduced. Therefore, it was unsuitable for batteries requiring high energy density. As a structure different from each of the above examples, a method of operating an external switch by movement of a pin-shaped lever on the battery side, described in U.S. Patent No. 3,622,397,
Although the battery configuration is simplified, it does not function except for a dedicated battery holder provided with a switch, and poses a practical problem since danger remains.

【0016】電解コンデンサーの改良案である実開昭49
-105852号公報等のものは、上述したように、内圧によ
る封口蓋の湾曲張力によって端子棒あるいは金属箔リー
ド板を剥離、または破断させる構造なので、接触抵抗変
動による導通不良は生じないが、封口蓋が膨れて外形が
大きくなること、高さ方向の寸法が大きくなり容積効率
を低下させるなどの理由で、小型高エネルギー密度電池
に採用するのは困難であった。また、実開昭57-26835号
公報のものは、二重容器式であり封口蓋の変形は無い
が、容積効率は大幅に低下するので実用性に乏しいもの
であった。
[0016] Shokai Shokai 49, a proposal for improvement of electrolytic capacitors
As described above, since the terminal rod or the metal foil lead plate is peeled or broken by the bending tension of the sealing lid due to the internal pressure as described above, the conduction failure does not occur due to the change in contact resistance. It has been difficult to employ a small high-energy-density battery because the lid is swollen and the outer shape becomes large, the dimension in the height direction becomes large, and the volume efficiency is reduced. Further, Japanese Utility Model Laid-Open No. 57-26835 discloses a double-container type with no deformation of the sealing lid, but the volume efficiency is greatly reduced, so that the practicality is poor.

【0017】前述の特開平2-112151号公報とその改良案
に提示されたものは、図18のように、電池内圧上昇時
に破断あるいは剥離される正極リード板87が、安全弁
82に並行、平面的に取り付けられるので、上記電解コ
ンデンサーの改良例と比べて、安全装置の占有面積が比
較的少なくて済み、安全装置作動時(図18(B)参
照)の外部端子板の湾曲変形も解消されている。この安
全装置は前述のように、安全弁の突起82aに正極リー
ド板87を溶接接続してあり、電池内圧力上昇時の電流
遮断作動圧力は、前記溶接部の破断、剥離強度と蓋板を
兼ねた安全弁の引張応力との相関性で定まり、その溶接
強度の変動は作動圧力の大きな変動因子となる。従って
溶接強度とリード板の強度(厚さ、材質)は、一定値に
することが望ましく、安全性を確保するためにはあまり
大きくすることはできない。然るに、前記安全装置を封
口板として電池を密閉する場合、正極リード板は1〜2
回折曲され、絶縁ガスケットを介して電池容器の開口端
に押し込まれ、容器開口端の折曲によって締着固定され
る。このとき、リード板に生じた折り曲げ応力は、前記
溶接部に引張,押圧力となって加わり、溶接強度を低下
させて前記作動圧力を変動させたり、溶接部が外れやす
かった。
As shown in the above-mentioned Japanese Patent Application Laid-Open No. 2-112151 and its improvement, as shown in FIG. 18, a positive electrode lead plate 87, which is broken or peeled off when the internal pressure of the battery rises, is parallel to the safety valve 82 and is flat. As a result, the safety device occupies a relatively small area as compared with the above-described modified example of the electrolytic capacitor, and the bending deformation of the external terminal plate during operation of the safety device (see FIG. 18B) is also eliminated. ing. As described above, in this safety device, the positive electrode lead plate 87 is welded to the projection 82a of the safety valve, and the current interruption operating pressure when the internal pressure of the battery rises is the same as the rupture and peel strength of the welded portion and the lid plate. It is determined by the correlation with the tensile stress of the safety valve, and the fluctuation of the welding strength is a large factor of the operating pressure. Therefore, the welding strength and the strength (thickness, material) of the lead plate are desirably set to a constant value, and cannot be too large to ensure safety. However, when the battery is sealed using the safety device as a sealing plate, the positive electrode lead plate is
It is bent and pushed into the open end of the battery container via the insulating gasket, and is fastened and fixed by bending the open end of the container. At this time, the bending stress generated in the lead plate was applied as tension and pressing force to the welded portion, thereby reducing the welding strength and fluctuating the operating pressure, and the welded portion was likely to come off.

【0018】この安全装置(封口板)を、前記リチウム
二次電池など低引火点の有機溶媒を主体とした電解液を
用いる電池に適用した場合は、電解液への引火事故を防
止するために、通常この種の非水電池で実施されている
ように、安全弁の突起とリード板の溶接接続を先に行
い、その後電解液注液工程を経て封口加工を行うように
する必要がある。しかし、そのために前記溶接部に加え
られる引張力,押圧力は、リード折り曲げ応力によるも
のと、さらに注液工程での電池保持、搬送装置等から受
ける機械的ストレスが付加されたものとなるので、前述
のように溶接接続強度を一定値にしても、電流遮断作動
圧力の変動は大きくなり、また組立完成電池の中に前記
溶接部外れによる不導通電池の発生率も高くなる傾向が
あった。さらに電池使用中の落下、振動等によっても容
易に電流遮断状態となるものがあった。この安全装置の
前記工程上の問題点改良策として、図19(A)及び
(B)に示すように、アルミニウム製のリード遮断用ス
トリッパー94の中央の孔94bから導出された、アル
ミニウム製の弁体の突起92aの先端に、リード板に代
えて、前記孔94bより大径のアルムニウム箔(厚さ
0.1mm程度)製で低強度の補助端子板95を点溶接9
6し、この補助端子板の上面にアルミニウム製の正極リ
ード板97を図示のように載置して、前記孔の径より外
周側の補助端子板面上のa,b点の位置で、前記リード
板と補助端子板及びストリッパーを、レーザー,スポッ
ト溶接機等で溶接接続する方法がある。
When this safety device (sealing plate) is applied to a battery using an electrolyte mainly composed of a low flash point organic solvent, such as the above-mentioned lithium secondary battery, it is necessary to prevent accidental ignition of the electrolyte. As is usually the case with a non-aqueous battery of this type, it is necessary to first perform the welding connection between the projection of the safety valve and the lead plate, and then perform the sealing process through an electrolyte injection step. However, the tensile force and the pressing force applied to the welded portion for this purpose are due to the bending stress of the lead and the mechanical stress received from the battery holding and transporting device in the liquid injection process is added. As described above, even if the welding connection strength is set to a constant value, the fluctuation in the current interruption operating pressure tends to increase, and the occurrence rate of non-conducting batteries due to detachment of the weld in the assembled batteries tends to increase. Further, there is a case where the current is easily cut off by a drop, vibration, or the like during use of the battery. As a measure for improving the above-mentioned problem in the process of the safety device, as shown in FIGS. 19A and 19B, an aluminum valve drawn out from a central hole 94b of an aluminum lead cut-off stripper 94. Instead of the lead plate, a low-strength auxiliary terminal plate 95 made of aluminum foil (having a thickness of about 0.1 mm) having a diameter larger than that of the hole 94b is spot-welded to the tip of the projection 92a of the body.
6. A positive electrode lead plate 97 made of aluminum is placed on the upper surface of the auxiliary terminal plate as shown in the figure, and at the positions of points a and b on the auxiliary terminal plate surface on the outer peripheral side of the diameter of the hole, There is a method in which a lead plate, an auxiliary terminal plate, and a stripper are welded and connected by a laser, a spot welding machine, or the like.

【0019】なお図において、93はストリッパーを支
持する軟質樹脂製の中間嵌合体、94aはストリッパー
に設けたガス通気孔を示す。このようにすれば電池組立
工程において、各溶接状態が適切であれば、弁体突起の
点溶接部96にリード板折り曲げ応力等の機械的ストレ
スが直接及ばないようにすることができる。しかし電池
量産時には、各部品の材質,表面状態、及び溶接機条件
に変動を生じ、前記3部品をa,b点で保留まりよく確
実,一体に溶接することは難しくなる。即ち、溶接条件
が弱くなると補助端子板とストリッパー間の溶接が不完
全となり、電池組立時にこの部分から剥離して補助端子
板が浮き上がり、前記弁体突起の点溶接部はリード板折
り曲げ等の機械的ストレスを直接受ける。溶接条件が強
すぎると、正極リード板に穴が開いて溶接強度が低下
し、リード板が外れやすくなる。このように、前記a,
b点の3部品一体溶接は、量産時に溶接ムラを生じやす
く、電池組立時あるいは電池使用中に導通不良が発生す
るなど、改善効果が不十分なものであった。
In the figure, 93 is an intermediate fitting made of a soft resin for supporting the stripper, and 94a is a gas vent hole provided in the stripper. In this manner, in the battery assembling step, if each welding state is appropriate, mechanical stress such as lead plate bending stress can be prevented from directly exerting on the spot welding portion 96 of the valve body projection. However, at the time of mass production of the battery, the material, surface condition, and welding machine conditions of each part fluctuate, and it is difficult to reliably and integrally weld the three parts at points a and b. That is, when the welding conditions are weak, the welding between the auxiliary terminal plate and the stripper becomes incomplete, the auxiliary terminal plate is separated from this portion during battery assembly, and the auxiliary terminal plate is lifted up. Suffering from direct stress. If the welding conditions are too strong, holes will be formed in the positive electrode lead plate, and the welding strength will be reduced, and the lead plate will easily come off. Thus, a,
The three-part integrated welding at point b was insufficient in improvement effect, for example, welding unevenness was likely to occur during mass production, and conduction failure occurred during battery assembly or during use of the battery.

【0020】以上述べたように、リチウム二次電池など
の高エネルギー密度の密閉型電池の過充電、逆充電等に
よる電池の破裂、発火を含めた防爆安全機能として、封
口体等に電池内圧上昇によって作動する、電流遮断機構
を設けるのが有効であるが、従来の電流遮断機構では、
電池外形が変形する、容積効率を低下させる(エネルギ
ー密度の低下)等の問題点があった。
As described above, as an explosion-proof safety function including overcharging and reverse charging of a high-energy-density sealed battery such as a lithium secondary battery and explosion-proof safety, the internal pressure of the battery is increased by a sealing body. It is effective to provide a current interrupt mechanism that operates by
There have been problems such as deformation of the battery outer shape and reduction of volumetric efficiency (reduction of energy density).

【0021】また、電池使用中に接触不良で電圧が変動
する、あるいは電池組立時に溶接接続部の強度が低下す
るなどで、遮断機構が不安定となり、電池の信頼性を低
下させる等多くの課題があった。
In addition, there are many problems such as a change in voltage due to poor contact during use of the battery, or a decrease in the strength of the welded joint at the time of battery assembly. was there.

【0022】本発明は、このような課題を解決するもの
で、過充電などによる電池内圧力の異常上昇時に作動す
る、電流遮断機構等の防爆機構を封口板内に組込み、封
口板単独で機能するようにして、電池組立時の機械的ス
トレスの影響を除き、量産を容易にすると共に、リチウ
ム二次電池等の密閉型電池に適した形態で、振動や落下
等の衝撃にも耐え、防爆機構の作動安定性にすぐれた、
密閉型電池用防爆封口板を提供することを目的とする。
The present invention solves such a problem, and incorporates an explosion-proof mechanism such as a current cut-off mechanism, which operates when an internal pressure of a battery is abnormally increased due to overcharge or the like, into a sealing plate, and functions as a single sealing plate. This eliminates the effects of mechanical stress during battery assembly, facilitates mass production, and is suitable for sealed batteries such as lithium secondary batteries. Excellent operational stability of the mechanism,
An object of the present invention is to provide an explosion-proof sealing plate for a sealed battery.

【0023】[0023]

【課題を解決するための手段】これらの課題を解決する
ために、本発明の防爆封口板は、絶縁リングあるいは絶
縁性のインナーガスケットを介して対極させた、金属製
の防爆弁体(電池内圧の上昇に伴い外方に変形する薄板
弁体)と、内端子板/または有突起端子蓋板/あるいは
有突起皿状蓋板とを、それぞれの面の中央付近で、超音
波溶着等によって設けた溶着部により電気的に接続して
形成した電流遮断機構等の防爆機能を、封口板内に組込
んで構成したものである。
In order to solve these problems, an explosion-proof sealing plate according to the present invention is provided with a metal explosion-proof valve body (internal pressure of a battery) which is countered via an insulating ring or an insulating inner gasket. A thin valve body which is deformed outwardly as it rises, and an inner terminal plate / or a protruding terminal cover plate / or a protruding dish-shaped cover plate are provided near the center of each surface by ultrasonic welding or the like. An explosion-proof function, such as a current interrupting mechanism formed electrically by a welded portion, is incorporated in the sealing plate.

