JP2939780B2 - Solar cell - Google Patents

Solar cell

Info

Publication number
JP2939780B2
JP2939780B2 JP4188538A JP18853892A JP2939780B2 JP 2939780 B2 JP2939780 B2 JP 2939780B2 JP 4188538 A JP4188538 A JP 4188538A JP 18853892 A JP18853892 A JP 18853892A JP 2939780 B2 JP2939780 B2 JP 2939780B2
Authority
JP
Japan
Prior art keywords
refractive index
solar cell
layer
transparent electrode
index adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4188538A
Other languages
Japanese (ja)
Other versions
JPH05343717A (en
Inventor
克彦 林
美則 山口
圭三 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP4188538A priority Critical patent/JP2939780B2/en
Publication of JPH05343717A publication Critical patent/JPH05343717A/en
Application granted granted Critical
Publication of JP2939780B2 publication Critical patent/JP2939780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池に関し、例え
ばアモルファスシリコンを半導体層の主成分とする太陽
電池に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell, for example, a solar cell having amorphous silicon as a main component of a semiconductor layer.

【0002】[0002]

【従来の技術】従来のアモルファスシリコン太陽電池
は、光照射側からみて透明電極層、半導体層、金属電極
層の構成からなり、光照射によって励起され生成したキ
ャリアーが、pin又はnip等で接合された半導体層
内の電場の作用により、光エネルギーを電気エネルギー
に変換するものである。
2. Description of the Related Art A conventional amorphous silicon solar cell comprises a transparent electrode layer, a semiconductor layer, and a metal electrode layer when viewed from the light irradiation side. Carriers excited and generated by light irradiation are joined by pin or nip. It converts light energy into electric energy by the action of an electric field in the semiconductor layer.

【0003】[0003]

【発明が解決しようとする課題】しかるに、この種の太
陽電池では、半導体層と透明電極層の間で屈折率が異な
るため、半導体層と透明電極層との界面で光が反射され
てしまい(例えば、9%程度反射される。)、半導体層
内に導入される光量が減少し、その結果、短絡電流が減
少して曲線因子の特性が悪くなり、変換効率が低く抑え
られるという問題があった。
However, in this type of solar cell, since the refractive index differs between the semiconductor layer and the transparent electrode layer, light is reflected at the interface between the semiconductor layer and the transparent electrode layer. For example, the light is reflected by about 9%.), The amount of light introduced into the semiconductor layer decreases, and as a result, the short-circuit current decreases, the characteristics of the fill factor deteriorate, and the conversion efficiency is reduced. Was.

【0004】[0004]

【課題を解決するための手段】本発明は、前記従来の課
題を解決し得る太陽電池を提供するものであって、以下
に述べるような複数の態様が採用される。本発明が提供
する太陽電池の一つの態様は、請求項1に記載するとお
り、透明電極層と半導体層との間に透光性を有する屈折
率調整層を設け、当該屈折率調整層を、その屈折率の値
が前記両層の屈折率をそれぞれ上限及び下限とする範囲
内にあるものとすると共に、酸素欠陥を含む酸化チタン
TiO(2-X) (但しXは0.4以下)から成るものとする
ことを特徴とする。
The present invention provides a solar cell capable of solving the above-mentioned conventional problems, and employs a plurality of aspects as described below. One embodiment of the solar cell provided by the present invention, as described in claim 1, provided a transmissive refractive index adjustment layer between the transparent electrode layer and the semiconductor layer, the refractive index adjustment layer, The value of the refractive index is within the range of the upper and lower limits of the refractive index of the two layers, respectively, and titanium oxide containing oxygen defects
It is characterized by comprising TiO (2-X) (where X is 0.4 or less).

【0005】本発明が提供する異なる態様の太陽電池の
特徴とするところは、請求項2又は3に記載するとお
り、透明電極層と半導体層との間に透光性を有する屈折
率調整層を設け、当該屈折率調整層を、その屈折率の値
が前記両層の屈折率をそれぞれ上限及び下限とする範囲
内にあるチタン酸化物から成るものとすると共に、タン
タルTa又はバリウムBaを20%以下含むものとする
ことにある。
[0005] The feature of the solar cell of a different aspect provided by the present invention is that, as described in claim 2 or 3, a light-transmitting refractive index adjusting layer is provided between the transparent electrode layer and the semiconductor layer. The refractive index adjusting layer is made of a titanium oxide having a refractive index within a range in which the refractive indexes of the two layers are the upper limit and the lower limit, respectively, and 20% of tantalum Ta or barium Ba is provided. The following shall be included.

