JP2927339B2 - High temperature electrochemical battery - Google Patents

High temperature electrochemical battery

Info

Publication number
JP2927339B2
JP2927339B2 JP8093321A JP9332196A JP2927339B2 JP 2927339 B2 JP2927339 B2 JP 2927339B2 JP 8093321 A JP8093321 A JP 8093321A JP 9332196 A JP9332196 A JP 9332196A JP 2927339 B2 JP2927339 B2 JP 2927339B2
Authority
JP
Japan
Prior art keywords
electrode
thermal expansion
electrolyte
solid solution
lanthanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8093321A
Other languages
Japanese (ja)
Other versions
JPH0997613A (en
Inventor
ジョン ルカ ロスウェル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of JPH0997613A publication Critical patent/JPH0997613A/en
Application granted granted Critical
Publication of JP2927339B2 publication Critical patent/JP2927339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Metallurgy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、支持チューブと電
極の機能を兼ね備えた電極材料及びかかる電極を有する
高温電気化学電池に関する。 【0002】 【従来の技術及び発明が解決しようとする課題】ランタ
ンの一部分をカルシウム・イオンまたはストロンチウム
・イオンで置換して変性した亜マンガン酸ランタンが高
温固体電解質燃料電池の電極材料として使用されてい
る。ランタンの一部分をカルシウム・イオンまたはスト
ロンチウム・イオンで置換して変性した亜クロム酸ラン
タンも、高温固体電解質燃料電池の空気電極または空気
電極及び支持体兼用の材料として考慮されている。この
種の燃料電池は、それぞれ支持体、空気電極、電解質、
燃料電極、相互接続体及びその他の機能を発揮する連続
したセラミックス材料の接合層から成る。製造または動
作時における高温と室温との加熱サイクル中に燃料電池
が損傷しないように、燃料電池を構成している各層の熱
膨脹特性が一致していることが望ましい。各層の熱膨脹
特性が一致しない場合には、熱サイクル中に層が割れて
燃料電池が動作不良になったり少なくとも動作効率が低
下する可能性がある。 【0003】変性亜マンガン酸ランタン及び変性亜クロ
ム酸ランタンを用いて燃料電池を製造する場合の難点
は、導電率が最高値になるように変性したこの種の材料
の熱膨脹係数が、安定化ジルコニア電解質または安定化
ジルコニア支持体といった燃料電池の製造に通常使用さ
れるいくつかの他の材料の熱膨脹係数よりも大きいとい
うことである。これら種々の材料の熱膨張係数は、特定
の燃料電池に用いるために選択した組成によって異なる
が、亜マンガン酸ランタン及び亜クロム酸ランタンの熱
膨脹係数を他の材料の熱膨脹係数に合致するように調整
できることが強く望まれる。このように熱膨脹係数を一
致させると、燃料電池における上記各材料の使用が可能
となり、熱サイクル中に電池部材に割れを生じることも
ない。 【0004】 【課題を解決するための手段】本発明は、以下の一般式
で表わされる固溶体から成る化合物により気体に対して
多孔質な管の形に形成され、 La1-x-w(MLx(Ce)w(Ms11-y(Ms2y3 式中、ML はCa,Sr及びBaの少なくとも1種;M
s1はMnもしくはCrまたはMn及びCr;Ms2はN
i,Fe,Co,Ti,Al,In,Sn,Mg,Y,
Nb,Taの少なくとも1種;wは0.05〜0.2
5;x+wは0.1〜0.7;yは0〜0.5であり溶解度
の限界内である;固溶体の密度が理論密度の約80%を
越えないことを特徴とする支持チューブと電極の機能を
兼ね備えた部材を提供する。 【0005】本発明はさらに、電解質に接合された電極
が以下の一般式で表わされる固溶体から成る化合物で形
成され、 La1−x−w(M(Ce)(Ms11−y(Ms2 式中、MはCa,Sr及びBaの少なくとも1種;M
s1はMnもしくはCrまたはMn及びCr;Ms2
Ni,Fe,Co,Ti,Al,In,Sn,Mg,
Y,Nb,Taの少なくとも1種;wは0.05〜0.
25;x+wは0.1〜0.7;yは0〜0.5であり
溶解度の限界内である;前記電極が他の電池部材即ち電
池の各部材の機械的支持体となる電気化学電池を提供す
る。 【0006】変性亜マンガン酸ランタンまたは変性亜ク
ロム酸ランタン中のランタンの一部分をセリウムで置換
すると熱膨脹係数が減少し、燃料電池の支持チューブ及
び電解質中で使用される他の材料の熱膨脹係数とよく一
致するようになるという知見が得られた。セリウムは化
学的特性の多くの点で類似性を持つ14種の稀土類元素
のうちの1種に過ぎないにもかかわらず、本発明者の試
験によればほぼ同程度の濃度の場合にはセリウムだけが
変性亜クロム酸ランタン及び変性亜マンガン酸ランタン
の熱膨脹係数にこのような大きな影響を与えるというこ
とは驚くべき知見であった。少量のランタンをセリウム
で置換すると抵抗率が僅かに大きくなるが、抵抗率の増
大は充分に小さく、空気電極材料として極めて有用な程
度に止まる。 【0007】本発明をより明確に理解できるように、添
付の図面を参照して、以下に本発明の好ましい実施例に
ついて説明する。 【0008】 【発明の実施の形態】図1図において、燃料電池1は電
池に構造安定性または構造強度を与える支持チューブ2
を有する。一般的に、支持チューブは、気体透過性の多
孔質壁部を形成するカルシアで安定化したジルコニアか
ら成り、その厚さは約1〜2mmである。支持チューブ
2の外周部を薄い多孔質の空気電極,即ちカソード3が
取囲んでいる。カソード3は、一般的には、プラズマ溶
射またはスラリー噴射もしくはスラリー中への浸漬と焼
結というような周知の技法によって支持チューブに付着
させた厚さ約15〜1000ミクロンの複合酸化物から
構成される。この空気電極は、亜マンガン酸ランタンま
たは亜クロム酸ランタンを含む化学的に変性された酸化
物または酸化物の混合物から成るものでよい。電極の上
部には、代表的にイットリアで安定化したジルコニアか
ら成る厚さ約1ミクロン〜100ミクロンの気密の固体
電解質が配設される。電解質の付着工程では選定した長
手方向区画5にマスクを施すが、この区画5には相互接
続材料を付着させて相互接続部6を形成する。相互接続
材料は、酸素雰囲気及び燃料雰囲気中において導電性で
なければならない。相互接続部は、厚さが5〜100ミ
クロンであり、一般にはカルシウム、ストロンチウムま
たはマグネシウムをドープした亜クロム酸ランタンから
成る。電池の相互接続部以外の領域は、アノードとして
作用する燃料電極7によって取囲まれている。一般的に
アノードの厚さは30〜100ミクロンである。相互接
続部6の上部には、アノードと同一組成の材料8が付着
している。この材料8の代表的な例は、ニッケル・ジル
コニア・サーメットまたはコバルト・ジルコニア・サー
メットであり、厚さは50〜100ミクロンである。 【0009】動作時には、水素または一酸化炭素のよう
な気体状の燃料が電池の外側を流れ、酸素源となる気体
が電池の内側を通過する。酸素は電極との界面で酸素イ
オンを発生させ、酸素イオンが電解質を通ってアノード
に移動する。電子はカソードに集められて、外部負荷回
路に電流が流れる。一つの電池の相互接続部をもう一つ
の電池のアノードと接触させることにより、多数の電池
を直列に接続することができる。この型式の燃料電池発
電装置については、米国特許第4,395,468号及
び第3,400,054号並びに1982年11月20
日に出願された米国特許出願第323,641号[出願
人:アイセンバーグ (Isenberg)]の明細書を参照され
たい。 【0010】本発明のセラミックスは、ベロブスカイト
に類似した結晶構造を持ち、下記のような一般式を有す
る固溶体である: La1-x-w(MLx(Ce)w(Ms11-y(Ms2y3 式中のML はカルシウム、ストロンチウム、バリウムま
たはこれらの混合物であるが、安価であるため100モ
ル%カルシウムであるのが好ましく、固体酸化物燃料電
池での動作特性が良好であることが判明している。上記
のイオン類の存在により導電性が向上する。式中のMs1
は、マンガン、クロムまたはこれらの混合物であり、M
s2はニッケル、鉄、コバルト、チタニウム、アルミニウ
ム、インジウム、錫、マグネシウム、イットリウム、ニ
オビウム、タンタル、またはこれらの混合物である。式
中、yは0〜0.5、好ましくは0であり、マンガンま
たはクロム以外の成分の添加は一般的には好ましくな
い。化合物中でマンガンが使用されているのは導電性を
よくするためである。化合物中にクロムが存在すると導
電率は低下するけれども、クロムはマンガンほど電解質
と反応しない。さらに、上記の各元素類は、それらの溶
解度の限界以上に添加してはならない。x+wの値は0.
1〜0.7、好ましくは0.4〜0.7であり、x+wが
上記範囲未満であると導電率が低下し、上記範囲を越え
るとセラミックスの熱膨脹挙動が劣化し相変化を起こす
可能性が生じる。wの値は0.05〜0.25、好まし
くは0.1〜0.2であり、wの値が上記範囲未満であ
るとセラミックスの熱膨脹係数が著しく減少し、上記範
囲を越えると導電率が低下し、電気化学電池で使用され
ている(ZrO2)0.85(CaO)0.15のような安定化ジ
ルコニア材料の熱膨脹係数の範囲と一致させるためには