【0024】その封口板の構成態様として、 (1) 外部端子板5と、防爆弁体1と、通気孔を有す
る内端子板3、並びに前記防爆弁体と内端子板の周縁間
に介在させた絶縁リング2と、通気孔を有するリード取
り付け蓋板4とを積重して、絶縁ガスケット6に収容し
たものであり、前記防爆弁体と内端子板中央付近に設け
た突起部3aとを、溶着部Sによって電気的に接続して
電流遮断機構を形成する。
The sealing plate includes: (1) an external terminal plate 5, an explosion-proof valve body 1, an inner terminal plate 3 having a vent hole, and an intervening member interposed between the explosion-proof valve body and the peripheral edge of the inner terminal plate. The insulating ring 2 and the lead mounting cover plate 4 having a ventilation hole are stacked and accommodated in an insulating gasket 6, and the explosion-proof valve body and the projection 3a provided near the center of the inner terminal plate are combined. Are electrically connected by the welding portion S to form a current interrupting mechanism.

【0025】(2) 外部端子板5と、防爆弁体1を、
断面が略L字形で絶縁性のインナーガスケット12内に
積重すると共に、このインナーガスケットの底部外周面
側に、通気孔を有する内端子板3を配設したものを、通
気孔並びに周縁に立ち上がり部14bを有する皿状蓋板
14内に収容し、前記皿状蓋板の立ち上がり部を内方に
折曲して、一体に締着構成したものであり、前記防爆弁
体と内端子板とを、溶着部Sによって電気的に接続して
電流遮断機構を形成する。
(2) The external terminal plate 5 and the explosion-proof valve body 1 are
An inner gasket 12 having a substantially L-shaped cross section and stacked in the insulating inner gasket 12 and having an inner terminal plate 3 having a ventilation hole on the bottom outer peripheral surface side of the inner gasket is raised to the ventilation hole and the periphery. The explosion-proof valve body and the inner terminal plate are housed in the dish-shaped lid plate 14 having the portion 14b, and the rising portion of the dish-shaped lid plate is bent inward to be integrally fastened. Are electrically connected by the welding portion S to form a current interrupting mechanism.

【0026】(3) 外部端子板5と防爆弁体1と、通
気孔を有し突起部34aを形成した有突起端子蓋板3
4、並びに防爆弁体と有突起端子蓋板の周縁間に介在さ
せた絶縁リング32とを積重して、絶縁ガスケット6に
収容したものであり、前記防爆弁体と有突起端子蓋板の
突起部とを、溶着部Sによって電気的に接続して電流遮
断機構を形成する。
(3) An external terminal plate 5, an explosion-proof valve body 1, and a protruding terminal cover plate 3 having a vent and having a protruding portion 34a.
4, the explosion-proof valve body and the insulating ring 32 interposed between the peripheral edges of the protruding terminal cover plate are stacked and accommodated in the insulating gasket 6. The projections are electrically connected to each other by the welds S to form a current interrupting mechanism.

【0027】(4) 外部端子板5と、防爆弁体1と
を、断面が略L字形で絶縁性のインナーガスケット12
内に積重したものを、通気孔並びに立ち上がり部44c
を有し、底面中央付近に突起部44aを形成した有突起
皿状蓋板44内に収容し、前記有突起皿状蓋板の立ち上
がり部を内方に折曲して、一体に締着構成したものであ
り、前記防爆弁体と有突起皿状蓋板の突起部とを、溶着
部Sによって電気的に接続して電流遮断機構を形成す
る。
(4) The outer terminal plate 5 and the explosion-proof valve element 1 are connected to each other by an inner gasket
The stacking in the inside, the vent and the rising portion 44c
And housed in a protruding dish-shaped lid plate 44 having a protruding portion 44a formed in the vicinity of the center of the bottom surface. The rising portion of the protruded dish-shaped lid plate is bent inward to be integrally fastened. The explosion-proof valve body and the protruding portion of the protruding dish-shaped lid plate are electrically connected by a welding portion S to form a current interrupting mechanism.

【0028】(5) 上記(1)〜(4)項の封口板構
成において、防爆弁体と、内端子板/または有突起端子
蓋板/あるいは有突起皿状蓋板との間に、厚さ及び機械
的強度が防爆弁体よりも小さい金属箔体52,62等を
介在させて溶着した、溶着部Sによって電気的に接続し
て電流遮断機構を形成する。
(5) In the sealing plate configuration of the above items (1) to (4), a thick plate is provided between the explosion-proof valve body and the inner terminal plate / or the protruding terminal cover plate / or the protruding dish-shaped cover plate. A current interrupting mechanism is formed by being electrically connected by a welded portion S, which is welded with metal foils 52, 62, etc., having smaller strength and mechanical strength than the explosion-proof valve body.

【0029】(6) 上記(5)項の態様において、防
爆弁体1と、中央付近に小孔3cを設けた内端子板3/
または有突起端子蓋板34/あるいは有突起皿状蓋板4
4との間に、前記小孔の径より大きい金属箔体52を介
在させ、金属箔体と前記内端子板等とは小孔の外周側で
溶着あるいは接着等によって固着Saすると共に、前記
金属箔と防爆弁体とは小孔内を通して、直接溶着し溶着
部Sを形成して、電気的に接続する。
(6) In the mode of the above item (5), the explosion-proof valve body 1 and the inner terminal plate 3/3 having a small hole 3c near the center are provided.
Or the protruding terminal cover plate 34 / or the protruding dish-shaped cover plate 4
4, a metal foil 52 larger than the diameter of the small hole is interposed, and the metal foil and the inner terminal plate and the like are fixed Sa by welding or bonding on the outer peripheral side of the small hole, and the metal The foil and the explosion-proof valve body are directly welded through the small holes to form a welded portion S and are electrically connected.

【0030】(7) 上記(1)〜(4)項の封口板態
様において、電流遮断機構を構成する際に、 溶着部Sの形成手段として超音波溶着を適用し、そ
の溶着強度を前記防爆弁体の破断強度よりも小さくす
る。
(7) In the sealing plate embodiment of the above items (1) to (4), when forming the current interrupting mechanism, ultrasonic welding is applied as a means for forming the welded portion S, and the welding strength is determined by the explosion proof. Make it smaller than the breaking strength of the valve body.

【0031】溶着される構成部材としてアルミニウム材
を用いる場合に、好ましくは一方の側もしくは双方の部
材材質として、マグネシウム及び/またはマンガンを添
加したアルミニウム合金を用いるか、あるいはアルミニ
ウム材よりも機械的強度が大で耐食性を有する金属を基
材として、表面にアルミニウム材の薄層を設けた複合金
属材を用いる。
When an aluminum material is used as the component to be welded, preferably, an aluminum alloy to which magnesium and / or manganese is added is used as one or both of the material of the members, or the mechanical strength is higher than that of the aluminum material. However, a composite metal material having a large and corrosion-resistant metal as a base material and a thin layer of an aluminum material provided on the surface is used.

【0032】 中央部付近の変形強度を、防爆弁体の
受圧面部の変形強度よりも大とした、内端子板または有
突起端子蓋板あるいは有突起皿状蓋板を用いる。
An inner terminal plate, a protruding terminal cover plate, or a protruding dish-shaped cover plate having a deformation strength near the center portion larger than a deformation strength of the pressure receiving surface portion of the explosion-proof valve body is used.

【0033】 内端子板または有突起端子蓋板あるい
は有突起皿状蓋板に設けた各突起部の高さを絶縁リング
あるいはインナーガスケットの底部厚さよりも低くし
て、溶着する際に防爆弁体を各突起部側にたわませて溶
着する。
The height of each protruding portion provided on the inner terminal plate or the protruding terminal cover plate or the protruding dish-shaped cover plate is made lower than the bottom thickness of the insulating ring or the inner gasket, and the explosion-proof valve body is used when welding. Is bent to the side of each projection and welded.

【0034】(8) 上記(1)、(2)項に示した内
端子板と、リード取り付け蓋板または皿状蓋板との接面
間に、導電性シール剤を塗着等によって介在させる。
(8) A conductive sealant is interposed between the inner terminal plate described in the above items (1) and (2) and the contact surface of the lead mounting lid plate or the dish-shaped lid plate by coating or the like. .

【0035】(9)防爆弁体または金属薄板弁体の溶着
部を除く受圧面の一部に、プレス加工、切削等によって
薄肉部を設ける。
(9) A thin portion is provided on a part of the pressure receiving surface excluding the welded portion of the explosion-proof valve body or the thin metal plate valve body by press working, cutting, or the like.

【0036】(10) 外部端子板と防爆弁体の間に、
リング状のPTC素子を配置する。
(10) Between the external terminal plate and the explosion-proof valve body,
A ring-shaped PTC element is arranged.

【0037】[0037]

【作用】このような構成の防爆封口板を用いることによ
り、電池が過充電、逆充電、外部短絡等の異常使用状態
となって、電池内圧力が上昇し所定圧力に達すると、前
記防爆弁体が外方(外部端子側)に変形する応力によっ
て、内端子板または有突起端子蓋板あるいは有突起皿状
蓋板との溶着部から、防爆弁体を剥離させる、もしくは
金属箔体を破断、剥離させて、前記電気的接続を遮断す
る。この電流遮断動作によって、通電による電池の急激
な温度上昇および破裂、爆発を電池の外観変形あるいは
容積効率低下を伴わずに、防止することができる。
By using the explosion-proof sealing plate having such a configuration, when the battery is in an abnormal use state such as overcharge, reverse charge, external short circuit or the like, and the internal pressure of the battery rises and reaches a predetermined pressure, the explosion-proof valve is closed. The explosion-proof valve body is peeled from the welded part with the inner terminal plate or the protruding terminal cover plate or the protruding dish-shaped cover plate due to the stress that the body is deformed outward (external terminal side), or the metal foil body is broken The electrical connection is cut off. This current interruption operation can prevent a sudden rise in temperature, rupture, or explosion of the battery due to energization without deforming the appearance of the battery or lowering the volumetric efficiency.

【0038】また、防爆封口板内部に電流遮断機能を持
たせたことによって、電極から導出されたリード板と防
爆封口板との、溶接等による接続を強くすることが可能
となって、前記量産組立時における組立不良等の課題を
解決することができる。
Further, by providing a current blocking function inside the explosion-proof sealing plate, the connection between the lead plate derived from the electrode and the explosion-proof sealing plate can be strengthened by welding or the like. Problems such as defective assembly during assembling can be solved.

【0039】さらに、前記溶着部を形成するに際し、防
爆弁体等の構成材として特定の金属材質を用い、超音波
溶着するなどによって、電池使用中には接続不良等のト
ラブルを生ずることが無く、電池内圧が所定値に達する
と防爆弁体を剥離させて、確実に電流遮断動作をさせる
ことができる。
Further, when forming the welded portion, a specific metal material is used as a constituent material of the explosion-proof valve body and the like, and ultrasonic welding or the like prevents troubles such as poor connection during use of the battery. When the battery internal pressure reaches a predetermined value, the explosion-proof valve body is peeled off, and the current interruption operation can be reliably performed.

【0040】以上のように、本発明の防爆封口板を適用
することによって、安全性と信頼性の高い密閉型電池を
生産することができる。
As described above, by using the explosion-proof sealing plate of the present invention, a sealed battery with high safety and reliability can be produced.

【0041】[0041]

【実施例】以下、図面とともに本発明の具体的な実施例
を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment of the present invention will be described below with reference to the drawings.