【0006】また、本発明が提供する太陽電池のさらに
異なる態様の特徴とするところは、請求項4に記載する
とおり、透明電極層と半導体層との間に透光性を有する
屈折率調整層を設け、当該屈折率調整層を、その屈折率
の値が前記両層の屈折率をそれぞれ上限及び下限とする
範囲内にあるものとすると共に、多孔質としたことにあ
る。
A feature of the solar cell provided by the present invention is that the refractive index adjusting layer having a light-transmitting property between the transparent electrode layer and the semiconductor layer, as described in claim 4. And that the refractive index adjustment layer is porous, with the value of the refractive index being within the range of the upper and lower limits of the refractive index of the two layers, respectively.

【0007】なお請求項1乃至3に記載する態様の太陽
電池において、透明電極層を酸化スズSnO2 から成る
ものとし、当該透明電極層と前記屈折率調整層との界面
を実質的に平坦なものとする態様を採用することができ
る。
In the solar cell according to the first to third aspects, the transparent electrode layer is made of tin oxide SnO 2 , and the interface between the transparent electrode layer and the refractive index adjusting layer is substantially flat. It is possible to adopt an embodiment.

【0008】[0008]

【作用】本発明に係る太陽電池は、透明電極層と半導体
層の間に、透光性を有し且つその屈折率の値が前記両層
の屈折率をそれぞれ上限及び下限とする範囲内にある屈
折率調整層を設けたので、透明電極層と半導体層との屈
折率の差に起因する光の反射を少なくすることができ、
半導体層への光の導入が円滑に行われる。なお、ここで
「透光性」とは、太陽電池が電気に変換し得る波長の光
を透過可能な性質を意味するものであり、例えば、バン
ドギャップが350nmより短波長の光にある材料が適
している。
The solar cell according to the present invention has a light-transmitting property between the transparent electrode layer and the semiconductor layer, and the value of the refractive index is within a range in which the upper and lower limits of the refractive index of the two layers are respectively set. Since a certain refractive index adjustment layer is provided, it is possible to reduce the reflection of light due to the difference in the refractive index between the transparent electrode layer and the semiconductor layer,
Light is smoothly introduced into the semiconductor layer. Here, the term “translucent” means a property that allows a solar cell to transmit light having a wavelength that can be converted into electricity. For example, a material having a band gap of light having a wavelength shorter than 350 nm is used. Are suitable.

【0009】前記屈折率調整層を酸素欠陥を含む酸化チ
タンTiO(2-X) (但しXは0.4以下)から成るものと
することにより、屈折率調整層に導電性を付与すること
ができる。なお、前記Xの値を0.4以下、つまり酸素
欠陥の割合を20%以内としたのは、屈折率調整層での
光の吸収が増大するのを抑制し、半導体層への光の入射
量を確保するためである屈折率調整層を形成する酸化チ
タンTiO2 に酸素欠陥を持たせる代わりに、チタンと価
数の異なる金属、例えばタンタルTa又はバリウムBa
を20%以下混合することによっても、酸素欠陥を持た
せるのと同等の効果を発揮する。
When the refractive index adjusting layer is made of titanium oxide TiO.sub. (2-X) containing oxygen defects (where X is 0.4 or less), it is possible to impart conductivity to the refractive index adjusting layer. it can. The reason why the value of X is 0.4 or less, that is, the ratio of oxygen vacancies is set to 20% or less, is to suppress an increase in light absorption in the refractive index adjusting layer and to prevent light from entering the semiconductor layer. Instead of having oxygen deficiency in titanium oxide TiO 2 forming the refractive index adjusting layer for securing the amount, a metal having a valence different from titanium, for example, tantalum Ta or barium Ba is used.
The effect equivalent to providing oxygen vacancies is also exhibited by mixing 20% or less.

【0010】屈折率調整層を多孔質のもので形成した場
合には、仮にこれが絶縁体であっても、電流の取り出し
を支障なく行うことができる。
When the refractive index adjusting layer is formed of a porous material, the current can be taken out without any trouble even if it is an insulator.