wの値を上記の範囲を越える値にする必要はない。 【0011】熱膨脹係数がよく一致する材料のいくつか
の組合わせが実験的に確認されているが、これらの材料
は,一体的に接合しても熱サイクル時に割れを起こす危
険性が少ないことがわかっている。このような組合わせ
の例としては、電解質として(ZrO2)0.9(Y23
0.1を用い、電極材料として La0.3Ca0.5-0.6Ce0.2-0.1MnO3 を用いる組合わせを挙げることができる。もう一つの例
としては、支持チューブに(ZrO2)0.85(CaO)
0.15を用い、電極に La0.3Ca0.5-0.6Ce0.2-0.1MnO3 を用いる組合わせを挙げることができる。他の例では、
電解質として(ZrO2)0.9(Y230.1用いて、 La0.3Ca0.5-0.6Ce0.2-0.1CrO3 から成る電極と組合わせる。さらにもう一つの例は、支
持体または電解質として(ZrO2)0.85(CaO)0.15
を用いて、 La0.3Ca0.5-0.6Ce0.2-0.1CrO3 から成る電極と組合わせる例である。 【0012】変性亜マンガン酸ランタンまたは変性亜ク
ロム酸ランタンは、単一相の固溶体であり、二相から成
る機械的な混合物ではない。本発明によるセラミックス
は、必要な特定の比率で各元素の化合物類を混合し、1
400°C〜1800°Cで1〜4時間加圧・焼結する
ことによって製造できる。使用できる化合物類は、酸化
物、炭化物並びにシュウ酸塩のような加熱により酸化物
を形成する化合物類である。固体電解質電気化学電池の
支持チューブと電極とを組合わせ体、即ち支持チューブ
と電極の機能を兼ね備えた1つの部材として使用するた
めに、粒度及び焼結温度を選択して、焼結酸化物の密度
が理論密度の約80%を越えないようにして、周囲の気
体が透過して電気化学反応の起こる電極と電解質との界
面に到達できる密度にする。例えば燃料電池、電解槽ま
たは酸素ゲージ(oxygen gauge)等の固体電解質電気化学
電池以外の使用においても、上記の亜クロム酸ランタン
固溶体によりMHD発電機の電極部材間の熱膨脹係数を
より合致させることもできる。 【0013】次に、実施例を挙げて本発明を例示する。 【0014】実 施 例 化合物MnO2,Cr23,La23,CaCO3,Sr
CO3,CeO2及びY 23を使用し、各化合物を所用比
率で混合し、70.3〜703kg/cm2 (1000〜10
000 psi)で加圧した後1〜4時間焼結して、組成物La
0.3Ca0.5Ce0.2MnO3、La0.7Sr0.3MnO3
La0.7Sr0.2Ca0.1MnO3,La0.35Ca0.65Mn
3、La0.5Ca0.5CrO3、La0.3Ca0.5Ce0.2
CrO3を調製した。マンガンを含有する組成物は14
00°C〜1500°Cで焼結させ、クロムを含有する
組成物は約1600°Cで焼結させた。熱膨脹データを
比較するために、(ZrO2)0.92(Y23)0.08の焼結
棒を準備した。製品は、長さ約2.54cm(1イン
チ)、幅及び厚さ0.635cm×0.635cm(1/
4インチ×1/4インチ)の長方形の棒であった。棒の形状
を整えて、熱膨脹率特性を安定化させるために、135
0°Cと室温との熱サイクルを3回繰返した。 【0015】その後、温度を上昇させて棒の膨脹係数を
測定した。第2図及び第3図に結果を示す。第2図中、
AはLa0.5Ca0.5CrO3であり、Bは(ZrO2)
0.92(Y230.08であり、CはLa0.3Ca0.5Ce
0.2CrO3である。第2図及び第3図は、セリウムを含
有する化合物類が、セリウムを含有しない類似化合物類
よりもイットリアで安定化したジルコニウムとよく一致
する熱膨脹特性をもつことを示している。 【0016】
DETAILED DESCRIPTION OF THE INVENTION [0001] BACKGROUND OF THE INVENTION 1. Field of the Invention
An electrode material having the function of a pole and having such an electrode
The present invention relates to a high-temperature electrochemical cell. [0002] BACKGROUND OF THE INVENTION Problems to be solved by the invention
Part of calcium ion or strontium
・ High lanthanum manganite modified by ion substitution
Used as electrode material for hot solid electrolyte fuel cells
You. Part of the lantern is replaced with calcium ions or
Lanthanum chromite modified by substitution with rontium ion
The air electrode or air in a high temperature solid electrolyte fuel cell
It is considered as a material that is also used as an electrode and a support. this
Each type of fuel cell has a support, an air electrode, an electrolyte,
Fuel electrode, interconnects and other continuous functions
It consists of a bonding layer of a ceramic material. Manufacturing or motion
During the heating cycle between high temperature and room temperature during operation, the fuel cell
To prevent damage to the fuel cells.
Desirably, the expansion characteristics are consistent. Thermal expansion of each layer
If the properties do not match, the layer will crack during thermal cycling.
Fuel cell malfunction or at least low efficiency
May fall. [0003] Modified lanthanum manganite and modified chromate
Difficulties in manufacturing fuel cells using lanthanum oxalate
Is a material of this type that has been modified to have the highest electrical conductivity.
The coefficient of thermal expansion of the stabilized zirconia electrolyte or stabilized
Commonly used in the manufacture of fuel cells such as zirconia supports
Is greater than the coefficient of thermal expansion of some other materials
That is. The thermal expansion coefficients of these various materials are specific
Depends on composition selected for use in various fuel cells
Is the heat of lanthanum manganate and chromite
Adjust expansion coefficient to match thermal expansion coefficient of other materials
It is strongly hoped that we can do it. Thus, the coefficient of thermal expansion is
The above materials can be used in fuel cells
And may cause cracks in battery members during thermal cycling.
Absent. [0004] According to the present invention, there is provided the following general formula:
Against gas by a compound consisting of a solid solution represented by
Formed in the form of a porous tube, La1-xw(ML)x(Ce)w(Ms1)1-y(Ms2)yOThree Where ML Is at least one of Ca, Sr and Ba;
s1Is Mn or Cr or Mn and Cr; Ms2Is N
i, Fe, Co, Ti, Al, In, Sn, Mg, Y,
At least one of Nb and Ta; w is 0.05 to 0.2
5; x + w is 0.1 to 0.7; y is 0 to 0.5 and solubility
The density of the solid solution is about 80% of the theoretical density
The function of the support tube and the electrode, which does not exceed