【0042】(実施例1)図1、図2および図3は、本
発明の構成態様1の密閉型電池用防爆封口板を示す図で
ある。この防爆封口板9は、可撓性を有する薄い金属製
の防爆弁体1、絶縁リング2、中央に突起部3aを設け
た金属製で通気孔3bを有する内端子板3、金属製で通
気孔4aを有するリード取り付け蓋板4、金属製の外部
端子板5及び絶縁ガスケット6より構成されている。防
爆弁体1は、絶縁リング2を介して内端子板3の上側に
位置し、その中央付近で内端子板3の突起部3aの上面
に、超音波溶着もしくは抵抗溶接、レーザ溶接等によっ
て溶着され、溶着部Sが形成されて電気的に接続されて
いる。
Example 1 FIGS. 1, 2 and 3 are views showing an explosion-proof sealing plate for a sealed battery according to a first embodiment of the present invention. The explosion-proof sealing plate 9 has a flexible thin metal explosion-proof valve body 1, an insulating ring 2, an inner terminal plate 3 having a vent 3b in the center provided with a projection 3a, and a metal through-hole. It is composed of a lead mounting lid plate 4 having pores 4a, a metal external terminal plate 5, and an insulating gasket 6. The explosion-proof valve body 1 is located above the inner terminal plate 3 via the insulating ring 2, and is welded to the upper surface of the projection 3a of the inner terminal plate 3 near the center thereof by ultrasonic welding, resistance welding, laser welding, or the like. Thus, a welded portion S is formed and electrically connected.

【0043】次に、この実施例1の防爆封口板が、電池
内圧の上昇に応じて電流を遮断する動作について図3
(A)および(B)を参照して説明する。
Next, the operation of the explosion-proof sealing plate of the first embodiment for interrupting the current in response to an increase in the internal pressure of the battery will be described with reference to FIG.
Description will be made with reference to (A) and (B).

【0044】防爆封口板は下面側のリ−ド取り付け蓋板
4の表面に、極板群10の一方の極板から導出されたリ
−ド板7と溶接接続され、極板群に電解液を注入後、電
池ケ−ス8の開口部内側に装着され、電池ケ−ス8の上
端をかしめて図示のように締着され、電池を密閉してい
る。
The explosion-proof sealing plate is welded to the surface of the lead mounting cover plate 4 on the lower surface side with a lead plate 7 derived from one of the electrode plates 10 and is connected to the electrode group by an electrolytic solution. Is inserted inside the opening of the battery case 8, the upper end of the battery case 8 is caulked and fastened as shown to seal the battery.

【0045】この電池が、過充電、短絡もしくは逆充電
等の不適切通電によって、ガス、蒸気等が発生し電池内
圧が上昇した場合は、この電池内圧はリ−ド取り付け蓋
板及び内端子板に設けられた通気孔4a,3bを通じて
防爆弁体1の内側に印加される。防爆弁体1は、その外
周部が絶縁ガスケット6を介して電池ケ−ス8によりか
しめられて固定されているため、電池内圧が所定の値に
達すると、図3(B)に示すように、その中央部が上方
に膨出し、その際の変形応力によって溶着部Sが剥離さ
れ、内端子板3との接続が解除されて通電電流は遮断さ
れる。
When this battery generates gas, steam, etc. due to improper energization such as overcharge, short circuit or reverse charge, and the internal pressure of the battery rises, the internal pressure of the battery is increased by the lead mounting cover plate and the internal terminal plate. Is applied to the inside of the explosion-proof valve body 1 through the ventilation holes 4a and 3b provided in the airbag. The explosion-proof valve body 1 is fixed by caulking its outer peripheral portion by a battery case 8 via an insulating gasket 6, and when the battery internal pressure reaches a predetermined value, as shown in FIG. The central portion bulges upward, the welded portion S is peeled off by the deformation stress at that time, the connection with the inner terminal plate 3 is released, and the current is cut off.

【0046】(実施例2)図4、図5および図6は、本
発明の構成態様2を示す図である。前記と同様の外部端
子板5および防爆弁体1を、ポリプロピレン等の樹脂を
略L字形で環状に成形した、絶縁性のインナ−ガスケッ
ト12内に積重載置すると共に前記インナ−ガスケット
の底部外周面に、通気孔3bを有する内端子板3を配設
し、前記防爆弁体1の中央付近で内端子板3(図4
(A)では、その突起部3a上面)と超音波溶着などに
よって溶着して、溶着部Sを形成し両者を電気的に接続
する。
(Embodiment 2) FIGS. 4, 5 and 6 show a second embodiment of the present invention. The same external terminal plate 5 and explosion-proof valve body 1 as described above are stacked and mounted in an insulating inner gasket 12 made of a resin such as polypropylene in a substantially L-shaped annular shape, and the bottom portion of the inner gasket. An inner terminal plate 3 having a vent 3b is provided on the outer peripheral surface, and the inner terminal plate 3 (FIG. 4) is provided near the center of the explosion-proof valve body 1.
In (A), the projection 3a is welded to the upper surface by ultrasonic welding or the like to form a welded portion S, and the two are electrically connected.

【0047】これらを、通気孔14a,周縁に立ち上が
り部14bを有する金属製の皿状蓋板14内に載置収容
した後、前記皿状蓋板の立ち上がり部14bを内方に折
曲、かしめ部14cを形成して一体に締着し、防爆封口
板11を構成する。前述の防爆弁体と内端子板を超音波
溶着によって接続する方法の一例を、図5(B)に示
す。
After these are placed and accommodated in a metal dish-shaped cover plate 14 having a vent hole 14a and a rising portion 14b on the periphery, the rising portion 14b of the dish-shaped cover plate is bent inward and crimped. The explosion-proof sealing plate 11 is formed by forming the portion 14c and fastening it together. An example of a method of connecting the above explosion-proof valve body and the inner terminal plate by ultrasonic welding is shown in FIG.

【0048】内端子板3の底面を固定台(アンビル)A
v上に置き、インナ−ガスケット12内に収容した防爆
弁体1をその上に載置し、超音波振動子に接続したホ−
ンHqの先端の荷重を調整して、防爆弁体の中央付近に
押し当て、超音波振動(例えば40KHz)を印加する
ことによって、防爆弁体と内端子板の各表面上で摩擦熱
によって溶着させ、溶着部Sを形成する。
The bottom surface of the inner terminal plate 3 is fixed to a fixing stand (anvil) A.
v, and the explosion-proof valve body 1 housed in the inner gasket 12 is mounted thereon and connected to the ultrasonic vibrator.
The weight of the tip of the explosion-proof Hq is adjusted, pressed against the vicinity of the center of the explosion-proof valve body, and ultrasonic vibration (for example, 40 KHz) is applied, thereby welding the surfaces of the explosion-proof valve body and the inner terminal plate by frictional heat. Then, a welded portion S is formed.

【0049】次に図6によって、この構成の防爆封口板
11を、円筒形のリチウム二次電池に適用した例を説明
する。防爆封口板の各構成材質については、負極板に接
続される場合はアルカリ蓄電池の正、負極と接続すると
きと同様に、ニッケル,鋼板表面にニッケル層を設けた
もの,ステンレス鋼などが特別の注意をせずに適用でき
る。しかし正極板と接続される場合は、高電位が印加さ
れ電解液によって腐食されるおそれが大きいので、耐食
性の良いアルミニウム、チタン、フェライト系の特定の
ステンレス鋼などを用いる必要があるが、電池内部抵抗
の増大を避けるために、少なくとも防爆弁体及び内端子
板(あるいは後述する有突起端子蓋板などを含む)につ
いて好ましくは、導電性の点で有利なアルミニウムある
いはアルミニウム合金を主体にした金属材を用いる。皿
状蓋板は正極リード板の材質と同系もしくは溶接性の良
いもの、例えばアルミニウム系リード板であれば、アル
ミニウム系もしくは表面にアルミニウム層を有する金属
板が適している。外部端子板は、ニッケル等の表面処理
をした鋼板,ステンレス鋼等を用いる。
Next, an example in which the explosion-proof sealing plate 11 of this configuration is applied to a cylindrical lithium secondary battery will be described with reference to FIG. As for the constituent materials of the explosion-proof sealing plate, when connected to the negative electrode plate, the same as when connecting to the positive and negative electrodes of an alkaline storage battery, nickel, a steel plate with a nickel layer on the surface, stainless steel, etc. Applicable without care. However, when connected to the positive electrode plate, a high potential is applied and there is a high possibility of corrosion by the electrolytic solution. Therefore, it is necessary to use aluminum, titanium, ferrite-based specific stainless steel with good corrosion resistance, etc. In order to avoid an increase in resistance, at least the explosion-proof valve body and the inner terminal plate (or including a protruding terminal cover plate described later) are preferably made of a metal material mainly made of aluminum or aluminum alloy which is advantageous in terms of conductivity. Is used. The dish-shaped lid plate is similar to the material of the positive electrode lead plate or has good weldability. For example, in the case of an aluminum-based lead plate, an aluminum-based or metal plate having an aluminum layer on the surface is suitable. As the external terminal plate, a steel plate or a stainless steel surface-treated with nickel or the like is used.

【0050】電池の構成は、リチウム複合酸化物粉末
(コバルト酸リチウムなど),黒鉛粉末,結着剤等をペ
ースト化してアルミニウム箔基材に塗着した正極板17
a、黒鉛粉末,結着剤等のペーストをステンレス鋼箔、
銅箔等の基材に塗着した(あるいはリチウム箔を基材に
張り付けたもの)負極板17cを、微多孔性ポリエチレ
ン膜等のセパレータ17bを介して巻回した極板群17
を、下部絶縁板16と共に、負極端子を兼ねた金属製の
電池ケース15内に装填し、上部絶縁板19を通して導
出した正極リード板(アルミニウム製)18の先端を、
前記絶縁ガスケット6に装入した防爆封口板11の皿状
蓋板(アルミニウム製)14の表面に、スポット溶接あ
るいはレーザ溶接等で溶接固定する。
The battery is composed of a positive electrode plate 17 made of a lithium composite oxide powder (such as lithium cobalt oxide), a graphite powder, a binder, etc., and applied to an aluminum foil substrate.
a, paste such as graphite powder, binder, etc.
An electrode plate group 17 in which a negative electrode plate 17c coated on a substrate such as a copper foil (or a lithium foil adhered to the substrate) is wound via a separator 17b such as a microporous polyethylene film.
Together with the lower insulating plate 16 in a metal battery case 15 also serving as a negative electrode terminal, and the tip of a positive electrode lead plate (aluminum) 18 led out through the upper insulating plate 19 is
The surface of the dish-shaped lid plate (made of aluminum) 14 of the explosion-proof sealing plate 11 inserted in the insulating gasket 6 is fixed by welding by spot welding or laser welding.

【0051】次に、無機溶質をエチレンカーボネート,
プロピレンカーボネートその他の単独あるいは複合有機
溶媒に溶解した非水電解液を所定量注入した後、前記正
極リード板を折曲して、前記防爆封口板11を電池ケー
スの開口端近くに設けた環状リブ15aの上面に挿入
し、次いで電池ケースの開口端を内方にかしめ締着(1
5b)することにより、密閉型電池とする。
Next, the inorganic solute was made of ethylene carbonate,
After injecting a predetermined amount of a non-aqueous electrolyte dissolved in propylene carbonate or another single or composite organic solvent, the positive electrode lead plate was bent, and the explosion-proof sealing plate 11 was provided near the opening end of the battery case. 15a, and then crimp the open end of the battery case inward and tighten (1).
5b) to obtain a sealed battery.

【0052】(実施例3)上記の実施例1及び実施例2
において、内端子板3と、皿状蓋板14もしくはリード
取り付け蓋板との間に、図5(A)の14eで示したよ
うに、アルミニウム粉または銀粉などをアクリル樹脂等
の樹脂溶液に分散した導電性シール剤を塗着介在させ
て、防爆封口板を構成する。これによって、前記金属部
品材質としてステンレス鋼等の表面接触抵抗の大きい材
料でも接面抵抗値を低下させ、高率放電時の電圧低下損
失を低滅できる。また、実施例1における内端子板とリ
ード取り付け蓋板との金属間接触部の密封性を高め、電
池の耐漏液性をさらに向上させる効果がある。
Embodiment 3 Embodiments 1 and 2 above
5A, aluminum powder or silver powder is dispersed in a resin solution such as acrylic resin between the inner terminal plate 3 and the dish-shaped lid plate 14 or the lead mounting lid plate, as shown by 14e in FIG. The explosion-proof sealing plate is formed by coating and applying the conductive sealing agent thus obtained. As a result, even if a material having a large surface contact resistance such as stainless steel is used as the metal component material, the contact surface resistance value can be reduced, and the voltage drop loss during high-rate discharge can be reduced. Further, there is an effect that the sealing property of the metal-to-metal contact portion between the inner terminal plate and the lead attachment cover plate in the first embodiment is improved, and the liquid leakage resistance of the battery is further improved.