【0011】[0011]

【実施例】本発明に係る太陽電池の実施例を、図面を参
照して説明する。図1は、本発明に係る太陽電池1の概
略構成を示す断面図である。当該太陽電池1は、透明な
ガラス基板2上にSnO2 膜より成る透明電極層3が形
成され、透明電極層3の上に、TiO2 等のチタン酸化物
より成る屈折率調整層4が形成され、さらに屈折率調整
層4の上に、シリコンを主成分とする半導体層5が形成
される。この半導体層5は、例えばアモルファスシリコ
ンpin各層をpin或いはnipの順番で接合して形
成される。半導体層5の上には金属電極層6が設けられ
る。なお図面に明示されるとおり、各層間の界面は実質
的に平坦に形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the solar cell according to the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a schematic configuration of a solar cell 1 according to the present invention. In the solar cell 1, a transparent electrode layer 3 made of a SnO 2 film is formed on a transparent glass substrate 2, and a refractive index adjustment layer 4 made of a titanium oxide such as TiO 2 is formed on the transparent electrode layer 3. Then, a semiconductor layer 5 containing silicon as a main component is formed on the refractive index adjusting layer 4. The semiconductor layer 5 is formed, for example, by joining amorphous silicon pin layers in the order of pin or nip. The metal electrode layer 6 is provided on the semiconductor layer 5. As clearly shown in the drawings, the interface between the respective layers is formed substantially flat.

【0012】屈折率調整層4を形成するTiO2 膜は、透
明電極層3から半導体層5へ光が入射する際の反射を抑
制するため、屈折率の値が、透明電極層3と半導体層5
の屈折率をそれぞれ上限及び下限とする範囲内に設定さ
れる。例えば半導体層5がシリコンを主成分とする場
合、屈折率調整層4の屈折率は、2.2乃至3.5の範
囲とされる。またTiO2 に酸素欠陥を持たせることによ
り、導電性を付与して、光電流を取り出し易くしてあ
る。そして、酸素欠陥の割合を20%以下とし、屈折率
調整層4の厚みを50Å〜2000Å、望ましくは20
0Å〜500Åの厚みとすることにより、特に、350
nmよりも短波長側にバンドギャップを有する材質とす
ることにより、所要の透光性を備える。
The TiO 2 film forming the refractive index adjusting layer 4 suppresses reflection when light enters the semiconductor layer 5 from the transparent electrode layer 3. 5
Are set within the ranges of the upper limit and the lower limit, respectively. For example, when the semiconductor layer 5 contains silicon as a main component, the refractive index of the refractive index adjusting layer 4 is in a range from 2.2 to 3.5. In addition, by providing TiO 2 with oxygen deficiency, conductivity is imparted to facilitate extraction of a photocurrent. Then, the ratio of oxygen vacancies is set to 20% or less, and the thickness of the refractive index adjustment layer 4 is set to 50 to 2,000, preferably 20 to 200.
By setting the thickness to 0 ° to 500 °, in particular, 350 mm
By using a material having a band gap on the shorter wavelength side than nm, required translucency is provided.

【0013】図2は、前記構成からなる太陽電池1にお
いて、屈折率調整層4を一定の厚み(本例では350
Å)に固定し、波長領域300nm〜800nmの光に
対して透明な媒質を用いたときの、屈折率(n)の大き
さをパラメータとする太陽電池1の短絡電流(ISC)の
特性を示すグラフである。このグラフから、屈折率が約
2.9で短絡電流(ISC)が最大となる双物特性をして
いるのが分かる。
FIG. 2 shows that in the solar cell 1 having the above-described structure, the refractive index adjusting layer 4 has a constant thickness (350 in this example).
Å) and the characteristic of the short-circuit current (I SC ) of the solar cell 1 when the medium transparent to the light in the wavelength region of 300 nm to 800 nm is used and the magnitude of the refractive index (n) is used as a parameter. It is a graph shown. From this graph, it can be seen that the refractive index is about 2.9, and the short-circuit current (I SC ) has the dual characteristic in which the maximum is obtained.