Provide a combined member. [0005] The present invention further provides an electrode bonded to an electrolyte.
Is a compound consisting of a solid solution represented by the following general formula
Is formed,       La1-xw(ML)x(Ce)w(Ms1)1-y(Ms2)yO3 Where MLIs at least one of Ca, Sr and Ba;
s1Is Mn or Cr or Mn and Cr; Ms2Is
Ni, Fe, Co, Ti, Al, In, Sn, Mg,
At least one of Y, Nb, and Ta;
25; x + w is 0.1 to 0.7; y is 0 to 0.5
Within the limits of solubility; the electrode is
Provided is an electrochemical cell serving as a mechanical support for each member of a pond.
You. The modified lanthanum manganite or modified zinc oxide
Part of lanthanum in lanthanum romate replaced with cerium
Then, the coefficient of thermal expansion decreases, and the support tube and
Well with the coefficients of thermal expansion of other materials used in the electrolyte
It was found that they would be matched. Cerium is
14 rare earth elements with similarities in many aspects of their biological properties
Of the present inventor despite only one of
According to experiments, at almost the same concentration, only cerium
Modified lanthanum chromite and modified lanthanum manganite
Has such a large effect on the thermal expansion coefficient of
Was a surprising finding. Small amount of lanthanum in cerium
Substitution with increases the resistivity slightly, but increases the resistivity.
Large enough to be extremely useful as an air electrode material
Stop every time. In order that the present invention may be more clearly understood,
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
explain about. [0008] DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG.
Support tube 2 that provides structural stability or structural strength to the pond
Having. Generally, the support tube is a gas permeable
Is calcia stabilized zirconia forming a porous wall?
And its thickness is about 1-2 mm. Support tube
2 has a thin porous air electrode, ie, cathode 3,
Surrounding. Cathode 3 is generally used for plasma melting.
Spraying or slurry spraying or dipping and baking in slurry
Attached to the support tube by well-known techniques such as knotting
From about 15-1000 microns thick composite oxide
Be composed. This air electrode is used for lanthanum manganate or
Or chemically modified oxidation containing lanthanum chromite
Or a mixture of oxides or oxides. On the electrode
Some parts are typically zirconia stabilized with yttria.
Airtight solid consisting of about 1-100 microns thick
An electrolyte is provided. The length selected in the electrolyte attachment process
A mask is applied to the hand-direction section 5, but this section 5
The interconnect material 6 is deposited to form the interconnect 6. Interconnect
The material is conductive in oxygen and fuel atmospheres.
There must be. Interconnects should be 5-100 mm thick
Clon, generally calcium, strontium, etc.
Or magnesium-doped lanthanum chromite
Become. Areas other than battery interconnects serve as anodes
It is surrounded by a working fuel electrode 7. Typically
The thickness of the anode is 30-100 microns. Mutual connection
A material 8 having the same composition as the anode adheres to the upper part of the connecting portion 6
doing. A typical example of this material 8 is nickel-silyl
Konia cermet or cobalt zirconia sir
Met, 50-100 microns thick. In operation, such as hydrogen or carbon monoxide,
A gaseous fuel that flows outside the cell as a source of oxygen
Pass inside the battery. Oxygen is introduced at the interface with the electrode.
On and oxygen ions pass through the electrolyte to the anode
Go to The electrons are collected at the cathode and are
Current flows in the road. One battery interconnect
By contacting the anode of multiple batteries,
Can be connected in series. This type of fuel cell
No. 4,395,468 and US Pat.
No. 3,400,054 and November 20, 1982
U.S. Patent Application No. 323,641 filed on Feb.
Person: Isenberg)
I want to. [0010] The ceramic of the present invention is a bevelskite.
Has a crystal structure similar to that of
Is a solid solution: La1-xw(ML)x(Ce)w(Ms1)1-y(Ms2)yOThree M in the formulaL Are calcium, strontium, barium
Or a mixture of these, but because they are inexpensive, 100
% Calcium, preferably a solid oxide fuel cell.
It has been found that the operating characteristics in the pond are good. the above
The presence of these ions improves the conductivity. M in the formulas1
Is manganese, chromium or a mixture thereof;
s2Is nickel, iron, cobalt, titanium, aluminum
, Indium, tin, magnesium, yttrium, d
Obium, tantalum, or a mixture thereof. formula