【0053】(実施例4)図7は、本発明の構成態様3
の防爆封口板31の側断面を示す図である。この態様
は、実施例1における内端子板3とリード取り付け蓋板
に代えて、図示のように、通気孔34bと突出部34a
を設けた有突起端子蓋板34を採用するもので、有突起
端子蓋板34と防爆弁体1との間に介在させる絶縁リン
グとして、32で示す上下面にポリオレフィン系感熱接
着剤(ホットメルト材)などの接着剤層32aを設けた
ものを用い、この3者を熱圧着等で一体化した後、溶着
部Sを形成する。これによって、有突起端子蓋板34と
防爆弁体1の周縁間の気密性を完全ならしめ、封口板と
しての気密耐漏液性をさらに向上させることができる。
この態様のものは比較的小径の電池に適している。
(Embodiment 4) FIG. 7 shows Embodiment 3 of the present invention.
3 is a diagram showing a side cross section of the explosion-proof sealing plate 31 of FIG. This embodiment is different from the first embodiment in that the inner terminal plate 3 and the lead mounting cover plate are replaced with a vent hole 34b and a protruding portion 34a as shown in the drawing.
Is used. An insulating ring interposed between the protruding terminal cover plate 34 and the explosion-proof valve body 1 is provided on the upper and lower surfaces indicated by 32 with a polyolefin-based heat-sensitive adhesive (hot melt adhesive). After the three members are integrated by thermocompression bonding or the like, a welded portion S is formed. Thereby, the airtightness between the protruding terminal cover plate 34 and the peripheral edge of the explosion-proof valve body 1 can be completely equalized, and the airtight liquid-tightness as a sealing plate can be further improved.
This embodiment is suitable for a battery having a relatively small diameter.

【0054】(実施例5)図8は、本発明の構成態様4
の防爆封口板41の側断面を示す図である。これは、実
施例2で示した内端子板3と皿状蓋板14を一体化して
置き換えるものであり、前記両部材に代えて、通気孔4
4b及び周縁に立ち上がり部44cを有し、底面中央付
近に図示のように突起部44aを形成した有突起皿状蓋
板44を用いるものである。この態様の防爆封口板を適
用する場合、例えば直径15mm以下の小型の電池では、
有突起皿状蓋板の材質について特に配慮を必要としない
が、外径が大きくなるときは、実施例2の皿状蓋板に比
べて、剛性大な材質もしくは厚さを増した金属材料を適
用することが好ましい。
(Embodiment 5) FIG. 8 shows an embodiment 4 of the present invention.
3 is a diagram showing a side cross section of the explosion-proof sealing plate 41 of FIG. This is to replace the inner terminal plate 3 and the dish-shaped lid plate 14 shown in Embodiment 2 by integrating them, and to replace the two members with the ventilation holes 4.
4b and a protruding dish-shaped lid plate 44 having a rising portion 44c on the periphery and a protruding portion 44a formed near the center of the bottom surface as shown in the figure. When the explosion-proof sealing plate of this embodiment is applied, for example, in a small battery having a diameter of 15 mm or less,
Although no special consideration is required for the material of the protruding dish-shaped lid plate, when the outer diameter is large, a material having a higher rigidity or a metal material having an increased thickness compared to the dish-shaped lid plate of Example 2 is used. It is preferred to apply.

【0055】それは、かしめ組立時に、中央部にたわみ
を生じる等による電流遮断圧力の変動を防止するためで
ある。
This is to prevent a change in the current cutoff pressure due to, for example, bending at the center portion during swaging.

【0056】以上述べた、実施例1〜5の構成態様にお
いて、防爆弁体1、内端子板3、有突起端子蓋板34、
あるいは有突起皿状蓋板等の溶着部Sを形成する金属材
質としては、実施例2で述べたように、種々の金属材料
を使用できるが、適用する電池の電解液の種類、正・負
極何れに接続されるか、電池電圧、電流遮断設定圧力、
溶着方法等を考慮して材質、厚さを決定する。密閉型ア
ルカリ電池系では表面にニッケル薄層を設けた鋼板,ニ
ッケル薄板,ニッケル系合金薄板など、溶着性の安定し
た金属材が使用できる。
In the constructions of Examples 1 to 5 described above, the explosion-proof valve body 1, the inner terminal plate 3, the protruding terminal cover plate 34,
Alternatively, as described in the second embodiment, various metal materials can be used as the metal material for forming the welded portion S such as a protruding dish-shaped lid plate. Which is connected, battery voltage, current cutoff set pressure,
The material and thickness are determined in consideration of the welding method and the like. In a sealed alkaline battery system, a metal material having a stable welding property such as a steel plate having a thin nickel layer on its surface, a nickel thin plate, and a nickel-based alloy thin plate can be used.

【0057】本発明が顕著な効果を発揮するリチウム系
などの密閉型非水二次電池では、実施例2で述べたよう
に、耐食性、電気抵抗値の低減、溶着の安定性などの理
由で、アルミニウム系金属材が使い易く、さらに後述す
るように、特定のアルミニウム合金材の組み合わせが好
ましい。
As described in the second embodiment, the sealed non-aqueous secondary battery such as a lithium-based non-aqueous battery in which the present invention exhibits a remarkable effect is used for reasons such as corrosion resistance, reduction of electric resistance, and stability of welding. Aluminum-based metal materials are easy to use, and a combination of specific aluminum alloy materials is preferable as described later.

【0058】なお、上記各実施例の態様のものは、電池
内圧が所定値以上に上昇した場合に、防爆弁体と、内端
子板または有突起端子蓋板あるいは有突起皿状蓋板との
溶着部Sによる接続を解放する方式であり、従って防爆
弁体1に微小孔を含む破損傷を生ずる以前に確実に溶着
部を剥離させる必要がある。そのために、溶着部Sの溶
着強度は、防爆弁体1の破損強度よりも小さくするよう
に溶着条件を設定する。前記実施例2で述べたアルミニ
ウム材を用いる場合には、超音波溶着、加圧による圧接
接合などが適用できるが、電流遮断圧力との整合を含め
て、安定した強度で確実に剥離する溶着部を形成するに
は、超音波溶着が好ましい。
In each of the embodiments described above, the explosion-proof valve body and the inner terminal plate or the protruding terminal cover plate or the protruding dish-shaped cover plate are connected when the internal pressure of the battery rises to a predetermined value or more. This is a method in which the connection by the welded portion S is released. Therefore, it is necessary to surely peel off the welded portion before the damage prevention including the minute hole occurs in the explosion-proof valve body 1. Therefore, welding conditions are set so that the welding strength of the welding portion S is smaller than the breakage strength of the explosion-proof valve body 1. When the aluminum material described in the second embodiment is used, ultrasonic welding, pressure welding by pressurization, etc. can be applied. Is preferably formed by ultrasonic welding.

【0059】また、電流遮断を確実に行わせるために
は、防爆弁体1の内圧を受ける受圧面部の変形強度と比
べて、中央部周辺の変形強度の大なる内端子板3、また
は突起部周縁の変形強度を大とした有突起端子蓋板3
4、有突起皿状蓋板44を用いるとよい。これによっ
て、電池内圧が上昇した場合に、前記内端子板等は変形
応力に耐えて元の形状を保つため、電流遮断圧力を安定
させることができる。具体的には、内端子板等の強度を
前記防爆弁体のおよそ1.5倍以上を目安に設定する。
内端子板の場合は、厚さ、強度ともに大なる材料が好ま
しく、有突起端子蓋板等では、突起部の成型形状の影響
を含めて、その周縁の変形強度が、防爆弁体の強度の
1.5〜2倍以上となる材料を用いる。
Further, in order to ensure that the current is interrupted, the inner terminal plate 3 or the protruding portion having a larger deformation strength around the central portion than the deformation strength of the pressure receiving surface portion receiving the internal pressure of the explosion-proof valve body 1 is required. Protruding terminal cover plate 3 with high peripheral deformation strength
4. A protruding dish-shaped lid plate 44 may be used. Accordingly, when the internal pressure of the battery increases, the internal terminal plate and the like can withstand the deformation stress and maintain the original shape, so that the current interruption pressure can be stabilized. Specifically, the strength of the inner terminal plate and the like is set to approximately 1.5 times or more the explosion-proof valve body as a guide.
In the case of the inner terminal plate, a material having a large thickness and strength is preferable, and in the case of a protruding terminal cover plate, the deformation strength of the peripheral edge thereof, including the influence of the molding shape of the projection, is less than the strength of the explosion-proof valve body. A material that is 1.5 to 2 times or more is used.

【0060】さらにまた、上記実施例1〜5の構成態様
において、前述の密閉型のリチウム二次電池用等のごと
く、防爆弁体1と、内端子板3または有突起端子蓋板3
4あるいは有突起皿状蓋板44の材質としてアルミニウ
ム系材を適用する場合には、様着部Sの形成手段とし
て、図5に示したように超音波溶着法を採用すれば、溶
着部が確実に剥離して電流遮断動作を安定に行わせるこ
とができる。
Further, in the constitutions of the above-mentioned Examples 1 to 5, as in the case of the above-mentioned sealed type lithium secondary battery or the like, the explosion-proof valve body 1 and the inner terminal plate 3 or the protruding terminal cover plate 3 are provided.
When an aluminum-based material is used as the material of the projection-shaped cover plate 4 or the projection-shaped cover plate 44, if the ultrasonic welding method is employed as shown in FIG. Peeling can be reliably performed, and the current interruption operation can be stably performed.

【0061】用いるアルミニウム材質は、電流遮断圧力
及び防爆弁体の異常過圧時破断圧力の設定値によって選
択すると、防爆封口板の組立構成がさらに容易となる。
防爆弁体の破断圧力を20〜30Kgf/cm2以上とし、電
流遮断圧力を15Kgf/cm2以上など高作動圧力に設定す
る場合は、箔、薄板材として一般に用いられる純アルミ
ニウム系(JIS1000番台)のA1050、AIN
30等が適用可能である。しかし、電流遮断圧力は、適
用する電池系とその構成条件によって異なり、10〜1
5Kgf/cm2さらには5Kgf/cm2前後の低圧設定を必要とす
る場合がある。この場合には、純アルミニウム材では調
整が難しくなり、遮断圧力変動が大きくなりやすい。そ
の対応を次に示す。
If the aluminum material to be used is selected according to the set values of the current cutoff pressure and the breaking pressure at the time of abnormal overpressure of the explosion-proof valve body, the assembly construction of the explosion-proof sealing plate is further facilitated.
When the breaking pressure of the explosion-proof valve is set to 20-30 kgf / cm 2 or more and the current cutoff pressure is set to a high operating pressure such as 15 kgf / cm 2 or more, pure aluminum (JIS 1000 series) generally used as foil and thin plate material A1050, AIN
30 or the like is applicable. However, the current cutoff pressure varies depending on the battery system to be applied and its constituent conditions, and is 10 to 1
5 kgf / cm 2 still may require a 5 kgf / cm 2 before and after the low-pressure setting. In this case, the adjustment is difficult with pure aluminum material, and the shutoff pressure fluctuation tends to increase. The correspondence is shown below.

【0062】(実施例6)上記実施例1〜5に用いる防
爆弁体と、内端子板または有突起端子蓋板あるいは有突
起皿状蓋板の構成材として、 溶着される少なくとも一方の側の材質をマグネシウ
ムまたはマンガン、もしくは双方を添加したアルミニウ
ム合金、例えばAl−Mg系合金(A5005,A50
52など)またはAl−Mn系のA3003,A320
3、Al,Mnを含有するA3004,A3105,A
5454等の合金薄板または箔とする。ただし、マグネ
シウム添加量は0.5〜3%程度の範囲から選択するの
が好ましい(過大添加品は、溶着部が経時脆化する場合
がある)。マグネシウムあるいはマンガンが添加された
合金は、超音波溶着によれば、広範囲に溶着強度を調整
できるので、電流遮断圧力を低くしても安定して加圧剥
離させることができる。3〜5Kgf/cm2程度に設定する
場合は、構成材双方に上記合金材をもちいるとよい。
(Embodiment 6) The explosion-proof valve body used in the above Embodiments 1 to 5 and the inner terminal plate or the protruding terminal cover plate or the protruding dish-shaped cover plate are formed on at least one side to be welded. Aluminum alloy to which magnesium or manganese or both are added, such as Al-Mg alloy (A5005, A50
52 etc.) or A3003, A320 of Al-Mn type
3. A3004, A3105, A containing Al and Mn
An alloy thin plate or foil such as 5454 is used. However, the amount of added magnesium is preferably selected from the range of about 0.5 to 3% (for an excessively added product, the welded portion may become brittle with time). The alloy to which magnesium or manganese has been added can adjust the welding strength in a wide range by ultrasonic welding, so that even if the current interrupting pressure is reduced, the alloy can be stably peeled under pressure. When it is set to about 3 to 5 kgf / cm 2 , the above alloy material is preferably used for both constituent materials.