【0014】図3は、前記構成からなる太陽電池1にお
いて、屈折率調整層4として屈折率(n)を一定の値に
固定し(本例では2.71)、波長領域300nm〜8
00nmの光に対して透明な媒質を用いたときの、屈折
率調整層4の厚み(d)をパラメータとする太陽電池1
の短絡電流(ISC)の特性を示すグラフである。このグ
ラフから、層厚みが約350Åのとき短絡電流(ISC
が最大となる双物特性をしているのが分かる。
FIG. 3 shows that in the solar cell 1 having the above-mentioned structure, the refractive index (n) is fixed to a constant value (2.71 in this example) as the refractive index adjusting layer 4, and the wavelength region is 300 nm to 8 nm.
Solar cell 1 having thickness (d) of refractive index adjusting layer 4 as a parameter when a medium transparent to light of 00 nm is used.
5 is a graph showing the characteristics of the short-circuit current (I SC ) of FIG. From this graph, it can be seen that when the layer thickness is about 350 °, the short-circuit current (I SC )
It can be seen that the characteristic has a maximum of two.

【0015】前記図2及び図3に示すグラフから、短絡
電流(ISC)の特性に影響を与えるのは、屈折率調整層
4の屈折率(n)とその厚み(d)であることが分か
る。本発明は、屈折率調整層4の屈折率の値を、透明電
極層と半導体層の各屈折率をそれぞれ上限及び下限とす
る範囲内に設定するという要件を採用したことにより、
従来よりも優れた特性を太陽電池に付与することが可能
できる。しかも本発明では、屈折率調整層4を、酸素欠
陥を含む酸化チタンTiO(2-X) (但しXは0.4以下)
から成るものとしたので、太陽電池の特性の一層の向上
が得られる。
From the graphs shown in FIG. 2 and FIG. 3, what affects the characteristics of the short-circuit current (I SC ) is that the refractive index (n) of the refractive index adjusting layer 4 and its thickness (d). I understand. The present invention adopts the requirement that the value of the refractive index of the refractive index adjusting layer 4 is set within a range in which the respective refractive indices of the transparent electrode layer and the semiconductor layer are set as upper and lower limits, respectively.
It is possible to provide the solar cell with more excellent characteristics than before. Moreover, in the present invention, the refractive index adjusting layer 4 is made of titanium oxide TiO (2-X) containing oxygen vacancies (where X is 0.4 or less).
, The characteristics of the solar cell can be further improved.

【0016】具体的には、前記図1の太陽電池1におい
て、金属電極層6をAlとし、屈折率調整層4を挟まな
い従来構造のものは、AM1光に対する短絡電流が1
4.8mA/cm2 、変換効率が8.8%であったのに
対して、厚み350Åの屈折率調整層4を挟んだ構造の
本発明に係る太陽電池1では、短絡電流が約10%大き
くなって16.2mA/cm2 となり、変換効率も同じ
く約10%上昇して9.5%に増加したのが確認され
た。また、短絡電流、変換効率の向上だけでなく、開放
電圧、曲線因子の改善の効果も確認された。
Specifically, in the solar cell 1 of FIG. 1, the metal electrode layer 6 is made of Al and the conventional structure in which the refractive index adjusting layer 4 is not interposed has a short-circuit current of 1 for AM1 light.
While the conversion efficiency was 4.8 mA / cm 2 and the conversion efficiency was 8.8%, the short-circuit current of the solar cell 1 according to the present invention having the structure in which the refractive index adjusting layer 4 having a thickness of 350 ° was sandwiched was about 10%. It increased to 16.2 mA / cm 2 , and it was confirmed that the conversion efficiency also increased by about 10% to 9.5%. In addition, the effect of improving not only the short-circuit current and the conversion efficiency but also the open-circuit voltage and the fill factor was confirmed.

【0017】ところで、屈折率調整層4に、20%以内
の酸素欠陥を持たせたり、タンタルやバリウム等の不純
物を20%以下含ませるのは、導電性をこの層に持たせ
て光電流を取り出し易くするためであり、電流の取り出
しに支障がないのであれば、屈折率調整層4は絶縁体で
あってもよく、例えばチタンを陽極酸化してできる多孔
質のTiO2 等の使用も可能である。
The reason why the refractive index adjusting layer 4 is made to have oxygen defects within 20% or to contain impurities such as tantalum or barium in 20% or less is that the layer is made conductive and the photocurrent is increased. The refractive index adjusting layer 4 may be an insulator, for example, as long as it is easy to take out and there is no problem in taking out current. For example, porous TiO 2 formed by anodizing titanium can be used. It is.

【0018】また屈折率調整層4を多孔質とする場合
は、TiO2 等のチタン酸化物の他に、Sb2 3 ,Fe
2 3 ,CdS,CeO2 ,ZnS,PbCl2 ,Cd
O等を用いることもできる。
[0018] If the refractive index adjusting layer 4 and the porous, in addition to titanium oxide such as TiO 2, Sb 2 S 3, Fe
2 O 3 , CdS, CeO 2 , ZnS, PbCl 2 , Cd
O or the like can also be used.

【0019】[0019]

【発明の効果】以上述べたように、本発明によれば、従
来の太陽電池に比べて短絡電流を大きくすることがで
き、同時に変換効率の向上も図れる。さらに、開放電
圧、曲線因子の改善の効果もあり、これらも太陽電池の
変換効率の向上に寄与することになる。
As described above, according to the present invention, the short-circuit current can be increased as compared with the conventional solar cell, and the conversion efficiency can be improved at the same time. Further, there are effects of improving the open-circuit voltage and the fill factor, which also contribute to the improvement of the conversion efficiency of the solar cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る太陽電池の概略構成を示す断面図
である。
FIG. 1 is a sectional view showing a schematic configuration of a solar cell according to the present invention.

【図2】本発明に係る太陽電池において、屈折率調整層
の厚みを一定厚みとし、屈折率の大きさ(n)をパラメ
ータとしたときの短絡電流(ISC)特性を示すグラフで
ある。
FIG. 2 is a graph showing a short-circuit current (I SC ) characteristic when the thickness of the refractive index adjusting layer is constant and the magnitude of the refractive index (n) is a parameter in the solar cell according to the present invention.

【図3】本発明に係る太陽電池において、屈折率調整層
の屈折率を一定の値にし、屈折率調整層の厚み(d)を
パラメータとしたときの短絡電流(ISC)特性を示すグ
ラフである。
FIG. 3 is a graph showing a short-circuit current (I SC ) characteristic when the refractive index of the refractive index adjusting layer is a constant value and the thickness (d) of the refractive index adjusting layer is a parameter in the solar cell according to the present invention. It is.

【符号の説明】[Explanation of symbols]

1…太陽電池 2…ガラス基板 3…透明電極層 4…屈折率調整層 5…半導体層 6…金属電極層 DESCRIPTION OF SYMBOLS 1 ... Solar cell 2 ... Glass substrate 3 ... Transparent electrode layer 4 ... Refractive index adjustment layer 5 ... Semiconductor layer 6 ... Metal electrode layer

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 透明電極層と半導体層との間に透光性を
有する屈折率調整層が設けられた太陽電池であって、当
該屈折率調整層は、その屈折率の値が前記両層の屈折率
をそれぞれ上限及び下限とする範囲内にあり、酸素欠陥
を含む酸化チタンTiO(2-X) (但しXは0.4以下)か
ら成ることを特徴とする太陽電池。
1. A solar cell comprising a transparent electrode layer and a semiconductor layer provided with a refractive index adjusting layer having a light-transmitting property, wherein the refractive index adjusting layer has a refractive index value between the transparent electrode layer and the semiconductor layer. A solar cell comprising titanium oxide TiO.sub. (2-X) (where X is 0.4 or less) containing oxygen deficiencies within a range having a refractive index of an upper limit and a lower limit, respectively.
【請求項2】 透明電極層と半導体層との間に透光性を
有する屈折率調整層が設けられた太陽電池であって、当
該屈折率調整層は、その屈折率の値が前記両層の屈折率
をそれぞれ上限及び下限とする範囲内にあるチタン酸化
物から成り、タンタルTaを20%以下含むことを特徴
とする太陽電池。
2. A solar cell in which a refractive index adjusting layer having a light-transmitting property is provided between a transparent electrode layer and a semiconductor layer, wherein the refractive index adjusting layer has a refractive index value between the two layers. A solar cell comprising a titanium oxide having a refractive index of an upper limit and a lower limit, respectively, and containing 20% or less of tantalum Ta.
【請求項3】 透明電極層と半導体層との間に透光性を
有する屈折率調整層が設けられた太陽電池であって、当
該屈折率調整層は、その屈折率の値が前記両層の屈折率
をそれぞれ上限及び下限とする範囲内にあるチタン酸化
物から成り、バリウムBaを20%以下含むことを特徴
とする太陽電池。
3. A solar cell in which a refractive index adjusting layer having a light-transmitting property is provided between a transparent electrode layer and a semiconductor layer, wherein the refractive index adjusting layer has a refractive index value of the two layers. A solar cell comprising a titanium oxide having a refractive index of an upper limit and a lower limit, respectively, and containing 20% or less of barium Ba.
【請求項4】 透明電極層と半導体層との間に透光性を
有する屈折率調整層が設けられた太陽電池であって、当
該屈折率調整層は、その屈折率の値が前記両層の屈折率
をそれぞれ上限及び下限とする範囲内にあり、且つ多孔
質であることを特徴とする太陽電池。
4. A solar cell in which a refractive index adjusting layer having a light transmitting property is provided between a transparent electrode layer and a semiconductor layer, wherein the refractive index adjusting layer has a refractive index value between the two layers. A solar cell having a refractive index within a range of an upper limit and a lower limit, respectively, and being porous.
【請求項5】 透明電極層が酸化スズSnO2 から成
り、当該透明電極層と前記屈折率調整層との界面は実質
的に平坦である請求項1乃至3のいずれかに記載の太陽
電池。
5. The solar cell according to claim 1, wherein the transparent electrode layer is made of tin oxide SnO 2 , and an interface between the transparent electrode layer and the refractive index adjusting layer is substantially flat.
JP4188538A 1992-06-05 1992-06-05 Solar cell Expired - Lifetime JP2939780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4188538A JP2939780B2 (en) 1992-06-05 1992-06-05 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4188538A JP2939780B2 (en) 1992-06-05 1992-06-05 Solar cell

Publications (2)

Publication Number Publication Date
JPH05343717A JPH05343717A (en) 1993-12-24
JP2939780B2 true JP2939780B2 (en) 1999-08-25

Family

ID=16225462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4188538A Expired - Lifetime JP2939780B2 (en) 1992-06-05 1992-06-05 Solar cell

Country Status (1)

Country Link
JP (1) JP2939780B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733889B2 (en) 2002-05-14 2004-05-11 Pilkington North America, Inc. Reflective, solar control coated glass article
WO2005027229A1 (en) * 2003-08-29 2005-03-24 Asahi Glass Company, Limited Base with transparent conductive film and method for producing same
JP2014160689A (en) * 2011-06-20 2014-09-04 Asahi Glass Co Ltd Base material with transparent conductive oxide film

Also Published As

Publication number Publication date
JPH05343717A (en) 1993-12-24

Similar Documents

Publication Publication Date Title
EP1650814B1 (en) Tandem thin film solar cell
US4940495A (en) Photovoltaic device having light transmitting electrically conductive stacked films
US7332782B2 (en) Dye-sensitized solar cell
US20080236661A1 (en) Solar cell
US9136406B2 (en) Solar cell assembly with diffraction gratings
JP4940309B2 (en) Solar cell
JPWO2005011002A1 (en) Silicon-based thin film solar cell
WO2009116578A1 (en) Solar cell
JPH05259495A (en) Solar cell element
US4612559A (en) Solar cell of amorphous silicon
JPH07321362A (en) Photovoltaic device
JP2939780B2 (en) Solar cell
JPH06163955A (en) Solar cell substrate and solar cell
JPS59224183A (en) Photoelectric converter device
JP3025392B2 (en) Thin film solar cell and manufacturing method
JP3342257B2 (en) Photovoltaic element
JPH0463550B2 (en)
JPH10117005A (en) Solar battery
JPS59125669A (en) Solar battery
JP3196155B2 (en) Photovoltaic device
JPS59152675A (en) Amorphous silicon photovoltaic element
JPS6095980A (en) Photoelectric conversion device
JPH05145095A (en) Photovoltaic element
JP2613134B2 (en) Amorphous solar cell
JPS6265478A (en) Photovoltaic device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 13

EXPY Cancellation because of completion of term