Where y is 0-0.5, preferably 0,
Or addition of components other than chromium is generally not preferred.
No. Manganese is used in the compound because of its conductivity.
To make it better. The presence of chromium in the compound
Chromium is more electrolyte than manganese
Does not react with In addition, each of the above-mentioned elements
Do not add more than the limit of resolution. The value of x + w is 0.
1 to 0.7, preferably 0.4 to 0.7, and x + w is
If it is less than the above range, the conductivity is reduced, and exceeds the above range.
Causes the thermal expansion behavior of ceramics to deteriorate and cause a phase change
Possibilities arise. The value of w is preferably 0.05 to 0.25,
0.1 to 0.2, and the value of w is less than the above range.
The thermal expansion coefficient of the ceramic decreases significantly,
Exceeding the enclosure will cause the conductivity to drop,
(ZrOTwo)0.85(CaO)0.15Stabilizing di like
To match the range of the coefficient of thermal expansion of the luconia material
It is not necessary for the value of w to exceed the above range. Some of the materials with good thermal expansion coefficients
Has been experimentally confirmed, but these materials
Can crack during thermal cycling even if they are joined together.
It is known to be less steep. Such a combination
As an example, (ZrOTwo)0.9(YTwoOThree)
0.1Using as electrode material La0.3Ca0.5-0.6Ce0.2-0.1MnOThree Can be used. Another example
As (ZrO)Two)0.85(CaO)
0.15To the electrode La0.3Ca0.5-0.6Ce0.2-0.1MnOThree Can be used. In another example,
As an electrolyte (ZrOTwo)0.9(YTwoOThree)0.1make use of, La0.3Ca0.5-0.6Ce0.2-0.1CrOThree In combination with an electrode consisting of Yet another example is the support
As a carrier or electrolyte (ZrOTwo)0.85(CaO)0.15
Using, La0.3Ca0.5-0.6Ce0.2-0.1CrOThree It is an example of combining with an electrode composed of: Modified lanthanum manganite or modified magnesium
Lanthanum lomate is a single-phase solid solution and consists of two phases.
It is not a mechanical mixture. Ceramics according to the present invention
Is to mix the compounds of each element in the required specific ratio,
Press and sinter at 400 ° C to 1800 ° C for 1 to 4 hours
It can be manufactured by Compounds that can be used are oxidation
Oxides by heating such as oxides, carbides and oxalates
Are compounds that form Solid electrolyte electrochemical cell
Combination of support tube and electrode, ie support tube
To be used as a single member that combines the functions of
Select the particle size and sintering temperature to determine the density of the sintered oxide.
Should not exceed about 80% of the theoretical density.
The boundary between the electrode and the electrolyte where electrochemical reaction occurs through the body
Make the density reachable to the surface. For example, fuel cells, electrolyzers
Or solid electrolyte electrochemical such as oxygen gauge
The above-mentioned lanthanum chromite can be used in applications other than batteries
Thermal expansion coefficient between electrode members of MHD generator by solid solution
It can be more closely matched. Next, the present invention will be illustrated by way of examples. Embodiment Compound MnOTwo, CrTwoOThree, LaTwoOThree, CaCOThree, Sr
COThree, CeOTwoAnd Y TwoOThreeAnd use each compound in the required ratio
Mixed at a rate of 70.3-703kg / cmTwo (1000-10
000 psi) followed by sintering for 1 to 4 hours.
0.3Ca0.5Ce0.2MnOThree, La0.7Sr0.3MnOThree,
La0.7Sr0.2Ca0.1MnOThree, La0.35Ca0.65Mn
OThree, La0.5Ca0.5CrOThree, La0.3Ca0.5Ce0.2
CrOThreeWas prepared. The composition containing manganese is 14
Sintered between 00 ° C and 1500 ° C and contains chromium
The composition was sintered at about 1600 ° C. Thermal expansion data
For comparison, (ZrOTwo)0.92(YTwoOThree) 0.08 sintering
I prepared a stick. The product is approximately 2.54 cm long (1 inch
H), width and thickness 0.635 cm x 0.635 cm (1 /
4 inch x 1/4 inch). Rod shape
135 to stabilize the coefficient of thermal expansion.
The thermal cycle between 0 ° C and room temperature was repeated three times. Thereafter, the temperature is raised to increase the expansion coefficient of the rod.
It was measured. 2 and 3 show the results. In FIG.
A is La0.5Ca0.5CrOThreeAnd B is (ZrOTwo)
0.92(YTwoOThree)0.08And C is La0.3Ca0.5Ce
0.2CrOThreeIt is. 2 and 3 contain cerium.
Compounds having a cerium-free analog
Better match with yttria-stabilized zirconium than
It has the following thermal expansion characteristics. [0016]