【0063】 上記、アルミニウム合金に代えて、ス
テンレス鋼板などの耐食性基材の表面に、アルミニウム
材の薄層をクラット法などで設けた複合金属材を用い
る。
Instead of the aluminum alloy, a composite metal material is used in which a thin layer of an aluminum material is provided on the surface of a corrosion-resistant base material such as a stainless steel plate by the Crat method or the like.

【0064】上記を、内端子板、有突起端子蓋板などに
適用した場合は、変形に対する強度も大きくすることが
できる。
When the above is applied to the inner terminal plate, the protruding terminal cover plate, etc., the strength against deformation can be increased.

【0065】(実施例7)図9及び図11は、本発明の
構成態様5、上記実施例1〜5の封口板構成において、
防爆弁体1と、内端子板3または有突起端子蓋板34あ
るいは有突起皿状蓋板44との間に、防爆弁体と比べて
厚さ及び機械的強度(剛性、硬さ)が小さい金属箔体5
2、62、63、64を介在させて溶着部Sを形成した
ものである。各構成材としてアルミニウム系材を用いる
場合を例にとると、金属箔体の厚さは、防爆弁体の厚さ
の0.1〜0.5倍程度で、機械的強さ(引張り強さ
等)も同等以下のものを用いる。一例を示すと、防爆弁
体には厚さ0.15mmのA3003、あるいはA1N3
0を用い、箔体52、62等として厚さ0.05mmのA
1050、A1N30等の半硬質またはなまし材を用い
る。なお、内端子板3等には、厚さ0.25〜0.5mm
のA3003、A5005、A5052等を用いた。図
9の例では、(A)のように、内端子板3の中央に、ア
ルミニウム箔体52を点溶接し、その上面に(B)で示
すインナーガスケット12に嵌入した防爆弁体1を載置
して、超音波溶着により溶着部Sを形成している。図1
1の例は(A)で示した金属箔体として、(B)の円弧
状の切欠き部62aを設けたもの62、(C)の大きな
切欠き部63aと切込み63bを設けたもの63、
(D)のように小さい切欠き部64bと円弧状薄肉部6
4aを設けたもの64等を用い、導電性接着剤あるいは
ろう付けなどで防爆弁体1の裏面に固着Saして組立を
行ない、溶着して溶着部Sを形成するものである。
(Embodiment 7) FIGS. 9 and 11 show the fifth embodiment of the present invention and the structure of the sealing plate of the first to fifth embodiments.
Between the explosion-proof valve body 1 and the inner terminal plate 3 or the protruding terminal cover plate 34 or the protruding dish-shaped cover plate 44, the thickness and the mechanical strength (rigidity, hardness) are smaller than those of the explosion-proof valve body. Metal foil 5
The welded portion S is formed with 2, 62, 63 and 64 interposed. Taking an example in which an aluminum-based material is used as each component, the thickness of the metal foil body is about 0.1 to 0.5 times the thickness of the explosion-proof valve body, and the mechanical strength (tensile strength) Etc.) are used. As an example, the explosion-proof valve body is A3003 or A1N3 with a thickness of 0.15 mm.
0, and A having a thickness of 0.05 mm as foil bodies 52, 62, etc.
A semi-rigid or annealed material such as 1050 or A1N30 is used. The inner terminal plate 3 has a thickness of 0.25 to 0.5 mm.
A3003, A5005, A5052, etc. were used. In the example of FIG. 9, as shown in FIG. 9A, an aluminum foil 52 is spot-welded to the center of the inner terminal plate 3 and the explosion-proof valve body 1 fitted in the inner gasket 12 shown in FIG. The welding portion S is formed by ultrasonic welding. FIG.
The example 1 is a metal foil body shown in (A) 62 provided with an arc-shaped notch 62a in (B) 62, a metal foil body provided with a large notch 63a and a notch 63b in (C) 63,
The notch 64b as small as (D) and the arc-shaped thin portion 6
Using a member 64 provided with 4a or the like, it is fixed to the back surface of the explosion-proof valve body 1 with a conductive adhesive or brazing or the like, assembled, and welded to form a welded portion S.

【0066】(実施例8)図10は、本発明の構成態様
6の実施例を示すもので、前記実施例7のものを、さら
に低い電流遮断圧力にも適用できるようにしたものであ
る。(A)に示すように、通気孔3bと小孔3c(1.
5〜5mm程度)を設けた内端子板3の小孔周縁部3d
に、金属箔体52として実施例7と同様に0.05mm程
度のアルミニウム箔を用いてスポット溶接、レーザ溶接
あるいは超音波溶着、または導電性接着剤などで固着S
aした後、(B)で示すように内端子板の小径3cを通
して、防爆弁体1と箔体52を超音波溶着等で溶着部S
を形成して接続したものである。なお内端子板以外に、
有突起端子蓋板34、有突起皿状蓋板を用いる場合にも
適当な小孔を設ければ、同様に実施できる。この態様で
は、金属箔体が剥離または破断して電流遮断動作が行わ
れるので、金属箔体の厚さ、機械的強度を選択すること
によって、3〜5Kgf/cm2の低い圧力でも、安定して電
流遮断をさせることができる。
(Embodiment 8) FIG. 10 shows an embodiment of the sixth aspect of the present invention, in which the configuration of the seventh embodiment can be applied to a lower current interruption pressure. As shown in (A), the vent 3b and the small hole 3c (1.
(About 5 to 5 mm) around the small hole peripheral portion 3d of the inner terminal plate 3
Then, as in the seventh embodiment, an aluminum foil of about 0.05 mm is used as the metal foil 52, and is fixed by spot welding, laser welding, ultrasonic welding, or a conductive adhesive.
After that, the explosion-proof valve body 1 and the foil body 52 are welded by ultrasonic welding or the like through the small diameter 3c of the inner terminal plate as shown in FIG.
Are formed and connected. In addition to the inner terminal board,
In the case of using the protruded terminal cover plate 34 and the protruded dish-shaped cover plate, the same can be achieved by providing appropriate small holes. In this embodiment, the current interruption operation is performed by peeling or breaking the metal foil body, so that the thickness of the metal foil body and the mechanical strength can be selected to stabilize even at a low pressure of 3 to 5 kgf / cm 2. Current interruption.

【0067】以上述べた各態様の防爆封口板を、電池の
形状、大きさによって使い分ければ、さらに安定した効
果が得られる。すなわち、実施例1、実施例4等周縁に
立ち上がり部の無い蓋板を用いるものは、比較的小径小
型の電池に、また実施例2、実施例5等周縁に立ち上が
り部を設けた皿状蓋板を用い、かしめ組立する方式は封
口板内で各部材が固定され、全体の強度を保つことがで
きるので、大きい径あるいは楕円状の電池にも適してい
る。
If the explosion-proof sealing plate of each embodiment described above is properly used depending on the shape and size of the battery, a more stable effect can be obtained. That is, the one using the cover plate having no rising portion on the periphery such as the first and fourth embodiments is used for a battery having a relatively small diameter and a small size, and the dish-shaped cover having the rising portion on the periphery such as the second and fifth embodiments. The method of caulking and assembling using a plate is suitable for a large-diameter or elliptical battery because each member is fixed in the sealing plate and the overall strength can be maintained.

【0068】また、上記各態様の構成において、防爆弁
体1が薄く、軟質の材料で形成された場合は、電池内圧
が上昇して溶着部が剥離する際に、内圧変動によって波
打ち状になって、内端子板との遮断が不完全となるのを
防止するために、図12の断面図に示したように、内端
子板3の突起部3aの高さdを、絶縁リング2の厚さd
2よりも低くして、溶着する際に防爆弁体1を、突起部
側へたわませて溶着部Sを形成する。他の有突起端子蓋
板34、有突起皿状蓋板44およびインナーガスケット
12を用いる例でも同様に構成する。
In the above embodiments, if the explosion-proof valve body 1 is made of a thin and soft material, the internal pressure fluctuates when the battery internal pressure rises and the welded portion peels off. As shown in the cross-sectional view of FIG. 12, the height d of the projection 3a of the inner terminal plate 3 is set to the thickness of the insulating ring 2 in order to prevent incomplete connection with the inner terminal plate. D
2, the explosion-proof valve body 1 is bent toward the protruding portion during welding to form a welded portion S. The same configuration is used in other examples using the protruded terminal cover plate 34, the protruded dish-shaped cover plate 44, and the inner gasket 12.

【0069】また、実施例2において、内端子板3は、
インナーガスケットの肉厚が薄いときは、図13のよう
に突起部を設けず若干上方に反りを設けた形態としても
よく、図示のように防爆弁体をたわませて溶着すれば、
前記と同じ効果が得られる。
In the second embodiment, the inner terminal plate 3
When the thickness of the inner gasket is thin, a configuration may be used in which the projection is not provided as shown in FIG. 13 and a slightly upward warpage is provided. If the explosion-proof valve body is bent and welded as shown in the drawing,
The same effect as described above can be obtained.

【0070】また、本発明で用いる防爆弁体1は、電流
遮断機能に加えて、電池を火中投入あるいは異常加熱し
た場合に、内圧によって一部が破断して電池爆発を防止
する機能も保持する必要があるが、溶接部Sを形成する
ことによって、その破断作動圧が上昇する傾向がある。
従って、電池密閉強度が低い場合は、図2、図7の1
a、あるいは図4、図5の1bで示したように、機械加
工などで円弧状等の薄肉部を設けて、防爆弁体の破断圧
力を低く調整するとよい。その作動状況を図4(B)に
1xで示す。
The explosion-proof valve body 1 used in the present invention has a function of preventing a battery explosion due to internal pressure being partially broken when the battery is thrown into a fire or abnormally heated, in addition to the current interruption function. However, the formation of the welded portion S tends to increase the breaking operation pressure.
Therefore, when the battery sealing strength is low, 1 in FIGS.
a, or 1b in FIGS. 4 and 5, it is preferable to provide an arc-shaped thin portion by machining or the like to lower the breaking pressure of the explosion-proof valve body. The operation state is indicated by 1x in FIG.

【0071】さらに、図14、図7、図8、図11
(A)に72で示した、例えばレイケム社製の「ポリス
イッチ」(商品名)等のリング状のPTC素子を、外部
端子板5と防爆弁体1との間に間挿すれば、電池が外部
短絡あるいは過大電流を流されたときに直ちに動作し
て、電流遮断機能の作動前に、電池の安全性を確保でき
るので、経済的に電池を使用することができる。
Further, FIG. 14, FIG. 7, FIG.
If a ring-shaped PTC element such as “Polyswitch” (trade name) manufactured by Raychem Co. is inserted between the external terminal plate 5 and the explosion-proof valve body 1 at 72 in FIG. Can operate immediately when an external short circuit or excessive current is applied, and the safety of the battery can be ensured before the current cut-off function is activated, so that the battery can be used economically.

【0072】次に、本発明の実施例2に示した密閉型リ
チウム二次電池(AA型、3.7V、550mAh)を、本
発明の実施例2(図4)の態様で、実施例6の金属材
構成(アルミニウム合金)とした防爆封口板11を用い
て密閉した本発明による電池と、図16に示した防爆封
口板(ラミネートシート弁体)を用いて密閉した従来式
の電池を、約25℃の室内で、1A(アンペア)の電流
で連続充電(各5個)を行ない、その代表的結果を図1
5及び図17に示す。両図からわかるように、この電池
は充電電気量が公称容量の100%を超えた時点から発
熱及び電池内圧が急に上昇をはじめ、200%を超えた
時には電池内圧は15〜20Kgf/cm2に達する。この時
点で従来の防爆封口板は薄形状弁体42aが破断(ベン
ト)して、発生ガスが排気される。しかし充電は引続き
継続され、電池温度が100〜120℃に達すると急激
な異常反応を生じ電池は爆発した(図17の×印点)。
しかし本発明の防爆封口板を装備した電池は、図示のよ
うに、電池内圧が15Kgf/cm2の時点で、電流遮断機能
が作動して電流が断たれ、温度上昇もガス発生も停止し
て、電池の安全性が確保されている。
Next, the sealed lithium secondary battery (AA type, 3.7 V, 550 mAh) shown in Example 2 of the present invention was manufactured in the same manner as in Example 2 of the present invention (FIG. 4). A battery according to the present invention sealed using an explosion-proof sealing plate 11 made of a metal material (aluminum alloy) and a conventional battery sealed using an explosion-proof sealing plate (laminate sheet valve) shown in FIG. In a room at about 25 ° C., continuous charging (5 each) was performed with a current of 1 A (ampere).
5 and FIG. As can be seen from both figures, this battery begins to generate heat and the battery internal pressure suddenly increases when the amount of charged electricity exceeds 100% of the nominal capacity, and when it exceeds 200%, the battery internal pressure becomes 15 to 20 kgf / cm 2. Reach At this time, the thin valve body 42a of the conventional explosion-proof sealing plate is broken (vented), and the generated gas is exhausted. However, the charging was continued, and when the battery temperature reached 100 to 120 ° C., a sudden abnormal reaction occurred, and the battery exploded (marked by X in FIG. 17).
However, in the battery equipped with the explosion-proof sealing plate of the present invention, as shown in the drawing, when the battery internal pressure is 15 kgf / cm 2 , the current cutoff function is activated, the current is cut off, and both the temperature rise and the gas generation are stopped. The safety of the battery is ensured.

【0073】また、防爆封口板の組立及び電池生産時の
不良発生状況を調べたところ、前記本発明の防爆封口板
を採用した場合と、従来の防爆封口板として示した図
18のもの、及び図19のものについて、電流遮断
作動圧・基準値を約12Kgf/cm2として、各2000個
を組立、電池に組込み、高さ1mからの落下試験を実施
したところ、従来のものでは12セル、では4セル
に断線が発生したが、本発明のものでは、断線したも
のは無かった。さらに試験後の電池より各々20セルに
ついて、電池内圧を測定しながら、過充電試験を実施し
た。その結果、は9.5〜14Kgf/cm2、では7〜
19Kgf/cm2、では8〜17Kgf/cm2であった。
When the explosion-proof sealing plate was assembled and the state of occurrence of defects during battery production was examined, it was found that the explosion-proof sealing plate of the present invention was employed, the one shown in FIG. 19, the current interruption operating pressure and the reference value were set to about 12 kgf / cm 2 , and 2000 pieces of each were assembled, assembled into a battery, and a drop test was performed from a height of 1 m. Then, disconnection occurred in four cells, but none of the cells of the present invention was disconnected. Further, an overcharge test was performed while measuring the battery internal pressure for each of the 20 cells after the test. As a result, 9.5 to 14 kgf / cm 2 , 7 to
At 19 kgf / cm 2 , it was 8 to 17 kgf / cm 2 .

【0074】上記したリチウム二次電池系では、電流遮
断作動圧の設定値は、電池の処方、構成条件等によって
異なると共に、高精度を要求される場合も多い。本発明
実施例として前記のものに加えて、実施例8のもの、
及び従来例の前記のものについて、電流遮断作動圧・
基準値を6.5Kgf/cm2として、各1000個を組立、
電池として組込み、各30セルを抜取り、電流遮断作動
圧を過充電により調べた。
In the above-described lithium secondary battery system, the set value of the current cut-off operating pressure differs depending on the prescription and the structural conditions of the battery, and high accuracy is often required. Examples of the present invention, in addition to those described above, those of Example 8,
And the above-mentioned conventional example,
Assuming that the reference value is 6.5 kgf / cm 2 , 1000 pieces are assembled,
The battery was assembled, 30 cells were withdrawn, and the current interruption operating pressure was examined by overcharging.

【0075】その結果、本発明ののものでは、4.7
〜9.5Kgf/cm2、実施例8のものでは5.8〜7.5K
gf/cm2であり、従来例のものは、1.5〜13Kgf/cm
2と幅が広くなると共に、断線するものが10%を超え
た。従来例のについても、よりは安定化するが、不
十分なものであった。
As a result, in the case of the present invention, 4.7 was obtained.
99.5 Kgf / cm 2 , 5.8-7.5 K in the case of Example 8
a gf / cm 2, the conventional example of what, 1.5~13Kgf / cm
As the width increased to 2 , the number of disconnections exceeded 10%. In the case of the conventional example, it is more stable but insufficient.

【0076】さらに、本発明の防爆封口板は、防爆弁体
に薄肉部を設けて破断圧力を調整する、あるいはPTC
素子を封口板内に組込むことによって、通電以外に火中
に投入された場合等の異常加熱に対する安全性、及び短
絡等で過大電流が流れた場合に電池を安全に、かつ再使
用可能にすることができる。また本発明の防爆封口板
は、電流遮断機能及び破断弁、PTC素子等の防爆安全
機能をすべて封口板内に組込んでいるため、電池に組込
む以前に、道通状態及び下限作動圧力を測定することが
できるので、さらに精度の高い防爆封口板を提供するこ
とができる。
Further, in the explosion-proof sealing plate of the present invention, the explosion-proof valve body is provided with a thin portion to adjust the breaking pressure,
By incorporating the element in the sealing plate, safety against abnormal heating such as when it is thrown into a fire other than energization, and safe and reusable battery when excessive current flows due to short circuit etc. be able to. In addition, since the explosion-proof sealing plate of the present invention incorporates all of the explosion-proof safety functions such as a current cutoff function and a rupture valve and a PTC element in the sealing plate, the road condition and the lower limit operating pressure are measured before the battery is assembled. Therefore, it is possible to provide a more accurate explosion-proof sealing plate.

【0077】[0077]

【発明の効果】本発明の密閉型防爆封口板を用いること
によって、電池の過充電、逆充電、短絡等異常通電時に
おける、電池の異常発熱、発火破裂を確実・効果的に防
止することができると共に、生産時の品質が安定し、振
動落下等の衝撃を加えても作動不良が発生しにくい、信
頼性の高い密閉型電池を得ることができる。
By using the sealed explosion-proof sealing plate of the present invention, it is possible to reliably and effectively prevent abnormal heat generation and ignition rupture of the battery when the battery is abnormally energized such as overcharging, reverse charging and short circuit. It is possible to obtain a highly reliable sealed battery in which the quality at the time of production is stable, the malfunction does not easily occur even when an impact such as a vibration drop is applied, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の密閉型電池用防爆封口板の
断面図
FIG. 1 is a cross-sectional view of an explosion-proof sealing plate for a sealed battery according to a first embodiment of the present invention.

【図2】(A)本発明の実施例1の封口板の分解斜視図 (B)同A−A断面拡大図FIG. 2A is an exploded perspective view of the sealing plate according to the first embodiment of the present invention, and FIG.

【図3】(A)実施例1の防爆封口板を用いた電池の作
動状態の説明図 (B)同作動後の説明図
FIG. 3A is an explanatory diagram of an operation state of a battery using the explosion-proof sealing plate of the first embodiment. FIG. 3B is an explanatory diagram after the operation.

【図4】(A)本発明の実施例2の防爆封口板の構成断
面図 (B)電流遮断作動状態を説明する図
FIG. 4A is a cross-sectional view of a configuration of an explosion-proof sealing plate according to a second embodiment of the present invention. FIG.

【図5】(A)実施例2の防爆封口板の構成を示す斜視
図 (B)同組立説明図
FIG. 5A is a perspective view showing a configuration of an explosion-proof sealing plate according to a second embodiment. FIG.

【図6】実施例2の防爆封口板で密閉したリチウム二次
電池の断面図
FIG. 6 is a sectional view of a lithium secondary battery sealed with an explosion-proof sealing plate of Example 2.

【図7】本発明の実施例4の防爆封口板の断面図FIG. 7 is a sectional view of an explosion-proof sealing plate according to a fourth embodiment of the present invention.

【図8】本発明の実施例5の防爆封口板の断面図FIG. 8 is a sectional view of an explosion-proof sealing plate according to a fifth embodiment of the present invention.

【図9】(A)本発明の実施例1〜5の別な構成法によ
る防爆封口板の構成を示す図 (B)同断面図
FIG. 9 (A) is a view showing a configuration of an explosion-proof sealing plate according to another configuration method of Examples 1 to 5 of the present invention.

【図10】(A)本発明の実施例7の別な構成法による
防爆封口板を示す組立図 (B)同断面図
10A is an assembly view showing an explosion-proof sealing plate according to another configuration of the seventh embodiment of the present invention. FIG.

【図11】(A)本発明の実施例1〜5の別な構成法に
よる封口板の断面図 (B)防爆弁体の組立図 (C)金属箔体を示す図 (D)金属箔体を示す図
11A is a cross-sectional view of a sealing plate according to another embodiment of the first to fifth embodiments of the present invention. FIG. 11B is an assembly view of an explosion-proof valve body. FIG. 11C is a view showing a metal foil body. Figure showing

【図12】本発明の実施例1〜5の防爆封口板における
構成条件を示す図
FIG. 12 is a diagram showing the configuration conditions in the explosion-proof sealing plates of Examples 1 to 5 of the present invention.

【図13】本発明の実施例2の別な例の防爆封口板を示
す断面図
FIG. 13 is a cross-sectional view showing another example of an explosion-proof sealing plate according to the second embodiment of the present invention.

【図14】本発明の実施例2の防爆封口板にPTC素子
を組込んだ断面図
FIG. 14 is a cross-sectional view of a PTC element incorporated in an explosion-proof sealing plate according to a second embodiment of the present invention.

【図15】本発明の防爆封口板を用いた密閉型電池を連
続過充電したときの特性図
FIG. 15 is a characteristic diagram when a sealed battery using the explosion-proof sealing plate of the present invention is continuously overcharged.

【図16】従来の防爆封口板の一例を示す断面図FIG. 16 is a sectional view showing an example of a conventional explosion-proof sealing plate.

【図17】従来の封口板を用いた密閉型電池を連続過充
電したときの特性図
FIG. 17 is a characteristic diagram when a sealed battery using a conventional sealing plate is continuously overcharged.

【図18】(A)従来の電流遮断機能を有する防爆封口
板を用いた電池の断面図 (B)同動作状態を示す要部断面図
18A is a cross-sectional view of a conventional battery using an explosion-proof sealing plate having a current interrupting function. FIG. 18B is a cross-sectional view of a main part showing the same operation state.

【図19】(A)従来の防爆封口板の改良案を示す断面
図 (B)その裏面図
FIG. 19 (A) is a cross-sectional view showing an improvement plan of a conventional explosion-proof sealing plate.

【符号の説明】[Explanation of symbols]

1 防爆弁体 2 絶縁リング 3 内端子板 4 リ−ド取り付け蓋板 5 外部端子板 6 絶縁ガスケット 7 リ−ド板 8 電池ケ−ス 9 防爆封口板 11 防爆封口板 12 インナ−ガスケット 14 皿状蓋板 15 電池ケ−ス 17 極板群 18 リ−ド板 21 防爆封口板 23 内端子板 31 防爆封口板 32 絶縁リング 34 有突起端子蓋板 35 封止剤 41 防爆封口板 44 有突起皿状蓋板 52 金属箔体 61 防爆封口板 62 金属箔体 63 金属箔体 64 金属箔体 71 防爆封口板 72 PCT素子 1a 薄肉部 1b 薄肉部 3a 突起部 3b 通気孔 3c 小孔 4a 通気孔 5a 排気孔 14a 通気孔 23b 通気孔 34a 突起部 34b 通気孔 44a 突起部 44b 通気孔 63b 切込み 64a 薄肉部 d 中央突起高さ d2 絶縁リング厚さ Sa 固着部 S 溶着部 DESCRIPTION OF SYMBOLS 1 Explosion-proof valve 2 Insulation ring 3 Inner terminal plate 4 Lead mounting cover plate 5 External terminal plate 6 Insulating gasket 7 Lead plate 8 Battery case 9 Explosion-proof sealing plate 11 Explosion-proof sealing plate 12 Inner gasket 14 Plate shape Lid plate 15 Battery case 17 Electrode group 18 Lead plate 21 Explosion-proof sealing plate 23 Inner terminal plate 31 Explosion-proof sealing plate 32 Insulating ring 34 Protruding terminal cover plate 35 Sealant 41 Explosion-proof sealing plate 44 Lid plate 52 Metal foil body 61 Explosion-proof sealing plate 62 Metal foil body 63 Metal foil body 64 Metal foil body 71 Explosion-proof sealing plate 72 PCT element 1a Thin part 1b Thin part 3a Projection part 3b Vent hole 3c Small hole 4a Vent hole 5a Exhaust hole 14a ventilation hole 23b ventilation hole 34a projection 34b ventilation hole 44a projection 44b ventilation hole 63b cut 64a thin portion d center projection height d2 insulating ring thickness Sa Wearing portion S welded portion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹羽 幸正 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 飯田 守 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 平川 靖 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01M 2/12,2/04 H01M 2/06,2/34 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yukimasa Niwa 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Yasushi Hirakawa 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (58) Field surveyed (Int.Cl. 6 , DB name) H01M 2 / 12,2 / 04 H01M 2 / 06,2 / 34