【図面の簡単な説明】 【図1】燃料電池の断面を示す概略説明図である。 【図2】本発明によるセラミックスの熱膨張特性を示す
グラフである。 【図3】本発明によるセラミックスの熱膨張特性を示す
グラフである。 【符号の説明】 1 燃料電池 2 支持チュ−ブ 3 空気電極(カソ−ド) 4 固体電解質 7 燃料電池(アノ−ド)
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view showing a cross section of a fuel cell. FIG. 2 is a graph showing a thermal expansion characteristic of a ceramic according to the present invention. FIG. 3 is a graph showing a thermal expansion characteristic of a ceramic according to the present invention. [Description of Signs] 1 fuel cell 2 support tube 3 air electrode (cathode) 4 solid electrolyte 7 fuel cell (anode)

フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 4/86 H01M 4/86 T 4/90 4/90 X Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 4/86 H01M 4/86 T 4/90 4/90 X

Claims (1)

(57)【特許請求の範囲】 1.以下の一般式で表わされる固溶体から成る化合物に
より気体に対して多孔質な管の形に形成され、 La1−x−w(M(Ce)(Ms11−y(Ms2 式中、MはCa,Sr及びBaの少なくとも1種;M
s1はMnもしくはCrまたはMn及びCr;Ms2
Ni,Fe,Co,Ti,Al,In,Sn,Mg,
Y,Nb,Taの少なくとも1種;wは0.05〜0.
25;x+wは0.1〜0.7;yは0〜0.5であり
溶解度の限界内である; 固溶体の密度が理論密度の約80%を越えないことを特
徴とする支持チューブと電極の機能を兼ね備えた部材。 2.電解質に接合された電極が以下の一般式で表わされ
る固溶体から成る化合物で形成され、 La1−x−w(M(Ce)(Ms11−y(Ms2 式中、MはCa,Sr及びBaの少なくとも1種;M
s1はMnもしくはCrまたはMn及びCr;Ms2
Ni,Fe,Co,Ti,Al,In,Sn,Mg,
Y,Nb,Taの少なくとも1種;wは0.05〜0.
25;x+wは0.1〜0.7;yは0〜0.5であり
溶解度の限界内である; 前記電極が他の電池部材即ち電池の各部材の機械的支持
体となる電気化学電池。
(57) [Claims] It is formed in the shape of the porous tube to gases by a compound consisting of a solid solution represented by the following general formula, La 1-x-w ( M L) x (Ce) w (M s1) 1-y (M s2) in y O 3 formula, M L is Ca, at least one of Sr and Ba; M
s1 is Mn or Cr or Mn and Cr; Ms2 is Ni, Fe, Co, Ti, Al, In, Sn, Mg,
At least one of Y, Nb, and Ta;
25; x + w is 0.1 to 0.7; y is 0 to 0.5 and within the limit of solubility; the support tube and the electrode, characterized in that the density of the solid solution does not exceed about 80% of the theoretical density A member that combines the functions of 2. Electrode joined to the electrolyte is formed by compounds consisting of a solid solution represented by the following general formula, La 1-x-w ( M L) x (Ce) w (M s1) 1-y (M s2) y O 3 wherein at least one of M L is Ca, Sr and Ba; M
s1 is Mn or Cr or Mn and Cr; Ms2 is Ni, Fe, Co, Ti, Al, In, Sn, Mg,
At least one of Y, Nb, and Ta;
25; x + w is 0.1 to 0.7; y is 0 to 0.5 and within the limit of solubility; The electrochemical cell in which the electrode serves as a mechanical support for another battery member, that is, each member of the battery .
JP8093321A 1985-01-22 1996-03-23 High temperature electrochemical battery Expired - Lifetime JP2927339B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/693,903 US4562124A (en) 1985-01-22 1985-01-22 Air electrode material for high temperature electrochemical cells
US693903 1991-05-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60198404A Division JP2575627B2 (en) 1985-01-22 1985-09-06 Air electrode material for high temperature electrochemical cells

Publications (2)

Publication Number Publication Date
JPH0997613A JPH0997613A (en) 1997-04-08
JP2927339B2 true JP2927339B2 (en) 1999-07-28

Family

ID=24786604

Family Applications (2)

Application Number Title Priority Date Filing Date
JP60198404A Expired - Lifetime JP2575627B2 (en) 1985-01-22 1985-09-06 Air electrode material for high temperature electrochemical cells
JP8093321A Expired - Lifetime JP2927339B2 (en) 1985-01-22 1996-03-23 High temperature electrochemical battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP60198404A Expired - Lifetime JP2575627B2 (en) 1985-01-22 1985-09-06 Air electrode material for high temperature electrochemical cells

Country Status (5)

Country Link
US (1) US4562124A (en)
EP (1) EP0188868B1 (en)
JP (2) JP2575627B2 (en)
CA (1) CA1249924A (en)
DE (1) DE3577783D1 (en)

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3445251A1 (en) * 1984-12-12 1986-06-12 Dornier System Gmbh, 7990 Friedrichshafen ELECTRICALLY CONDUCTIVE CERAMICS
DE3539029A1 (en) * 1985-11-02 1987-05-07 Bbc Brown Boveri & Cie HIGH TEMPERATURE PROTECTIVE LAYER AND METHOD FOR THEIR PRODUCTION
DE3611291A1 (en) * 1986-04-04 1987-10-15 Dornier System Gmbh MANUFACTURE OF LONG-TERM-RESISTANT OXYGEN ELECTRODES FOR ELECTROLYSIS CELLS WITH FIXED ELECTROLYTE
US4702971A (en) * 1986-05-28 1987-10-27 Westinghouse Electric Corp. Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
JP2601806B2 (en) * 1986-09-30 1997-04-16 三菱重工業株式会社 Solid electrolyte fuel cell and its fabrication method
US4761349A (en) * 1987-03-19 1988-08-02 University Of Chicago Solid oxide fuel cell with monolithic core
US4751152A (en) * 1987-04-06 1988-06-14 Westinghouse Electric Corp. High bulk self-supporting electrode with integral gas feed conduit for solid oxide fuel cells
US4876163A (en) * 1987-12-18 1989-10-24 Westinghouse Electric Corp. Generator configuration for solid oxide fuel cells
US5045170A (en) * 1989-05-02 1991-09-03 Globe-Union, Inc. Electrodies containing a conductive metal oxide
JPH0362459A (en) * 1989-07-28 1991-03-18 Onoda Cement Co Ltd Solid electrolyte fuel cell and its preparation
LU87596A1 (en) * 1989-09-25 1991-05-07 Europ Communities SOLID OXYGEN SENSOR
US5244753A (en) * 1990-05-29 1993-09-14 Matsushita Electric Industrial Co., Ltd. Solid electrolyte fuel cell and method for manufacture of same
US5314508A (en) * 1990-05-29 1994-05-24 Matsushita Electric Industrial Co., Ltd. Solid electrolyte fuel cell and method for manufacture of same
JPH0697613B2 (en) * 1990-07-12 1994-11-30 日本碍子株式会社 Method for producing air electrode material for solid oxide fuel cell
US5108850A (en) * 1990-08-01 1992-04-28 Westinghouse Electric Corp. Thin tubular self-supporting electrode for solid oxide electrolyte electrochemical cells
US5407618A (en) * 1990-08-13 1995-04-18 The Boeing Company Method for producing ceramic oxide compounds
JPH053037A (en) * 1990-10-03 1993-01-08 Fuji Electric Co Ltd Solid electrolyte type fuel cell
US5106706A (en) * 1990-10-18 1992-04-21 Westinghouse Electric Corp. Oxide modified air electrode surface for high temperature electrochemical cells
JPH04206269A (en) * 1990-11-29 1992-07-28 Fujikura Ltd Solid electrolyte fuel cell
JP2719049B2 (en) * 1991-01-28 1998-02-25 日本碍子株式会社 Method for producing lanthanum chromite membrane and method for producing interconnector for solid oxide fuel cell
DE4203245C2 (en) * 1991-02-07 1994-03-24 Yoshida Kogyo Kk Solid electrolyte fuel cell
DE4104838A1 (en) * 1991-02-16 1992-08-20 Abb Patent Gmbh CERAMIC MATERIAL FOR PRODUCING A REINFORCING LAYER FOR THE AIR ELECTRODE OF A FUEL CELL WITH SOLID ELECTROLYTE
JPH04301321A (en) * 1991-03-28 1992-10-23 Ngk Insulators Ltd Manufacture of electric-conductivity ceramic film
JPH0748378B2 (en) * 1991-03-28 1995-05-24 日本碍子株式会社 Air electrode for solid electrolyte fuel cell and solid electrolyte fuel cell having the same
TW269058B (en) * 1992-04-29 1996-01-21 Westinghouse Electric Corp
JPH0644991A (en) * 1992-07-27 1994-02-18 Ngk Insulators Ltd Manufacture of interconnector for solid electrolyte type fuel cell
US5432024A (en) * 1992-10-14 1995-07-11 Ngk Insulators, Ltd. Porous lanthanum manganite sintered bodies and solid oxide fuel cells
DE4237602A1 (en) * 1992-11-06 1994-05-11 Siemens Ag High temperature fuel cell stack and process for its manufacture
US5529856A (en) * 1993-01-14 1996-06-25 Electric Power Research Institute Fuel cell having solidified plasma components
US5604048A (en) * 1993-02-26 1997-02-18 Kyocera Corporation Electrically conducting ceramic and fuel cell using the same
DE4406276B4 (en) * 1993-02-26 2007-10-11 Kyocera Corp. Electrically conductive ceramic material
US5403461A (en) * 1993-03-10 1995-04-04 Massachusetts Institute Of Technology Solid electrolyte-electrode system for an electrochemical cell
US5580497A (en) * 1993-04-16 1996-12-03 Amoco Corporation Oxygen ion-conducting dense ceramic
US5958304A (en) * 1993-06-21 1999-09-28 Gas Research Institute Doped lanthanum chromite material for bipolar interconnects for solid oxide fuel cells
US5614127A (en) * 1993-06-21 1997-03-25 Gas Research Institute High-performance ceramic interconnect for SOFC applications
DE69403294T2 (en) * 1993-08-16 1997-12-11 Westinghouse Electric Corp Stable air electrode for high-temperature electrochemical cells with solid oxide electrolyte
JP2685721B2 (en) * 1994-11-04 1997-12-03 工業技術院長 Grain-free boundary type manganese oxide based crystal and switching type magnetoresistive element
US5516597A (en) * 1994-11-07 1996-05-14 Westinghouse Electric Corporation Protective interlayer for high temperature solid electrolyte electrochemical cells
EP0726609B1 (en) * 1995-02-09 1998-11-04 Tokyo Yogyo Kabushiki Kaisha Solid electrolyte for a fuel cell and its manufacturing method
US5543239A (en) * 1995-04-19 1996-08-06 Electric Power Research Institute Electrode design for solid state devices, fuel cells and sensors
JP2001513188A (en) * 1995-09-25 2001-08-28 ヘレウス エレクトロナイト インタナショナル エヌ.ヴィー. Electrode materials for hydrocarbon sensors
US5747185A (en) * 1995-11-14 1998-05-05 Ztek Corporation High temperature electrochemical converter for hydrocarbon fuels
DE69516526T2 (en) * 1995-12-28 2000-11-23 Ngk Insulators, Ltd. Porous sintered lanthanum manganite bodies and process for their manufacture
DE69516414T2 (en) * 1995-12-28 2000-10-26 Ngk Insulators, Ltd. Extrudable lanthanum-manganite mass, extruded lanthanum-manganite body and method for producing a porous, sintered lanthanum-manganite body
US5686198A (en) * 1996-02-29 1997-11-11 Westinghouse Electric Corporation Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells
US5932146A (en) * 1996-02-29 1999-08-03 Siemens Westinghouse Power Corporation Air electrode composition for solid oxide fuel cell
US5759936A (en) * 1996-03-21 1998-06-02 Haldor Topsoe As Lanthanide ceramic material
DE19712315C2 (en) * 1997-03-24 1999-02-04 Heraeus Electro Nite Int Fuel gas sensitive electrode material for electrochemical sensors
US5993989A (en) * 1997-04-07 1999-11-30 Siemens Westinghouse Power Corporation Interfacial material for solid oxide fuel cell
US6063517A (en) * 1997-10-16 2000-05-16 Southwest Research Institute Spiral wrapped cylindrical proton exchange membrane fuel cells and methods of making same
US5935533A (en) * 1997-10-28 1999-08-10 Bp Amoco Corporation Membrane reactor hollow tube module with ceramic/metal interfacial zone
USRE39556E1 (en) * 1997-11-20 2007-04-10 Relion, Inc. Fuel cell and method for controlling same
US6096449A (en) * 1997-11-20 2000-08-01 Avista Labs Fuel cell and method for controlling same
US6030718A (en) * 1997-11-20 2000-02-29 Avista Corporation Proton exchange membrane fuel cell power system
US5916700A (en) * 1998-01-23 1999-06-29 Siemens Westinghouse Power Corporation Lanthanum manganite-based air electrode for solid oxide fuel cells