Claims (15)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極板、負極板及びセパレータからなる極
板群と、電解液を収容した電池ケースを密閉する封口板
であり、この封口板は金属製の外部端子板5と、電池内
圧の上昇に伴って外方に変形する金属製の防爆弁体1
と、金属製で通気孔3aを有する内端子板3、及び前記
防爆弁体と内端子板の周縁間に介在させた絶縁リング2
と、金属製で通気孔4aを有するリード取り付け蓋板4
とを積重して絶縁ガスケット6に収容したものであり、 前記内端子板3は、その中央付近に設けた突起部3aと
防爆弁体1との溶着部Sによって防爆弁体と電気的に接
続され、電池内圧が所定値を超えると前記防爆弁体が外
方に変形する応力により前記溶着部を剥離させて、内端
子板と防爆弁体との電気的接続が遮断されるように構成
したことを特徴とする密閉型電池用防爆封口板。
An electrode plate group comprising a positive electrode plate, a negative electrode plate, and a separator, and a sealing plate for sealing a battery case containing an electrolyte. The sealing plate is made of a metal external terminal plate 5 and a battery internal pressure. Metal explosion-proof valve body 1 that deforms outward as it rises
And an inner terminal plate 3 made of metal and having a ventilation hole 3a, and an insulating ring 2 interposed between the explosion-proof valve body and the peripheral edge of the inner terminal plate.
And a lead mounting cover plate 4 made of metal and having a ventilation hole 4a.
The inner terminal plate 3 is electrically connected to the explosion-proof valve body by a welded portion S between the protrusion 3a provided near the center of the inner terminal plate 3 and the explosion-proof valve body 1. Connected, when the battery internal pressure exceeds a predetermined value, the explosion-proof valve body is peeled off by the stress deformed outward, so that the electrical connection between the inner terminal plate and the explosion-proof valve body is cut off. An explosion-proof sealing plate for sealed batteries.
【請求項2】金属製の外部端子板5などの端子部材と、
電池内圧の上昇に伴って外方に変形する金属製の防爆弁
体1を、断面略L字状で絶縁性のインナーガスケット1
2内に積重し、前記インナーガスケットの底部外周面側
に金属製で通気孔を有する内端子板3,23を配設し、
これを通気孔14a及び周縁に立ち上がり部14bを有
する金属製の皿状蓋板14内に収容し、前記皿状蓋板の
立ち上がり部を内方に折曲して一体に締着した電池用封
口板であり、 前記内端子板は、その中央付近で防爆弁体との溶着部S
によって、防爆弁体と電気的に接続されているが、電池
内圧が所定値を超えると、前記防爆弁体の変形応力によ
り前記溶着部を剥離させて、内端子板と防爆弁体との電
気的接続が遮断されるように構成したことを特徴とする
密閉型電池用防爆封口板。
2. A terminal member such as a metal external terminal plate 5;
An explosion-proof valve body 1 made of metal, which is deformed outward with an increase in battery internal pressure, is connected to an insulating inner gasket 1 having a substantially L-shaped cross section.
2, inner terminal plates 3, 23 made of metal and having ventilation holes are arranged on the bottom outer peripheral surface side of the inner gasket,
This is accommodated in a metal dish-shaped lid plate 14 having a vent hole 14a and a rising portion 14b on the periphery, and the rising portion of the dish-shaped lid plate is bent inward to be integrally fastened to the battery. The inner terminal plate has a welded portion S with an explosion-proof valve body near its center.
Is electrically connected to the explosion-proof valve body, but when the internal pressure of the battery exceeds a predetermined value, the welded portion is peeled off by the deformation stress of the explosion-proof valve body, and the electric connection between the inner terminal plate and the explosion-proof valve body. An explosion-proof sealing plate for a sealed battery, wherein the explosion-proof sealing plate is configured so as to cut off the electrical connection.
【請求項3】金属製の内端子板3,23とリード取り付
け蓋板4または皿状蓋板14との接面間に、導電性シー
ル剤を介在させた請求項1または請求項2記載の密閉型
電池用封口板。
3. The conductive sealant according to claim 1, wherein a conductive sealant is interposed between the contact surfaces of the metal inner terminal plates 3 and 23 and the lead mounting cover plate 4 or the dish-shaped cover plate 14. Sealing plate for sealed batteries.
【請求項4】金属製の外部端子板5などの端子部材と、
電池内圧の上昇に伴って外方に変形する金属製の防爆弁
体1と、通気孔34bを有し中央付近に突起部34aを
形成した金属製の有突起端子蓋板34、及び前記防爆弁
体と有突起端子蓋板の周縁間に介在させた絶縁リング3
2とを積重して絶縁ガスケット6に収容したものであ
り、 前記有突起端子蓋板34は、その突起部34aと防爆弁
体1との溶着部Sによって防爆弁体と電気的に接続さ
れ、電池内圧が所定値を超えると、前記防爆弁体の変形
応力により前記溶着部を剥離させて、有突起端子蓋板と
防爆弁体との電気的接続が遮断されるように構成したこ
とを特徴とする密閉型電池用防爆封口板。
4. A terminal member such as a metal external terminal plate 5;
A metal explosion-proof valve body 1 that deforms outward with an increase in battery internal pressure, a metal protruding terminal cover plate 34 having a vent hole 34b and a protruding portion 34a formed near the center, and the explosion-proof valve Insulating ring 3 interposed between the body and the peripheral edge of the protruding terminal cover plate
2 and are housed in the insulating gasket 6. The protruding terminal cover plate 34 is electrically connected to the explosion-proof valve body by a welded portion S between the protrusion 34 a and the explosion-proof valve body 1. When the battery internal pressure exceeds a predetermined value, the welded portion is peeled off by the deformation stress of the explosion-proof valve body, and the electrical connection between the protruding terminal cover plate and the explosion-proof valve body is cut off. Characteristic explosion-proof sealing plate for sealed batteries.
【請求項5】金属製の外部端子板5などの端子部材と、
電池内圧の上昇に伴って外方に変形する金属製の防爆弁
体1を、絶縁性のインナーガスケット12内に積重し、
これを通気孔44b及び周縁に立ち上がり部44cを有
し底面の中央付近に突起部44aを形成した金属製の有
突起皿状蓋板44内に収容し、前記有突起皿状蓋板の立
ち上がり部44cを内方に折曲して、一体に締着した電
池用封口板であって、 前記有突起皿状蓋板44は、その突起部44aと防爆弁
体との溶着部Sによって防爆弁体と電気的に接続され、
電池内圧が所定値を超えると前記防爆弁体の変形応力に
より前記溶着部を剥離させて、有突起皿状蓋板と防爆弁
体との電気的接続が遮断されるように構成したことを特
徴とする密閉型電池用防爆封口板。
5. A terminal member such as a metal external terminal plate 5;
The metal explosion-proof valve body 1 that is deformed outward with an increase in battery internal pressure is stacked in an insulating inner gasket 12,
This is accommodated in a metallic protruding dish-shaped lid plate 44 having a vent hole 44b and a raised portion 44c on the periphery and having a protruding portion 44a formed near the center of the bottom surface. 44c is a battery sealing plate that is bent inward and fastened together, wherein the protruding dish-shaped lid plate 44 is formed by a welded portion S between the protruding portion 44a and the explosion-proof valve body. Is electrically connected to
When the battery internal pressure exceeds a predetermined value, the welded portion is peeled off by the deformation stress of the explosion-proof valve body, and the electrical connection between the protruding dish-shaped lid plate and the explosion-proof valve body is cut off. Explosion-proof sealing plate for sealed batteries.
【請求項6】金属製の防爆弁体1と、金属製の内端子板
3,23/または有突起端子蓋板34/もしくは有突起
皿状蓋板44とを、超音波溶着により形成した溶着部S
によって接続したものであって、その溶着強度を前記防
爆弁体の破断強度よりも小さくした請求項1,2,3,
4または5のいずれかに記載の密閉型電池用防爆封口
板。
6. A welding method in which a metal explosion-proof valve body 1 and a metal inner terminal plate 3, 23 / or a protruding terminal cover plate 34 / or a protruding dish-shaped cover plate 44 are formed by ultrasonic welding. Part S
Wherein the welding strength is smaller than the breaking strength of the explosion-proof valve body.
6. The explosion-proof sealing plate for a sealed battery according to any one of 4 and 5.
【請求項7】溶着部Sによって接続される防爆弁体と内
端子板等の各構成材の少なくとも一方の側の材質とし
て、マグネシウム及び/またはマンガンを添加したアル
ミニウム合金を用いた請求項6記載の密閉型電池用防爆
封口板。
7. An aluminum alloy to which magnesium and / or manganese is added is used as a material of at least one of the constituent materials such as an explosion-proof valve body and an inner terminal plate connected by the welding portion S. Explosion-proof sealing plate for sealed batteries.
【請求項8】溶着部Sによって接続される防爆弁体と内
端子板等の各構成材の少なくとも一方の側の材質とし
て、アルムニウム材よりも抗張力等の機械的強度が大で
かつ耐電解液性を有する耐食性金属を基材として溶着面
側または両面にアルミニウムもしくはアルミニウム合金
の薄層を設けたものを用いた請求項6記載の密閉型電池
用防爆封口板。
8. A material for at least one of the explosion-proof valve body and the inner terminal plate connected by the welded portion S, which has a higher mechanical strength such as tensile strength than an aluminum material and an electrolytic solution. 7. The explosion-proof sealing plate for a sealed battery according to claim 6, wherein a thin layer of aluminum or an aluminum alloy is provided on the welding surface side or on both surfaces of a corrosion-resistant metal having a property as a base material.
【請求項9】電池内圧の上昇に伴って外方に変形する防
爆弁体の変形応力によって、通電電流を遮断する機能を
内蔵した電池用封口板であって、その構成形態が、 (1)外部端子板5と、防爆弁体1と、内端子板3,2
3及びリード取り付け蓋板4/または有突起端子蓋板3
4と、前記防爆弁体と内端子板/または有突起端子蓋板
との周縁間に介在させた絶縁リング2,32とを積重し
て、絶縁ガスケット6に収容した封口板、 (2)外部端子板5等および防爆弁体1を、絶縁性のイ
ンナーガスケット12内に積重し、前記インナーガスケ
ットの底部外周面側に内端子板3,23を配設したもの
を、周縁に立ち上がり部14bを備えた皿状蓋板14内
に収容するか、 または前記外部端子板及び防爆弁体等を積重したインナ
ーガスケットを、周縁に立ち上がり部44cを備え、底
面中央付近に突起部44aを形成した有突起皿状蓋板4
4内に収容して、 前記各蓋板の立ち上がり部を内方に折曲して、一体に締
着構成した封口板であり、 前記防爆弁体と、前記内端子板/または有突起端子蓋板
/あるいは有突起皿状蓋板とは、その間に厚さ及び機械
的強度が防爆弁体よりも小さい金属箔体52,62を介
在させて形成した溶着部S等によって、電気的に接続さ
れ電池内圧が所定値を超えると前記防爆弁体が外方に変
形する応力によって、前記金属箔体を破断、剥離もしく
は防爆弁体を剥離させて、前記電気的接続が遮断される
ように構成したことを特徴とする密閉型電池用防爆封口
板。
9. A battery sealing plate having a built-in function of interrupting an energizing current by a deformation stress of an explosion-proof valve body deforming outward with an increase in battery internal pressure. External terminal plate 5, explosion-proof valve body 1, inner terminal plates 3, 2
3 and lead mounting cover plate 4 / or protruding terminal cover plate 3
4, a sealing plate which is stacked with insulating rings 2 and 32 interposed between the peripheral edges of the explosion-proof valve body and the inner terminal plate and / or the protruding terminal cover plate and accommodated in an insulating gasket 6. The outer terminal plate 5 and the explosion-proof valve body 1 are stacked in an insulating inner gasket 12 and the inner terminal plates 3 and 23 are arranged on the outer peripheral side of the bottom of the inner gasket. An inner gasket which is housed in the dish-shaped lid plate 14 provided with the outer terminal plate 14b or the external terminal plate and the explosion-proof valve body, etc., is provided with a rising portion 44c on the peripheral edge, and a projection 44a is formed near the center of the bottom surface. Protruding dish-shaped lid plate 4
4 is a sealing plate that is formed by bending a rising portion of each lid plate inward and integrally tightening the lid plate, the explosion-proof valve body, the inner terminal plate and / or the protruding terminal cover. The plate and / or the protruding dish-shaped lid plate are electrically connected to each other by a welded portion S or the like formed with metal foils 52 and 62 having a thickness and a mechanical strength smaller than the explosion-proof valve body interposed therebetween. When the battery internal pressure exceeds a predetermined value, the explosion-proof valve body is deformed outward, so that the metal foil body is broken, peeled or the explosion-proof valve body is peeled off, and the electrical connection is cut off. An explosion-proof sealing plate for a sealed battery.
【請求項10】中央付近に小孔3cを設けた内端子板/
あるいは有突起端子蓋板/もしくは有突起皿状蓋板を用
いた請求項9記載の密閉型電池用防爆封口板。
10. An inner terminal plate having a small hole 3c near the center.
10. The explosion-proof sealing plate for a sealed battery according to claim 9, wherein a protruded terminal cover plate or a protruded dish-shaped cover plate is used.
【請求項11】防爆弁体よりも厚さ、強度の大なる内端
子板を用いた請求項1〜3または請求項6〜10のいず
れかに記載の密閉型電池用防爆封口板。
11. The explosion-proof sealing plate for a sealed battery according to claim 1, wherein an inner terminal plate having a thickness and strength greater than that of the explosion-proof valve body is used.
【請求項12】突起部周縁の変形強度が、防爆弁体1の
受圧面部の変形強度よりも大とした有突起端子蓋板34
または有突起皿状蓋板44を用いた請求項4〜10のい
ずれかに記載の密閉型電池用防爆封口板。
12. The protruding terminal cover plate 34 in which the deformation strength of the periphery of the protrusion is larger than the deformation strength of the pressure receiving surface of the explosion-proof valve body 1.
The explosion-proof sealing plate for a sealed battery according to any one of claims 4 to 10, wherein a protruding dish-shaped lid plate (44) is used.
【請求項13】内端子板3/または有突起端子蓋板34
/あるいは有突起皿状蓋板44の各突起部の高さを、絶
縁リング2,32あるいはインナーガスケット12の底
部の厚さよりも低くして、防爆弁体1と前記各突起部と
を溶着するに際して防爆弁体を各突起部側へたわませて
溶着した請求項1〜12のいずれかに記載の密閉型電池
用防爆封口板。
13. An inner terminal plate 3 and / or a protruding terminal cover plate 34.
The height of each projection of the protruding dish-shaped cover plate 44 is made lower than the thickness of the insulating rings 2 and 32 or the bottom of the inner gasket 12, and the explosion-proof valve body 1 and each of the projections are welded. 13. The explosion-proof sealing plate for a sealed battery according to any one of claims 1 to 12, wherein the explosion-proof valve body is bent and welded to each projection.
【請求項14】防爆弁体1の溶着部を除く受圧面の一部
に、機械的に薄肉部1a,1bを設けた請求項1〜13
のいずれかに記載の密閉型電池用防爆封口板。
14. The explosion-proof valve body 1 wherein mechanically thin portions 1a and 1b are provided on a part of the pressure receiving surface except for a welded portion.
The explosion-proof sealing plate for a sealed battery according to any one of the above.
【請求項15】外部端子板5と防爆弁体1との間に、リ
ング状のPTC素子72を配置した請求項1〜14のい
ずれかに記載の密閉型電池用防爆封口板。
15. The explosion-proof sealing plate for a sealed battery according to claim 1, wherein a ring-shaped PTC element 72 is arranged between the external terminal plate 5 and the explosion-proof valve body 1.
JP5241112A 1992-09-29 1993-09-28 Explosion-proof sealing plate for sealed batteries Expired - Fee Related JP2970340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5241112A JP2970340B2 (en) 1992-09-29 1993-09-28 Explosion-proof sealing plate for sealed batteries