US6217822B1 (en) 1998-02-09 2001-04-17 Siemens Westinghouse Power Corporation Method of making straight fuel cell tubes
US6025083A (en) * 1998-02-25 2000-02-15 Siemens Westinghouse Power Corporation Fuel cell generator energy dissipator
US6379485B1 (en) 1998-04-09 2002-04-30 Siemens Westinghouse Power Corporation Method of making closed end ceramic fuel cell tubes
US5993985A (en) * 1998-04-09 1999-11-30 Siemens Westinghouse Power Corporation Fuel cell tubes and method of making same
JPH11322412A (en) * 1998-05-13 1999-11-24 Murata Mfg Co Ltd Multiple oxide ceramic material and solid electrolyte fuel cell
US6114058A (en) * 1998-05-26 2000-09-05 Siemens Westinghouse Power Corporation Iron aluminide alloy container for solid oxide fuel cells
US6228521B1 (en) 1998-12-08 2001-05-08 The University Of Utah Research Foundation High power density solid oxide fuel cell having a graded anode
US6127061A (en) * 1999-01-26 2000-10-03 High-Density Energy, Inc. Catalytic air cathode for air-metal batteries
US6605316B1 (en) 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
US6468682B1 (en) 2000-05-17 2002-10-22 Avista Laboratories, Inc. Ion exchange membrane fuel cell
US6686079B2 (en) * 2000-05-17 2004-02-03 Schlumberger Technology Corporation Fuel cell for downhole power systems
US7326480B2 (en) 2000-05-17 2008-02-05 Relion, Inc. Fuel cell power system and method of controlling a fuel cell power system
US6492051B1 (en) 2000-09-01 2002-12-10 Siemens Westinghouse Power Corporation High power density solid oxide fuel cells having improved electrode-electrolyte interface modifications
US6695940B2 (en) * 2001-04-05 2004-02-24 Alan D. Devoe Laminate thin-wall ceramic tubes, including with integral stress wrappings, thickened ends and/or internal baffles, particularly for solid oxide fuel cells
US6974516B2 (en) * 2001-04-05 2005-12-13 Presidio Components, Inc. Method of making laminate thin-wall ceramic tubes and said tubes with electrodes, particularly for solid oxide fuel cells
JP4562951B2 (en) * 2001-06-01 2010-10-13 三菱重工業株式会社 SUBSTRATE TUBE FOR FUEL CELL, SUBSTRATE TUBE MATERIAL FOR FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL CELL
EP1274148A1 (en) * 2001-07-06 2003-01-08 Ecole Polytechnique Federale De Lausanne (Epfl) Lanthanide chromite-based SOFC anodes
US7153412B2 (en) * 2001-12-28 2006-12-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Electrodes, electrochemical elements, gas sensors, and gas measurement methods
AU2003228791A1 (en) 2002-05-03 2003-11-17 Battelle Memorial Institute Cerium-modified doped strontium titanate composition for solid oxide fuel cell anodes and electrodes for other electrochemical devices
US6888088B2 (en) * 2002-11-01 2005-05-03 Jimmie Brooks Bolton Hardfacing materials & methods
US7459219B2 (en) 2002-11-01 2008-12-02 Guy L. McClung, III Items made of wear resistant materials
US20040166386A1 (en) * 2003-02-24 2004-08-26 Herman Gregory S. Fuel cells for exhaust stream treatment
US7468218B2 (en) * 2004-05-07 2008-12-23 Battelle Memorial Institute Composite solid oxide fuel cell anode based on ceria and strontium titanate
CN1993850B (en) * 2004-08-10 2010-05-05 财团法人电力中央研究所 Film-forming article and method for producing same
AU2005332026B2 (en) 2004-11-30 2011-06-09 The Regents Of The University Of California Sealed joint structure for electrochemical device
CN101507352B (en) 2006-07-28 2013-09-18 加州大学评议会 Joined concentric tubes
US20080254335A1 (en) * 2007-04-16 2008-10-16 Worldwide Energy, Inc. Porous bi-tubular solid state electrochemical device
FR2925486B1 (en) * 2007-12-21 2011-07-01 Saint Gobain Ct Recherches METHOD FOR MANUFACTURING A MELTANE AND MANGANESE MELT PRODUCT
FR2930075B1 (en) * 2008-04-14 2011-03-18 Commissariat Energie Atomique TITANATES OF PEROVSKITE OR DERIVED STRUCTURE AND ITS APPLICATIONS
US8486580B2 (en) * 2008-04-18 2013-07-16 The Regents Of The University Of California Integrated seal for high-temperature electrochemical device
ES2331828B2 (en) * 2008-06-27 2011-08-08 Universidad Politecnica De Valencia CATALYTIC LAYER FOR THE ACTIVATION OF OXYGEN ON SOLID IONIC ELECTROLYTES AT HIGH TEMPERATURE.
WO2010100636A1 (en) 2009-03-03 2010-09-10 Technion Research & Development Foundation Ltd. Silicon-air batteries
US8173322B2 (en) 2009-06-24 2012-05-08 Siemens Energy, Inc. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections
EP2502295A1 (en) 2009-11-19 2012-09-26 Technion Research & Development Foundation Ltd. Silicon-air batteries
JP2013534697A (en) * 2010-06-22 2013-09-05 ビーエーエスエフ ソシエタス・ヨーロピア Electrodes and their manufacture and use
CN102948004A (en) * 2010-06-22 2013-02-27 巴斯夫欧洲公司 Electrodes and production and use thereof
RU2583838C1 (en) * 2015-01-21 2016-05-10 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Oxygen electrode material for electrochemical devices
WO2020012775A1 (en) 2018-07-10 2020-01-16 株式会社村田製作所 Ceramic member and electronic device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1469210A (en) * 1965-12-31 1967-02-10 Comp Generale Electricite Refractory ceramic material
US3400054A (en) * 1966-03-15 1968-09-03 Westinghouse Electric Corp Electrochemical method for separating o2 from a gas; generating electricity; measuring o2 partial pressure; and fuel cell
US3430536A (en) * 1967-03-21 1969-03-04 Chandler Evans Inc Time modulated pneumatically actuated control mechanism
CH540571A (en) * 1971-06-18 1973-08-15 Raffinage Cie Francaise Electrolyte-electrode assembly, for a solid electrolyte fuel cell and method for its manufacture
FR2157062A5 (en) * 1971-10-15 1973-06-01 Exxon Research Engineering Co Electrochemical cathode catalyst - consisting of perovskite formed by solid soln of first and second non-noble metal oxides
NL7204743A (en) * 1972-04-08 1973-06-25 Electrochemical electrode - consisting of electrochemically resistant double metal oxide
CH594292A5 (en) * 1974-11-19 1978-01-13 Raffinage Cie Francaise
JPS51150692A (en) * 1975-06-20 1976-12-24 Arita Kosei High conductivity composed substance
DE2614727A1 (en) * 1976-04-06 1977-10-27 Bbc Brown Boveri & Cie Solid electrolyte battery using electrochemical oxidn. - of hydrogen (cpd.) has cells pressed end-to-end by spring and connected in series
US4076611A (en) * 1976-04-19 1978-02-28 Olin Corporation Electrode with lanthanum-containing perovskite surface
DE2738756A1 (en) * 1977-08-27 1979-03-01 Bbc Brown Boveri & Cie Electrochemical cell for determining oxygen in exhaust gas - using reference electrode coated with metal oxide catalyst layer
DE2746172C3 (en) * 1977-10-14 1981-02-05 Dornier System Gmbh, 7990 Friedrichshafen Composite of electrochemical solid electrolyte cells
DE2837118C2 (en) * 1978-08-25 1982-05-19 Dornier System Gmbh, 7990 Friedrichshafen Porous oxide electrodes for high temperature electrochemical cells
US4330633A (en) * 1980-08-15 1982-05-18 Teijin Limited Solid electrolyte
US4490444A (en) * 1980-12-22 1984-12-25 Westinghouse Electric Corp. High temperature solid electrolyte fuel cell configurations and interconnections

Also Published As

Publication number Publication date
US4562124A (en) 1985-12-31
EP0188868B1 (en) 1990-05-16
JP2575627B2 (en) 1997-01-29
CA1249924A (en) 1989-02-14
JPS61171064A (en) 1986-08-01
DE3577783D1 (en) 1990-06-21
JPH0997613A (en) 1997-04-08
EP0188868A1 (en) 1986-07-30

Similar Documents

Publication Publication Date Title
JP2927339B2 (en) High temperature electrochemical battery
CA2464392C (en) Spiral geometry for fuel cells and related devices
US5686198A (en) Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells
JP4178610B2 (en) Oxide ion conductors and their applications
US5143801A (en) Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor
AU2002334198A1 (en) Improvements in fuel cells and related devices
JPH06107462A (en) Oxide ion conductive body and solid fuel cell
US20040214070A1 (en) Low sintering lanthanum ferrite materials for use as solid oxide fuel cell cathodes and oxygen reduction electrodes and other electrochemical devices
JPH0745291A (en) Solid electrolyte fuel cell
WO2006098272A1 (en) Ion conductor
JP2000251533A (en) Oxide-ion mixed conductor and its application
JPH09180731A (en) Solid electrolyte fuel cell
JP2836852B2 (en) Solid oxide fuel cell separator
JPH07161360A (en) Air electrode material for low temperature action type solid fuel cell
JP3220330B2 (en) Power generation method in solid oxide fuel cell
JP3346668B2 (en) Solid oxide fuel cell
JPH0785875A (en) Solid electrolytic fuel cell
JPH0969365A (en) Solid electrolyte fuel cell
JP3152843B2 (en) Solid oxide fuel cell and method of manufacturing the same
JPH05178664A (en) Composite dense material and its production
JPH08130029A (en) Solid electrolyte fuel cell and its manufacture
JPH07114931A (en) Solid electrolyte type fuel cell
JP2000251534A (en) Oxide ion conductor, its production and its use
JP3398213B2 (en) Solid oxide fuel cell
JPH06302326A (en) Cell material for solid electrolyte fuel cell

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term