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25957392 1992-09-29
JP4-259573 1992-09-29
JP5241112A JP2970340B2 (en) 1992-09-29 1993-09-28 Explosion-proof sealing plate for sealed batteries

Publications (2)

Publication Number Publication Date
JPH06215747A JPH06215747A (en) 1994-08-05
JP2970340B2 true JP2970340B2 (en) 1999-11-02

Family

ID=26535096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5241112A Expired - Fee Related JP2970340B2 (en) 1992-09-29 1993-09-28 Explosion-proof sealing plate for sealed batteries

Country Status (1)

Country Link
JP (1) JP2970340B2 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3511698B2 (en) * 1994-11-29 2004-03-29 宇部興産株式会社 Sealed non-aqueous secondary battery
JP3426840B2 (en) * 1995-07-31 2003-07-14 アルプス電気株式会社 Pressure cutoff sensor
JP3378147B2 (en) * 1996-06-28 2003-02-17 松下電器産業株式会社 Method of manufacturing explosion-proof sealing plate for sealed battery
JP3365174B2 (en) * 1995-10-31 2003-01-08 松下電器産業株式会社 Explosion-proof sealing plate for batteries
JP3254995B2 (en) * 1995-12-19 2002-02-12 松下電器産業株式会社 Explosion-proof sealing plate for thin batteries
KR100386394B1 (en) * 1996-02-16 2003-08-14 후지 덴키 가가쿠 가부시키가이샤 Battery with explosion-proof function
WO1998001913A1 (en) * 1996-07-09 1998-01-15 Matsushita Electric Industrial Co., Ltd. Secondary cell and assembly sealing plate for secondary cell
US5958617A (en) * 1996-12-11 1999-09-28 Matsushita Electric Industrial Co., Ltd. Thin type battery
JP3853461B2 (en) * 1997-04-02 2006-12-06 松下電器産業株式会社 Explosion-proof sealing plate for sealed battery and method for manufacturing the same
JP3853460B2 (en) * 1997-04-02 2006-12-06 松下電器産業株式会社 Explosion-proof sealing plate for sealed battery and method for manufacturing the same
JP3816637B2 (en) * 1997-07-09 2006-08-30 松下電器産業株式会社 Explosion-proof sealed battery
KR100303825B1 (en) * 1998-07-28 2001-11-30 김순택 Secondary Battery Cap Assembly
US6524739B1 (en) * 1998-08-25 2003-02-25 Matsushita Electric Industrial Co., Ltd. Secondary battery
TW511311B (en) * 1999-04-12 2002-11-21 Toyo Kohan Co Ltd Safety device of sealed battery
KR20010089144A (en) * 2000-03-09 2001-09-29 다카노 야스아키 Cell safety valve and method for manufacturing the same
JP4094265B2 (en) * 2001-09-25 2008-06-04 株式会社日立製作所 Fuel cell power generator and device using the same
JP4867118B2 (en) * 2001-09-27 2012-02-01 ソニー株式会社 battery
KR100467698B1 (en) 2002-09-05 2005-01-24 삼성에스디아이 주식회사 Cylindrical type lithium secondary battery and the fabrication method of the same
JP2005285565A (en) * 2004-03-30 2005-10-13 Toshiba Corp Non-aqueous electrolyte secondary battery
JP4854208B2 (en) * 2005-03-09 2012-01-18 三洋電機株式会社 Sealed battery and manufacturing method thereof
KR100659840B1 (en) * 2005-04-01 2006-12-19 삼성에스디아이 주식회사 Cylinder type secondary battery
KR100659846B1 (en) * 2005-04-25 2006-12-19 삼성에스디아이 주식회사 Secondary Battery
JP2007227283A (en) * 2006-02-27 2007-09-06 Matsushita Electric Ind Co Ltd Sealed battery
KR100882916B1 (en) 2007-08-27 2009-02-10 삼성에스디아이 주식회사 Secondary battery
KR101502162B1 (en) * 2008-04-18 2015-03-13 삼성에스디아이 주식회사 Secondary battery
US8486546B2 (en) 2008-12-01 2013-07-16 Samsung Sdi Co., Ltd. Cap assembly and secondary battery using the same with notched vent member
KR20100065670A (en) 2008-12-08 2010-06-17 삼성에스디아이 주식회사 Rechargeable battery
KR101086359B1 (en) 2008-12-10 2011-11-23 삼성에스디아이 주식회사 Cap Assembly for secondary battery and Secondary Battery using the same
KR101050535B1 (en) 2008-12-18 2011-07-20 삼성에스디아이 주식회사 Cap assembly and secondary battery having the same
CN102318106B (en) * 2008-12-19 2015-06-24 波士顿电力公司 Modular cid assembly for a lithium ion battery
US20100215997A1 (en) * 2009-02-25 2010-08-26 Samsung Sdi Co., Ltd. Rechargeable battery
JP5420288B2 (en) * 2009-03-26 2014-02-19 三洋電機株式会社 Sealed battery
CN102280597B (en) * 2011-06-29 2015-11-25 深圳市科达利实业股份有限公司 Large-capacity power lithium battery and hush panel thereof
JP5838340B2 (en) 2011-12-28 2016-01-06 パナソニックIpマネジメント株式会社 Battery pack
JP5720956B2 (en) * 2012-05-18 2015-05-20 トヨタ自動車株式会社 Secondary battery
JP6050954B2 (en) * 2012-05-24 2016-12-21 株式会社日立製作所 Nonaqueous electrolyte secondary battery
JP6944653B2 (en) * 2016-04-18 2021-10-06 株式会社Gsユアサ Power storage element
CN108428933B (en) * 2018-04-24 2024-07-23 苏州聚天合科技有限公司 Battery with automatic current cutting-off device
CN109378413B (en) * 2018-08-30 2023-12-26 苏州橙柳电子精密有限公司 Dual blasting battery cap and battery
CN109148783A (en) * 2018-10-11 2019-01-04 东莞市海拓伟电子科技有限公司 A kind of explosion-proof type Notebook Battery
JP2021125304A (en) * 2020-01-31 2021-08-30 パナソニックIpマネジメント株式会社 Power storage device
CN113659256B (en) * 2021-07-21 2024-10-29 广州市金特电子科技有限公司 Battery cap structure and lithium battery structure
CN114011739B (en) * 2021-11-26 2023-12-22 格林美股份有限公司 Automatic battery sorting device
JPWO2023176387A1 (en) * 2022-03-18 2023-09-21

Also Published As

Publication number Publication date
JPH06215747A (en) 1994-08-05

Similar Documents

Publication Publication Date Title
JP2970340B2 (en) Explosion-proof sealing plate for sealed batteries
US6653018B2 (en) Electrochemical device
US7572544B2 (en) Sealed rechargeable battery
US5418082A (en) Sealed battery with current cut off means
US20040126650A1 (en) Electrode assembly for lithium ion cell and lithium cell using the same
US7745024B2 (en) Sealed accumulator equipped with a safety device
US20060051662A1 (en) Electrode assembly and rechargeable battery using the same
JPH05251076A (en) Organic electrolyte battery
JP2003242952A (en) Secondary battery
JPH11329405A (en) Nonaqueous electrolyte secondary battery
JPH02207450A (en) Cylindrical organic electrolyte cell with ptc element
WO2010125755A1 (en) Assembled sealing body and battery using same
EP3531477B1 (en) Pouch-shaped secondary battery inluding electrode lead using conductive polymer
JP2004273139A (en) Lithium secondary battery
US7488556B2 (en) Battery module and its method of manufacture
JP3168892B2 (en) Explosion-proof sealing plate for secondary batteries
JPH09199106A (en) Explosion-proof sealing plate for secondary cell
KR20210061114A (en) The Electrode Assembly And The Method For Thereof
KR20050020894A (en) Secondary Battery having a Tap in Short Part of Can
JP2001229904A (en) Sealed battery
JP2006228520A (en) Secondary battery
JPH10247483A (en) Safety structure of sealed battery
JPH09320562A (en) Sealed cylindrical nonaqueous secondary battery
JPH0256849A (en) Organic electrolytic battery
JP2003077449A (en) Secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees