JP2896077B2 - Ferrite stainless steel with excellent high-temperature oxidation resistance and scale adhesion - Google Patents

Ferrite stainless steel with excellent high-temperature oxidation resistance and scale adhesion

Info

Publication number
JP2896077B2
JP2896077B2 JP10913494A JP10913494A JP2896077B2 JP 2896077 B2 JP2896077 B2 JP 2896077B2 JP 10913494 A JP10913494 A JP 10913494A JP 10913494 A JP10913494 A JP 10913494A JP 2896077 B2 JP2896077 B2 JP 2896077B2
Authority
JP
Japan
Prior art keywords
less
steel
temperature
oxidation
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10913494A
Other languages
Japanese (ja)
Other versions
JPH0711394A (en
Inventor
美博 植松
直人 平松
学 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP10913494A priority Critical patent/JP2896077B2/en
Publication of JPH0711394A publication Critical patent/JPH0711394A/en
Application granted granted Critical
Publication of JP2896077B2 publication Critical patent/JP2896077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,特に各種内燃機関やガ
スタービン等の排ガス管路部材用途に好適な耐高温酸化
性およびスケール密着性に優れた低コストのフエライト
系ステンレス鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-cost ferritic stainless steel excellent in high-temperature oxidation resistance and scale adhesion, which is particularly suitable for exhaust gas pipe members such as various internal combustion engines and gas turbines.

【0002】[0002]

【従来の技術】近年,環境問題に関する関心の高まりか
ら,燃焼効率の良い火力発電システムや機関,更には排
ガス規制をクリアできる自動車エンジンが求められてい
る。これらの要求を満足すべく対策を行なうと,燃焼ガ
スの温度が高くなり,排ガス浄化システムなどの周辺部
材の温度が高くなる。この結果,これらの部材は一層優
れた耐熱性が要求されるようになってくる。耐熱性には
高温強度に加えて高温のガス環境下で耐用できる耐高温
酸化性が必要である。
2. Description of the Related Art In recent years, interest in environmental issues has increased, and there has been a demand for a thermal power generation system and an engine having good combustion efficiency and an automobile engine capable of meeting exhaust gas regulations. If measures are taken to satisfy these requirements, the temperature of the combustion gas will increase, and the temperature of peripheral members such as the exhaust gas purification system will increase. As a result, these members are required to have better heat resistance. For heat resistance, in addition to high temperature strength, high temperature oxidation resistance that can be used in a high temperature gas environment is required.

【0003】耐高温酸化性は,異常酸化を起こさず酸化
増量が少ないことと,酸化スケール(酸化皮膜)の密着
性が良好であることである。自動車のエンジンなどの内
燃機関では運転および停止の繰り返しがあり,また火力
発電システムでもDSS(毎日起動停止)操業があるた
めに耐熱部材も過熱冷却の繰り返しを受ける。従って酸
化皮膜の密着性が良くない材料は酸化皮膜が剥離し,こ
れが原因となって,配管の目づまりを起こしたり,部材
そのものの肉厚減少が起こり,そこを起点とした破損な
どの問題が生じる。
[0003] The high-temperature oxidation resistance is that the oxidation increase is small without causing abnormal oxidation and that the adhesion of the oxide scale (oxide film) is good. Internal combustion engines such as automobile engines are repeatedly operated and stopped, and even in thermal power generation systems, DSS (Daily Start and Stop) operations are performed, so that heat-resistant members are repeatedly subjected to overheating and cooling. Therefore, the material with poor adhesion of the oxide film peels off the oxide film, which causes clogging of the piping and a decrease in the thickness of the member itself, which causes problems such as breakage from the starting point. .

【0004】オーステナイト系ステンレス鋼は,フエラ
イト系ステンレス鋼と比較して高温強度が高い。しか
し,熱膨張が大きいため,熱ひずみが大きく,加熱およ
び冷却の繰り返しを受けると熱疲労による割れを起こし
やすい。また,オーステナイト系ステンレス鋼は,鋼素
地と酸化スケールとの熱膨張の差が大きいため,酸化皮
膜の剥離も多い。
[0004] Austenitic stainless steel has higher high-temperature strength than ferritic stainless steel. However, since thermal expansion is large, thermal strain is large, and cracking due to thermal fatigue is likely to occur when subjected to repeated heating and cooling. Further, austenitic stainless steel has a large difference in thermal expansion between the steel base and the oxide scale, so that the oxide film often peels off.

【0005】これらの理由から,自動車の排ガス用材料
にはフエライト系ステンレス鋼が使用されている。例え
ば,自動車のエキゾーストマニホールドには,フエライ
ト系ステンレス鋼のSUS430J1Lが使用されているが,酸
化皮膜の剥離が多く, また,素材のコストが高いことが
問題視されている。
[0005] For these reasons, ferrite stainless steel is used as an exhaust gas material for automobiles. For example, SUS430J1L ferrite stainless steel is used for the exhaust manifold of automobiles. However, it is considered that the oxide film is often peeled off and the cost of the material is high.

【0006】米国特許第 4,640,722号明細書は,自動車
排ガス用材料に適するフエライト系ステンレス鋼とし
て,Cr:6〜25%の範囲において従来の耐熱鋼に用い
られていたAlに代えてSiを含有させ(Si:1.0〜2.0
重量%),炭素と窒素を固定するに十分なTi(または
Zr,Ta)を加えたうえで( Ti:4C+3.5 N〜0.5
%),炭窒化物を形成していない非結合Nbを 0.1重量%
以上させることによって,1010〜1120℃の加熱でNb-S
iリッチの Laves相を生成させて耐高温酸化抵抗および
クリープ特性を改善した鋼を開示している。この鋼はさ
らにMoを5%以下含有し,Cr+Mo≧8重量%と規定
している。だが,この USP'722明細書には酸化皮膜の剥
離をどのようにしたら防止できるかについて教示がな
い。また低温靭性と加工性の改善についても教えるとこ
ろはない。自動車のエキゾーストマニホールド用途に
は,高温耐酸化性に加えて酸化皮膜の密着性, 低温靭性
および加工性に優れることが併せて要求される。
US Pat. No. 4,640,722 discloses that a ferrite stainless steel suitable for a material for automobile exhaust gas contains Si in the range of 6 to 25% of Cr instead of Al used in conventional heat-resistant steel. (Si: 1.0-2.0
Wt%), and Ti (or Zr, Ta) sufficient to fix carbon and nitrogen is added (Ti: 4C + 3.5 N-0.5
%), 0.1% by weight of non-bonded Nb not forming carbonitride
By the above, Nb-S by heating at 1010 ~ 1120 ℃
Disclosed is a steel that forms an i-rich Laves phase to improve high temperature oxidation resistance and creep properties. This steel further contains 5% or less of Mo, and specifies that Cr + Mo ≧ 8% by weight. However, this USP '722 does not teach how to prevent oxide film peeling. There is no teaching about improving low-temperature toughness and workability. Exhaust manifold applications in automobiles require not only high-temperature oxidation resistance, but also excellent adhesion of oxide films, low-temperature toughness and workability.

【0007】米国特許第 4,461,811号明細書には,重量
%でC≦0.03%, N≦0.05%, Cr:10.5〜13.5%, Al
≦0.10%, Ti≦0.12%, Al+Ti≦0.12%, Nbおよび
/またはTa:CとNを固定するに十分な量,残部がFe
からなるフエライト系ステンレス鋼が記載されている。
この鋼はCuやNi等のろう材(brazing filler)との濡
れ性がよいと教示している。このため,フエライト系ス
テンレス鋼本来の高温での耐酸化性や耐食性を必要とす
る熱交換器や排ガスシステム等を構成するろう付けされ
る用途に適するとされている。だが,このUSP'811 明細
書に記載のスタビライズド鋼が酸化皮膜の密着性, 低温
靭性および加工性を同時に満足するか否か不明であり,
またそのための処法について示唆も認知もない。
US Pat. No. 4,461,811 discloses that C.ltoreq.0.03%, N.ltoreq.0.05%, Cr: 10.5-13.5%, Al by weight.
≦ 0.10%, Ti ≦ 0.12%, Al + Ti ≦ 0.12%, Nb and / or Ta: an amount sufficient to fix C and N, the balance being Fe
Ferrite stainless steel consisting of
It teaches that the steel has good wettability with brazing fillers such as Cu and Ni. For this reason, it is said that it is suitable for brazing applications such as heat exchangers and exhaust gas systems that require oxidation resistance and corrosion resistance at high temperatures inherent to ferrite stainless steel. However, it is unclear whether the stabilized steel described in this USP'811 specification simultaneously satisfies the adhesion, low-temperature toughness and workability of the oxide film.
In addition, there is no suggestion or recognition about the treatment.

【0008】米国特許第 4,417,921号明細書には,重量
%でC≦0.03%, N≦0.03%, C+N≦0.04%, Cr:1
1.5〜13.5%, Mn≦1.0 %, Si≦1.0 %,Ni≦0.5
%,Cu≦0.15%, Ni+3Cu≦0.80%,Tiおよび/ま
たはNb:0.1 %以上で且つ4(C+N)以上〜0.75
%,残部がFeからなるフエライト系ステンレス鋼が記
載されている。このTiまたはNbでCとNを固定し且つ
Cuを添加した鋼は溶接性,延性,加工性,耐応力腐食
割れ性に優れるので,フインを一体成形する熱交換器用
途に適するとされている。だが,USP'921 にはこの種の
フエライト系ステンレス鋼の高温特性, 特に高温での耐
酸化性や酸化皮膜の密着性に及ぼす各元素の影響につい
て教示がなく,自動車のエキゾーストマニホールド用途
に必要な諸特性について示唆するところはない。
US Pat. No. 4,417,921 discloses that C ≦ 0.03%, N ≦ 0.03%, C + N ≦ 0.04%, Cr: 1
1.5-13.5%, Mn ≦ 1.0%, Si ≦ 1.0%, Ni ≦ 0.5
%, Cu ≦ 0.15%, Ni + 3Cu ≦ 0.80%, Ti and / or Nb: 0.1% or more and 4 (C + N) or more to 0.75%
%, With the balance being Fe. The steel in which C and N are fixed by Ti or Nb and Cu is added is excellent in weldability, ductility, workability, and stress corrosion cracking resistance, and is considered to be suitable for heat exchanger applications in which fins are integrally formed. . However, USP'921 does not teach the high-temperature properties of this type of ferritic stainless steel, especially the effect of each element on the oxidation resistance at high temperatures and the adhesion of the oxide film, and is not necessary for exhaust manifold applications in automobiles. There is no suggestion about the properties.

【0009】[0009]

【発明が解決しようとする課題】以上のような背景か
ら,SUS430J1Lと同等の高温強度を有しながら,一層優
れた耐高温酸化性,とくに酸化皮膜の密着性に優れた特
性を示す安価な材料であって且つ低温靭性や加工性にも
優れたフエライト系ステンレス鋼が排ガス用途, 特に自
動車のエキゾーストマニホールド用途に求められるよう
になった。この要求は, 最近の排ガス浄化の向上や内燃
機関の高効率化に伴って一層厳しくなっている。本発明
の課題は,この要求を満たすフエライト系ステンレス鋼
を提供することにある。
From the above background, an inexpensive material that has the same high-temperature strength as SUS430J1L, but also has better high-temperature oxidation resistance, especially excellent properties of oxide film adhesion. Ferritic stainless steels that are excellent in low-temperature toughness and workability have been required for exhaust gas applications, especially for exhaust manifolds for automobiles. This requirement has become more severe with recent improvements in exhaust gas purification and higher internal combustion engine efficiency. An object of the present invention is to provide a ferritic stainless steel satisfying this requirement.

【0010】[0010]

【課題を解決するための手段】 本発明によれば,質量
%において,C:0.03%以下,Si:0.80%〜1.20%,
Mn:0.60%〜1.50%,Cr:11.0%〜15.5%,Nb:0.2
0%〜0.80%,Ti:0.1%以下(無添加を含む),Cu:
0.02%〜0.30%未満,N:0.03%以下,Al:0.05%以
下(無添加を含む),O:0.012%以下, ただし,上記の範囲において, 0.7≦Mn/Si≦1.5 ・・・(1) 1221.6 (C+N)−55.1Si+65.7Mn−8.7Cr−99.5Ti
−40.4Nb+1.1Cu+54≦0 ・・・(3) の関係(1)および(3)を同時に満足するようにこれらの元
素を含有し,残部がFeおよび不可避的不純物からな
り,大気雰囲気下900℃で100時間連続加熱後の酸化増量
が0.02kg/m2以下でスケール剥離量が0.01kg/m2以下, 同
1000℃で100時間連続加熱後の酸化増量が0.4kg/m2以下
でスケール剥離量が0.02kg/m2以下である耐高温酸化性
およびスケール密着性に優れたフエライト系ステンレス
鋼を提供する。
According to the present invention, in mass%, C: 0.03% or less, Si: 0.80% to 1.20%,
Mn: 0.60% to 1.50%, Cr: 11.0% to 15.5%, Nb: 0.2
0% to 0.80%, Ti: 0.1% or less (including no addition), Cu:
0.02% to less than 0.30%, N: 0.03% or less, Al: 0.05% or less (including no addition), O: 0.012% or less, provided that 0.7 ≦ Mn / Si ≦ 1.5 (1) ) 1221.6 (C + N) -55.1Si + 65.7Mn-8.7Cr-99.5Ti
-40.4Nb + 1.1Cu + 54 ≦ 0 ··· (3) Relationship (1) containing these elements so as to satisfy our and the (3) At the same time, the balance being Fe and unavoidable impurities, 900 under an air atmosphere After continuous heating at 100 ° C for 100 hours, the increase in oxidation is 0.02 kg / m 2 or less, and the amount of scale peeling is 0.01 kg / m 2 or less.
1000 oxidation weight gain after 100 hours of continuous heating at ℃ provides a ferritic stainless steel scale peeling amount with excellent high-temperature oxidation resistance and scale adhesion is 0.02 kg / m 2 or less at 0.4 kg / m 2 or less.

【0011】[0011]

【0012】[0012]

【0013】[0013]

【作用】フエライト系ステンレス鋼においては,特公昭
59-15976号公報に記載されているように, La,Ce,Yな
どの希土類元素を含有させれば良好な高温酸化特性を示
すことがよく知られている。また特公昭57-2267 号公報
に記載されているようにC, NおよびMnを低減し且つ
Si含有量を高めることにより耐酸化性, 成形性および
溶接性を改善できることが知られ,米国特許第 4,640,7
22号明細書や特開昭60-145359号公報に記載のように耐
酸化性に有効なAlをSiで置換して耐酸化性を保持させ
ることが知られている。本発明者らはこれらとは全く異
なる処法によってフエライト系ステンレス鋼の高温酸化
特性 (酸化増量の抑制とスケール密着性) が改善できる
ことを知った。それはMnとSiの相互の含有量を或る特
定範囲に厳密に調整することである。
[Action] For ferrite stainless steel,
As described in JP-A-59-15976, it is well known that when a rare earth element such as La, Ce, or Y is contained, good high-temperature oxidation characteristics are exhibited. Also, as described in JP-B-57-2267, it is known that oxidation resistance, formability and weldability can be improved by reducing C, N and Mn and increasing the Si content. 4,640,7
As described in the specification of JP-A No. 22 and JP-A-60-145359, it is known that Al which is effective for oxidation resistance is replaced with Si to maintain oxidation resistance. The present inventors have found that the high-temperature oxidation characteristics (suppression of oxidation increase and scale adhesion) of ferritic stainless steel can be improved by a completely different treatment method. That is to strictly adjust the mutual content of Mn and Si to a certain specific range.

【0014】すなわち本発明者らは,低コストの13Cr
系のフエライト系ステンレス鋼を中心として,異常酸化
を抑制し且つ優れた酸化皮膜の密着性を改善すべく合金
成分の面からの広範な研究を行った結果, 異常酸化を抑
制するためにはSiを添加することが有効であることが
わかった。ところがSiを添加すると,異常酸化を抑制
し酸化増量を小さくすることができるものの,生成した
酸化物はSUS430J1Lの場合と同様に,冷却過程で剥離し
やすい性質を有することがわかった。
That is, the present inventors have proposed a low-cost 13Cr
After conducting extensive research on alloy components to suppress abnormal oxidation and to improve the adhesion of excellent oxide films, focusing on ferritic stainless steels, it was found that in order to suppress abnormal oxidation Was found to be effective. However, it was found that the addition of Si can suppress abnormal oxidation and reduce the amount of oxidation increase, but the generated oxide has the property of easily peeling off during the cooling process, as in the case of SUS430J1L.

【0015】ところが,適正量のMnを添加すると酸化
皮膜の密着性が著しく改善されることがわかった。これ
は, 高Crフエライト系ステンレス鋼においては,Mnは
高温酸化に悪影響を及ぼすという常識を覆す全く新しい
知見である。
However, it has been found that the addition of an appropriate amount of Mn significantly improves the adhesion of the oxide film. This is a completely new finding that overturns the common belief that Mn has an adverse effect on high-temperature oxidation in high Cr ferritic stainless steels.

【0016】しかし,Mnを多量に添加すると本成分系
ではオーステナイト相が生成して耐高温酸化性をかえっ
て劣化させ,そこを起点として異常酸化が発生すること
も明らかとなった。
However, it has also been found that when a large amount of Mn is added, an austenite phase is formed in the present component system to deteriorate the high-temperature oxidation resistance, and that abnormal oxidation occurs starting therefrom.

【0017】図1は,Mn/Si比を変化させた以外は本
発明で規定する化学成分値を有するフエライト系ステン
レス鋼において,後記実施例で説明する1000℃で100時
間の連続酸化試験を行った場合の酸化増量とスケール剥
離量をSi/Mn比で整理して示したものである。
FIG. 1 shows that a continuous oxidation test was performed at 1000 ° C. for 100 hours on a ferrite stainless steel having the chemical composition values specified in the present invention except that the Mn / Si ratio was changed. In this case, the amount of increase in oxidation and the amount of scale exfoliation in the above case are arranged and shown by the Si / Mn ratio.

【0018】図1に見られるように,Mn/Si比が 0.7
以上で 1.5以下の場合には酸化増量もスケール剥離量も
極減する。この比が 0.7未満ではスケール剥離量が急激
に多くなり 1.5を超えると酸化増量が急増する。
As can be seen from FIG. 1, the Mn / Si ratio is 0.7
When the above is 1.5 or less, both the increase in oxidation and the amount of scale peeling are extremely reduced. If this ratio is less than 0.7, the amount of scale peeling increases sharply, and if it exceeds 1.5, the oxidation increase rapidly increases.

【0019】この理由については必ずしも明確ではない
が,次のように考えるられる。Si量が多くなると耐高
温酸化性が良くなるが, これはSiの増量によりCr23
を主体とする酸化物が表層に形成されるからであると考
えられる。しかし単にSiを添加するだけではスケール
剥離を生じる。これはCr23を主体とする酸化物と下
層の母材との熱膨張率の差に起因するからであると考え
られる。
The reason for this is not always clear, but is considered as follows. Although the high-temperature oxidation resistance when the Si amount is large is improved, which is Cr 2 O 3 by increasing the Si
It is considered that an oxide mainly composed of is formed in the surface layer. However, simply adding Si causes scale peeling. This is considered to be due to the difference in the coefficient of thermal expansion between the oxide mainly composed of Cr 2 O 3 and the base material of the lower layer.

【0020】ところが,Mn/Si比が 0.7以上となるよ
うにMnが存在すると,Cr23を主体とする酸化物と鋼
素地との中間の熱膨張率を有する, Mnを含むスピネル
系の酸化物が生成する。この結果, Mnの増量によって
酸化増量が多くなっても,生成する酸化物は鋼素地との
熱膨張差が緩和されるために密着性が良くなる。しか
し,Mn/Si比が 1.5より高くなるような割合のMn量で
はスケールの密着性は良好でも,異常酸化が生じて耐熱
性に問題が生ずる。このようなことから,この系統のフ
エライト系ステンレス鋼ではMn/Si比を0.7〜1.5 の範
囲に厳密に調節すれば,酸化増量の抑制とスケール密着
性の改善が同時に達成され, 優れた耐高温酸化性を示す
ようになる。
However, when Mn is present so that the Mn / Si ratio becomes 0.7 or more, a spinel-based Mn-containing spinel material having an intermediate thermal expansion coefficient between an oxide mainly composed of Cr 2 O 3 and a steel base material is used. Oxide forms. As a result, even if the amount of oxidation increases due to the increase in Mn, the generated oxide has a reduced thermal expansion difference with the steel base, so that the adhesion is improved. However, when the Mn content is such that the Mn / Si ratio is higher than 1.5, even if the adhesion of the scale is good, abnormal oxidation occurs and a problem occurs in heat resistance. For this reason, in the ferritic stainless steel of this type, if the Mn / Si ratio is strictly adjusted to be in the range of 0.7 to 1.5, the suppression of the increase in oxidation and the improvement of the scale adhesion can be achieved at the same time. It becomes oxidative.

【0021】換言すれば,Mn系の酸化物を多く形成さ
せてスケールの密着性を良くするためにはSi量にとも
なってMn量を多くさせる必要があるが, 逆にSi量が少
ない場合にはそれにともなってMn量を少なくする必要
がある。Si量が少ない鋼ではMn量が多くなるとγ相が
生成しやすくなり, 異常酸化の起点となる。またMn系
のスピネル酸化物そのものの生成量が多くなり異常酸化
に至る。
In other words, it is necessary to increase the amount of Mn with the amount of Si in order to improve the adhesiveness of the scale by forming a large amount of Mn-based oxides. Therefore, it is necessary to reduce the amount of Mn. In a steel with a small Si content, when the Mn content is large, a γ phase is likely to be generated, and becomes a starting point of abnormal oxidation. In addition, the amount of Mn-based spinel oxide itself increases, leading to abnormal oxidation.

【0022】以下に, 本発明鋼における各成分の作用と
それらの含有量 (質量%) の限定理由を個別に概説す
る。
The actions of each component in the steel of the present invention and the reasons for limiting their content (% by mass) will be individually outlined below.

【0023】CとN:CとNは一般的には高温強度を高
めるためには重要な元素であるが,反面, 含有量が多く
なると耐酸化性, 加工性ならびに靭性の低下を来す。ま
た,CとNはNbとの化合物をつくり, 高温強度向上に
作用するフエライト相中の有効Nb量を減少せしめる。
このような理由からCとNはそれぞれ0.03%以下とす
る。
C and N: C and N are generally important elements for increasing the high-temperature strength, but on the other hand, when the content is large, the oxidation resistance, workability and toughness are reduced. In addition, C and N form a compound of Nb and reduce the effective Nb content in the ferrite phase, which acts to improve the high-temperature strength.
For these reasons, each of C and N is set to 0.03% or less.

【0024】Si:Siは前述のように耐高温酸化性を改
善するために不可欠な元素である。本発明鋼のような比
較的Cr量が少ない鋼であっても優れた耐高温酸化性を
付与するのに非常に有効である。しかし,過剰に添加す
ると硬質になり,加工性および靭性の劣化をもたらすの
で,0.8%〜1.2%の範囲とする。Siの最適含有量は約
1.0%付近にある。
Si: Si is an element indispensable for improving high-temperature oxidation resistance as described above. Even a steel having a relatively small amount of Cr, such as the steel of the present invention, is very effective in imparting excellent high-temperature oxidation resistance. However, if added excessively, it becomes hard and causes deterioration of workability and toughness. Therefore, the content is set in the range of 0.8% to 1.2%. The optimum content of Si is about
It is around 1.0%.

【0025】Mn:Mnも本発明鋼の重要な元素である。
本発明鋼のようにSiを添加することによって,酸化増
量は抑制されるが,生成した酸化物は加熱後の冷却中に
剥離しやすくなる。Mnを添加すると前述のようにスピ
ネル型酸化物を形成して表層酸化物の密着性を著しく改
善する。しかし,過剰に添加すると,オーステナイト相
の析出などによってかえって異常酸化を誘発する。この
ためその範囲を0.60%〜1.50%とする。Mnの最適含有
量は 1.0%付近である。
Mn: Mn is also an important element of the steel of the present invention.
By adding Si as in the steel of the present invention, the increase in oxidation is suppressed, but the generated oxide is easily separated during cooling after heating. When Mn is added, a spinel oxide is formed as described above, and the adhesion of the surface oxide is remarkably improved. However, excessive addition induces abnormal oxidation rather than precipitation of austenite phase. Therefore, the range is set to 0.60% to 1.50%. The optimum content of Mn is around 1.0%.

【0026】Cr:Crは耐高温酸化性を付与するために
は非常に有効な元素であり,耐高温酸化性を維持するた
めには11%以上の添加を必要とする。一方, 過剰に添加
すると鋼の脆化を招き,また硬質となって加工性を劣化
させる他, 原料価格が高くなる。したがって,Crの範
囲は11.0%〜15.0%, 好ましくは13.5%を越え15.5%以
下とする。とくに,エキゾーストマニホールド用途にお
いて,950℃で200時間連続加熱後の酸化増量が0.2kg/m2
以下で且つスケール剥離量が0.01kg/m2以下の要求を満
たすには,Mn/Si比がほぼ1となり且つMnとSiをい
ずれも約 1.0%で含有させたうえ,Si+Mn+Crの合
計含有量が15.5以上となるようにすることが望ましい
が,この場合にはCr量は必然的に13.5%を越えて含有
させることが必要となる。Crの最適含有量は14%付近
にある。
Cr: Cr is a very effective element for imparting high-temperature oxidation resistance. To maintain high-temperature oxidation resistance, addition of 11% or more is required. On the other hand, if it is added excessively, the steel becomes brittle, becomes hard and deteriorates workability, and the raw material price increases. Therefore, the range of Cr is 11.0% to 15.0%, preferably more than 13.5% and 15.5% or less. In particular, in exhaust manifold applications, the oxidation weight gain after continuous heating at 950 ° C for 200 hours is 0.2 kg / m 2.
In order to satisfy the requirement of not more than 0.01 kg / m 2 or less, the Mn / Si ratio becomes almost 1, and both Mn and Si are contained at about 1.0%, and the total content of Si + Mn + Cr is It is desirable that the content be 15.5 or more. In this case, however, it is necessary that the Cr content inevitably exceeds 13.5%. The optimum Cr content is around 14%.

【0027】Nb:Nbは高温強度を維持せしめるのに有
効に作用するので本発明鋼の重要な元素である。高温強
度を維持するためには少なくとも0.20%以上添加する必
要がある。一方, Nbを過剰に添加すると溶接高温割れ
感受性が高くなる。十分な高温強度を維持し,かつ溶接
高温割れ感受性に余り影響を及ぼさないようにNbの上
限を0.80%とする。好ましいNb含有量の下限値は8×
(C+N)+0.30であり,その上限値は0.60%である。
Nb含有量の最適値はCとNがいずれも0.015%以下の可
及的低量の場合,約0.50%付近にある。
Nb: Nb is an important element of the steel of the present invention because it works effectively to maintain high-temperature strength. In order to maintain high-temperature strength, it is necessary to add at least 0.20% or more. On the other hand, if Nb is added excessively, the susceptibility to welding hot cracking increases. The upper limit of Nb is set to 0.80% so as to maintain sufficient high-temperature strength and not significantly affect the susceptibility to welding hot cracking. The preferred lower limit of the Nb content is 8 ×
(C + N) +0.30, the upper limit of which is 0.60%.
The optimum value of the Nb content is around 0.50% when both C and N are as low as 0.015% or less.

【0028】Cu:Cuは本発明鋼において,低温靱性
と加工性の両方を向上させるのに極めて有効に作用す
る。この事実を試験結果で以下に示す。
Cu: Cu works very effectively in the steel of the present invention to improve both low-temperature toughness and workability. This fact is shown below in the test results.

【0029】試験は, 14%Cr,1.0%Si,1.0%M
n,0.5 %Nbの鋼を基本鋼とし,Cuの含有量を変え
て破面遷移温度に及ぼすCuの影響を調べた。図2にそ
の試験結果を示す。破面遷移温度は,板厚2mmのVノ
ッチシャルピー衝撃試験片を用いて,−75℃から50
℃の範囲で衝撃試験を行い,延性破面率が50%となる
ときの温度と定義した。低温靱性の指標となる破面遷移
温度は−30℃以下が好ましい。図2に見られるよう
に,Cuの含有量が0.02〜0.30%未満の範囲において破
面遷移温度が−30℃以下となることがわかる。なおC
uの含有量を0.30%以上とした場合は,Cuを添加しな
い場合に比較して靱性が若干改善されるものの,破面遷
移温度を上昇させる傾向があることも明らかになった。
The tests were performed for 14% Cr, 1.0% Si, 1.0% M
The effect of Cu on the fracture surface transition temperature was examined by changing the content of Cu and using 0.5% Nb steel as the base steel. FIG. 2 shows the test results. The fracture surface transition temperature was measured using a 2 mm V-notch Charpy impact test specimen from -75 ° C to 50 ° C.
The impact test was performed in the range of ° C., and the temperature was defined as the temperature at which the ductile fracture ratio became 50%. The fracture surface transition temperature, which is an index of low-temperature toughness, is preferably −30 ° C. or lower. As can be seen from FIG. 2, it can be seen that the fracture surface transition temperature is −30 ° C. or lower when the Cu content is in the range of 0.02 to less than 0.30%. Note that C
When the content of u is set to 0.30% or more, the toughness is slightly improved as compared with the case where Cu is not added, but it is also clear that the fracture surface transition temperature tends to be increased.

【0030】また上記と同じ14%Cr,1.0%Si,1.0
%Mn,0.5 %Nbの鋼を基本鋼とし,Cuの含有量を
変えて全伸びと均一伸びに及ぼすCuの影響を調べた。
その結果を図3に示した。全伸びおよび均一伸びの測定
は板厚2mmの冷延焼鈍板から試片を採り,冷延方向に
平行の方向(L方向)にひずみ速度3mm/minで引
張試験を実施して求めた。図3に見られるように,Cu
の含有量が0.02%以上0.30%未満の範囲で全伸びが上昇
し,また加工性の指標となる均一伸びも上昇することが
わかる。
The same 14% Cr, 1.0% Si, 1.0
% Mn and 0.5% Nb were used as basic steels, and the effect of Cu on the total elongation and uniform elongation was examined by changing the Cu content.
The result is shown in FIG. The total elongation and the uniform elongation were determined by taking a specimen from a cold-rolled annealed sheet having a thickness of 2 mm and performing a tensile test in a direction parallel to the cold rolling direction (L direction) at a strain rate of 3 mm / min. As can be seen in FIG.
It can be seen that the total elongation increases and the uniform elongation, which is an index of workability, increases when the content of is between 0.02% and less than 0.30%.

【0031】このように,本発明鋼においてCuを0.02
%以上0.30%未満の範囲で含有させた場合に,低温靱性
と加工性が同時に優れることがわかった。なお,この程
度の少量のCu含有量では,Cu添加による高温特性に
及ぼす悪影響(例えば熱間加工性の低下)は殆んど現れ
ない。
As described above, in the steel of the present invention, Cu
It was found that when contained in a range of not less than 0.3% and less than 0.30%, low-temperature toughness and workability were simultaneously excellent. With such a small amount of Cu, there is almost no adverse effect on the high-temperature characteristics due to the addition of Cu (for example, a decrease in hot workability).

【0032】O:O(酸素)は溶接性に悪影響を及ぼす
ので, できる限り低いことが好ましい。しかし低く抑え
るほど製造コストの上昇を招く。本発明鋼においては,
OはAlおよびSiの添加によって容易に低減でき, この
とき十分な溶接性を有する範囲としてOは0.012%以下
とする。
O: O (oxygen) has a bad effect on weldability, so it is preferable that O (oxygen) is as low as possible. However, the lower the value, the higher the manufacturing cost. In the steel of the present invention,
O can be easily reduced by adding Al and Si. At this time, O is set to 0.012% or less as a range having sufficient weldability.

【0033】TiとAl:TiとAlは本発明鋼において添
加の有無を問わず各々0.10%まで許容できる。Tiは鋼
のr値(ランクフォード値)を向上させ,鋼成形性を改
善することが知られているが,Tiを添加するとTiNの
生成による鋼板表面疵(ヘゲ疵)の発生による鋼板製造
歩留りの低下を来し,また溶接性も低下させる。とくに
エキゾーストマニホールド製造のための造管時の溶接や
組立用の溶接時にTiNが生成するとその後に厳しい加
工を施す場合に悪い影響を与える。このため,本発明鋼
中のTi量は0.10%以下,好ましくは0.05%以下である
のがよく,この程度のTi量は本発明鋼において不純物
量として許容できる。
Ti and Al: Ti and Al can be allowed up to 0.10% each in the steel of the present invention, with or without addition. It is known that Ti improves the r value (Rankford value) of steel and improves steel formability. However, when Ti is added, steel sheet production due to generation of steel sheet surface flaws (scab flaws) due to generation of TiN. Yield decreases and weldability also decreases. In particular, when TiN is generated during welding during pipe making for manufacturing an exhaust manifold or during welding for assembly, adverse effects are exerted when severe processing is performed thereafter. Therefore, the Ti content in the steel of the present invention is preferably 0.10% or less, and more preferably 0.05% or less, and such a Ti content is acceptable as an impurity in the steel of the present invention.

【0034】また,Alは鋼の溶製時に残存酸素を除去
する脱酸剤として有用である。すなわち,鋼中に酸素が
残存すると溶接性が悪くなるのでAl脱酸は有用である
が,本発明鋼はSiを含有させるので,このSiが脱酸剤
として機能し,Alによる脱酸は必ずしも必要としな
い。またAlが過剰に鋼中に混入すると溶接時にAl系の
酸化物が多量に生成して逆に溶接性を劣化させる結果と
もなる。したがってAlは添加の有無を問わず0.05%以
下とするのがよく,この程度のAl量は本発明鋼におい
て許容できる。
Further, Al is useful as a deoxidizing agent for removing residual oxygen during melting of steel. That is, if oxygen remains in the steel, the weldability deteriorates, so that Al deoxidation is useful. However, since the steel of the present invention contains Si, this Si functions as a deoxidizing agent, and deoxidation by Al is not necessarily performed. do not need. If Al is excessively mixed into the steel, a large amount of Al-based oxide is generated during welding, which results in deterioration of weldability. Therefore, the content of Al is preferably set to 0.05% or less irrespective of the presence or absence of addition, and this amount of Al is acceptable in the steel of the present invention.

【0035】そのほかの製造上混入する不純物として
P,S,Ni等がある。これらの元素はいずれも本発明
鋼において有用な作用を供するものではないので少ない
程よいが,本発明鋼においてPは 0.040%まで,Sは
0.008%まで,またNiは0.50%まで含有しても特段の悪
影響は現れない。したがってこの程度までのこれら元素
の含有は許容される。
P, S, Ni, and the like are other impurities that are mixed in during production. Since none of these elements provides useful effects in the steel of the present invention, the smaller the better, the better. However, in the steel of the present invention, P is up to 0.040% and S is
Even if the content is up to 0.008% and Ni up to 0.50%, no particular adverse effect is exhibited. Therefore, the content of these elements to this extent is permissible.

【0036】以上のような各成分の含有量において, 0.7≦Mn/Si≦1.5 ・・(1) の関係が満足するようにMn量とSi量を規制することが
本発明の前記の課題を達成するうえで重要であり,この
(1) 式の条件を満足すれば,図1に示したように,1000
℃で100時間の連続加熱後の酸化増量が0.4kg/m2以下で
且つスケール剥離量が0.02kg/m2以下となる耐高温酸化
性およびスケール密着性に優れたフエライト系ステンレ
ス鋼が得られる。なお図1の成果は,Mn/Si比を最適
にすると,酸化増量の上限値0.4kg/m2とスケール剥離量
の上限値0.02kg/m2よりは遙に小さい値まで耐高温酸化
性およびスケール密着性を改善できることを示してい
る。
It is an object of the present invention to regulate the amount of Mn and the amount of Si so that the relationship of 0.7 ≦ Mn / Si ≦ 1.5 (1) is satisfied in the content of each component as described above. Important to achieve
If the condition of equation (1) is satisfied, as shown in FIG.
100 hours of ferritic stainless steel oxidation weight gain after continuous heating and descaling amount 0.4 kg / m 2 or less with excellent high-temperature oxidation resistance and scale adhesion which is a 0.02 kg / m 2 or less can be obtained at ℃ . Note outcome of FIG. 1, when optimize the Mn / Si ratio, the high-temperature oxidation resistance and to a small value to the far than the upper limit value 0.02 kg / m 2 of an upper limit value 0.4 kg / m 2 and scale peeling of oxidation weight gain This shows that the scale adhesion can be improved.

【0037】 また,本発明に従う鋼は前記関係式(1)
に加えて関係式(3)の要件を充足するように各成分量を
調整されることが前記課題を解決するうえで重要な役割
を果たす。さらに,優れた高温疲労特性を得るには関係
式(2)すなわち1.4≦Nb+1.2Si≦2.0を,エキゾースト
マニホールドに要求される耐高温酸化性を具備するには
関係式(4)すなわちCr+Mn+Si≧14.7を充足すること
が重要である。これらの点は後記の実施例から明らかで
あるが,その概要を予め説明すると次のとおりである。
Further, the steel according to the present invention has the above-mentioned relational expression (1)
In addition to the above, adjusting the amounts of the respective components so as to satisfy the requirements of the relational expression ( 3 ) plays an important role in solving the above problem. Furthermore, to obtain excellent high temperature fatigue properties,
Equation (2), that is, 1.4 ≦ Nb + 1.2Si ≦ 2.0,
To provide high temperature oxidation resistance required for manifolds
Satisfies relational expression (4), that is, Cr + Mn + Si ≧ 14.7
is important. These points are clear from the examples described later, and the outline thereof will be described below in advance.

【0038】関係式(2) すなわち, 1.4≦Nb+1.2Si≦2.0 ・・・(2) を充足するようにNbとSiを複合添加すると,本発明鋼
は優れた高温疲労特性を示すようになる。この効果はN
b+1.2Siの量が1.4以上で発現される。しかし,Nbと
Siはいずれも過剰に添加すると加工性を低下させる作
用がある。このためNb+1.2Siの量は2.0%以内に抑え
るのがよい。
When Nb and Si are added in combination to satisfy the relational expression (2): 1.4 ≦ Nb + 1.2Si ≦ 2.0 (2), the steel of the present invention exhibits excellent high-temperature fatigue properties. . This effect is N
It is expressed when the amount of b + 1.2Si is 1.4 or more. However, if both Nb and Si are added in excess, they have the effect of reducing workability. For this reason, the amount of Nb + 1.2Si is preferably kept within 2.0%.

【0039】関係式(3) すなわち, 1221.6 (C+N)−55.1Si+65.7Mn−8.7Cr−99.5Ti−40.4Nb +1.1Cu+54≦0 ・・・(3) を充足するように各成分量を調整することにより,本発
明鋼は1000℃までの温度域でオーステナイト相が生成し
ないようになる。エキゾーストマニホールドの場合, 材
料面からは最高1000℃までの温度域を考慮することが必
要であるが,この耐用温度でオーステナイト相が生成す
ると, オーステナイト相を起点とする異常酸化が起こ
る。関係式(3) の関係を充足するように成分バランスを
図ると,この異常酸化が防止できる。
The relational expression (3), that is, 1221.6 (C + N) -55.1Si + 65.7Mn-8.7Cr-99.5Ti-40.4Nb + 1.1Cu + 54.ltoreq.0 (3). As a result, in the steel of the present invention, no austenite phase is formed in a temperature range up to 1000 ° C. In the case of the exhaust manifold, it is necessary to consider the temperature range up to 1000 ° C from the material side, but if the austenite phase is formed at this service temperature, abnormal oxidation starting from the austenite phase occurs. If the components are balanced so as to satisfy the relationship of the relational expression (3), this abnormal oxidation can be prevented.

【0040】関係式(4) , すなわち, Cr+Mn+Si≧14.7 ・・・(4) の関係を充足するように, Cr,Mn,Siの合計量を厳密
に調整することが,エキゾーストマニホールドに要求さ
れる耐高温酸化性を具備する上で重要であることかわか
った。以下に試験結果を挙げてこの点を説明する。
It is required for the exhaust manifold to strictly adjust the total amount of Cr, Mn, and Si so as to satisfy the relational expression (4), that is, Cr + Mn + Si ≧ 14.7 (4). It was found to be important in providing high-temperature oxidation resistance. Hereinafter, this point will be described with reference to test results.

【0041】供試鋼は,Cr:11.0〜15.5%, Si:0.8
〜1.2%, Mn: 0.7〜1.5%, の範囲でCr,Si,Mn量を
変化させ,且つNb=0.5%, Cu=0.1%の一定とした鋼
であり,これら各供試鋼の(Cr+Mn+Si)の合計量
と耐高温酸化特性との関係を調べた。試験は,各鋼につ
いて板厚2mmの板状試験片を大気雰囲気下で 200時間の
連続加熱を行ったあと,単位面積当たりの質量増加量を
測定した。その結果を図4および図5に示した。図4は
連続加熱温度= 930℃の場合,図5は連続加熱温度= 9
50℃の場合のものである。
The test steel was composed of Cr: 11.0 to 15.5%, Si: 0.8
, 1.2%, Mn: 0.7-1.5%, and the Cr, Si, and Mn contents were varied, and Nb was 0.5% and Cu was 0.1%, and each of these test steels had a constant (Cr + Mn + Si). ) And the high-temperature oxidation resistance were examined. In the test, a 2 mm-thick plate-shaped specimen was continuously heated in an air atmosphere for 200 hours for each steel, and then the mass increase per unit area was measured. The results are shown in FIG. 4 and FIG. Fig. 4 shows the case where the continuous heating temperature = 930 ° C, and Fig. 5 shows the case where the continuous heating temperature = 9
At 50 ° C.

【0042】図4および図5の結果から,耐高温酸化特
性の指標となる酸化増量は,鋼中の(Cr+Mn+Si)
の合計量で良く整理できることがわかる。そして,異常
酸化を生じる酸化増量の目安を0.2kg/m2とすると,図4
のように, 930℃で200 時間の連続加熱ではCr,Si,M
nの総量が質量%で14.7以上,また図5のように 950℃
で200 時間の連続加熱では該総量が15.5以上で,異常酸
化を抑制できることが明らかとなった。
From the results shown in FIGS. 4 and 5, the oxidation increase as an index of the high-temperature oxidation resistance is (Cr + Mn + Si) in the steel.
It can be seen that the total amount can be well organized. Assuming that the target of the increase in oxidation that causes abnormal oxidation is 0.2 kg / m 2 , FIG.
As shown in the figure, Cr, Si, M
The total amount of n is 14.7 or more by mass%, and 950 ° C as shown in Fig. 5.
It was found that the total amount was 15.5 or more in continuous heating for 200 hours, and that abnormal oxidation could be suppressed.

【0043】したがって,この試験結果から,本発明鋼
において,930 ℃での連続加熱条件では式(4), 950℃で
の連続加熱条件では式(4)', すなわち, Cr+Mn+Si≧14.7 ・・・(4) Cr+Mn+Si≧15.5 ・・・(4)' の関係を満足すると,各温度で優れた耐高温酸化特性を
得ることができるという知見がえられた。
Therefore, from the test results, it can be seen from the test results that in the steel of the present invention, the formula (4) is used under the continuous heating condition at 930 ° C., and the formula (4) ′ is obtained under the continuous heating condition at 950 ° C. (4) It was found that if the relationship of Cr + Mn + Si ≧ 15.5 (4) ′ was satisfied, excellent high-temperature oxidation resistance could be obtained at each temperature.

【0044】以上のように各成分をバランスさせた本発
明のフエライト系ステンレス鋼は,優れた耐高温酸化特
性とスケール密着性を同時に有し,併せて低温靭性, 加
工性に優れ, 高温強度並びに高温疲労特性も良好であ
る。しかも18Cr系ステンレス鋼よりも低コストに製造
できる。一般に排ガス管路部材は溶接部を有するが, 本
発明鋼は溶接部の熱疲労特性も良好である。
The ferritic stainless steel of the present invention in which the respective components are balanced as described above has excellent high-temperature oxidation resistance and scale adhesion at the same time, has excellent low-temperature toughness, workability, high-temperature strength and High temperature fatigue properties are also good. Moreover, it can be manufactured at lower cost than 18Cr stainless steel. In general, exhaust gas pipe members have welds, but the steel of the present invention has good thermal fatigue characteristics of welds.

【0045】このような良好な諸特性を同時に具備する
本発明鋼は, 自動車エンジンに直結して高温となるエキ
ゾーストマニホールド用途に好適な材料である。エキゾ
ーストマニホールドは, プレスした板, 或いは予め高周
波溶接によって造管したパイプを, 必要な形状寸法に加
工および溶接して製造され, 使用にあたっては振動およ
び高温の排ガスに曝され, しかも加熱冷却の繰り返しを
受ける。本発明鋼は,後記の実施例にも示すように, こ
のような用途において従来材よりも十分な耐用性を示し
且つ安価である。
The steel of the present invention having such good properties at the same time is a material suitable for an exhaust manifold application which is directly connected to an automobile engine and has a high temperature. Exhaust manifolds are manufactured by processing and welding pressed plates or pipes previously formed by high-frequency welding to the required shape and dimensions.In use, they are exposed to vibration and high-temperature exhaust gas. receive. The steel of the present invention has sufficient durability and is less expensive than conventional materials in such applications, as will be shown in Examples described later.

【0046】エキゾーストマニホールドに限らず, 本発
明の低コストフエライト系ステンレス鋼は 700℃〜950
℃の高温で使用され且つ耐高温酸化性およびスケール剥
離量が重要視される部材, 例えば自動車エンジンの排ガ
ス管路におけるメタリックコンバーターの外筒や火力発
電システムの排ガス管路用部材等にも好適に使用でき
る。
Not only the exhaust manifold, but also the low-cost ferritic stainless steel of the present invention is 700 ° C to 950 ° C.
Suitable for use at high temperatures of ℃ and where high-temperature oxidation resistance and scale peeling are considered important, such as the outer cylinder of a metallic converter in the exhaust pipe of an automobile engine, the exhaust pipe of a thermal power generation system, etc. Can be used.

【0047】以下に本発明の実施例を挙げて本発明の効
果を具体的に示す。
The effects of the present invention will be specifically described below with reference to examples of the present invention.

【0048】[0048]

【実施例】表1〜3に供試材の鋼中の化学成分値(質量
%)を示した。これら表中のF01からF10まで, E01か
らE08まで,G01からG07まで,およびA1からA7の
ものは本発明鋼である。F11からF17まで,E09とE1
0, およびG08は本発明で規定する範囲を外れた鋼 (比
較鋼) である。いずれの鋼も真空溶解炉にて溶製し,鍛
造, 熱延により厚さ4.5mmの熱延鋼帯とした。これを105
0℃で焼鈍したうえ厚さ2.0mmの冷延鋼帯とし,さらに10
50℃で焼鈍した。各冷延焼鈍材から各種の試験片に加工
後, 試験に供した。なお,高周波造管パイプを用いた熱
疲労特性の把握にはF01とF14を用いた。
EXAMPLES Tables 1 to 3 show chemical component values (% by mass) in steel of test materials. In these tables, F01 to F10, E01 to E08, G01 to G07, and A1 to A7 are steels of the present invention. From F11 to F17, E09 and E1
0, and G08 are steels (comparative steels) outside the range specified in the present invention. All steels were melted in a vacuum melting furnace, and hot-rolled steel strips with a thickness of 4.5 mm were forged and hot-rolled. This is 105
Annealed at 0 ° C and made a 2.0 mm thick cold-rolled steel strip.
Annealed at 50 ° C. Each of the cold-rolled and annealed materials was processed into various test specimens, which were then tested. In addition, F01 and F14 were used for grasping the thermal fatigue characteristics using the high-frequency pipe making pipe.

【0049】表1〜3の本発明鋼および比較鋼の900℃
および1000℃の100時間連続酸化試験結果を表4〜5に
示した。耐高温酸化性は酸化増量およびスケール剥離量
で評価した。すなわち長さ35mm, 幅25mm, 板厚2.0mmの
試験片を用い,各温度で 100時間連続酸化試験を行った
後の単位面積あたりの酸化増量およびスケール剥離量を
測定して評価した。なお,スケール剥離量の測定は酸化
試験後の冷却中に試片表面から自然に剥離した酸化スケ
ールを収集してその重量を計測することによって行い,
単位面積当たりの剥離量を求めた。また表2中の×印で
示す異常酸化を起こしたものは,こぶ状の酸化物が試験
片を覆い,スケール剥離量で耐酸化性を評価するのは妥
当ではないと判断されたものである。
900 ° C. of the steels of the present invention and comparative steels shown in Tables 1 to 3
Tables 4 and 5 show the results of a 100-hour continuous oxidation test at 1000 ° C. and 1000 ° C. The high-temperature oxidation resistance was evaluated by the amount of oxidation increase and the amount of scale peeling. That is, a test piece having a length of 35 mm, a width of 25 mm, and a thickness of 2.0 mm was used, and a continuous oxidation test was performed at each temperature for 100 hours. The scale peeling amount was measured by collecting and measuring the weight of the oxide scale that had naturally peeled off from the specimen surface during cooling after the oxidation test.
The amount of peeling per unit area was determined. In the case of abnormal oxidation indicated by the mark x in Table 2, the bump-shaped oxide covered the test piece, and it was judged that it was not appropriate to evaluate the oxidation resistance by the amount of scale peeling. .

【0050】表6に,本発明鋼および比較鋼の代表的な
ものについて低温靭性および加工性の試験結果,並びに
高温引張と高温疲労試験結果を示した。これらの試験条
件は次のとおりである。
Table 6 shows the test results of low-temperature toughness and workability, and the results of high-temperature tensile and high-temperature fatigue tests on typical steels of the present invention and comparative steels. These test conditions are as follows.

【0051】低温靱性は破面遷移温度で評価した。すな
わち「JIS Z 2202」に準拠した板厚2.0mmのVノッチ試
験片を作製し「JIS Z 2241」に規定する金属材料衝撃試
験方法(シャルピー衝撃試験)を,−75℃から50℃の温
度範囲で行い,脆性破面率が50%となる温度を破面遷移
温度とした。
The low-temperature toughness was evaluated based on the fracture surface transition temperature. In other words, a V-notch test piece with a thickness of 2.0 mm conforming to “JIS Z 2202” was prepared, and the metal material impact test method (Charpy impact test) specified in “JIS Z 2241” was applied in the temperature range of -75 ° C to 50 ° C. The temperature at which the brittle fracture rate was 50% was defined as the fracture transition temperature.

【0052】加工性は引張試験と曲げ試験で評価した。
すなわち「JIS Z 2201の13B号」に準拠した引張試験片
と「JIS Z 2204の1号」に準拠した金属材料曲げ試験片
を作製し「JIS Z 2241」に規定する引張試験における伸
び(全伸および均一伸び)と「JIS Z 2248」に規定する
曲げ試験の押曲げ法による曲げ角度を測定した。
The workability was evaluated by a tensile test and a bending test.
That is, a tensile test piece conforming to “JIS Z 2201 No. 13B” and a metal material bending test piece conforming to “JIS Z 2204 No. 1” were prepared, and the elongation (total elongation) in the tensile test specified in “JIS Z 2241” was performed. And uniform elongation) and the bending angle in the bending test of the bending test specified in "JIS Z 2248".

【0053】高温引張特性は「JIS G 0567」に準拠した
高温引張試験により 700℃と 900℃における 0.2%耐力
によって評価した。高温疲労特性は「JIS Z 2275」に準
拠した平面曲げ疲労試験を,600 ℃で最大応力 180 N/m
m2,平均応力0 N/mm2,繰り返し速度 40 Hzの条件と,
900 ℃で最大応力 30 N/mm2 ,平均応力0 N/mm2,繰り
返し速度 60 Hzの条件で行い,破損繰り返し数が107
上のものを良と判定した。
The high temperature tensile properties were evaluated by a 0.2% proof stress at 700 ° C. and 900 ° C. by a high temperature tensile test in accordance with “JIS G 0567”. The high-temperature fatigue properties were determined by conducting a plane bending fatigue test in accordance with “JIS Z 2275” at a maximum stress of 180 N / m at 600 ° C.
m 2 , average stress 0 N / mm 2 , repetition rate 40 Hz
Maximum stress 30 N / mm 2 at 900 ° C., an average stress 0 N / mm 2, carried out under the condition of repetition rate 60 Hz, breakage repetition number is determined as good ones 10 7 or more.

【0054】表7には,発明鋼および比較鋼のパイプを
用いた熱疲労試験結果を示した。熱疲労試験はφ42.7mm
の高周波造管パイプに対して,応力下で,下限温度200
℃と上限温度900℃の加熱冷却サイクルを繰り返し付与
した。加熱および冷却速度は3℃/minとし,上限およ
び下限温度での保持時間は0.5minとした。応力付与は拘
束率 (材料の自由熱膨張量に対する付加ひずみの比) は
50%とした。試験結果は, 破損繰り返し数 (試験中の最
大引張応力が初期の応力の75%にまで低下したときの繰
り返し数) および目視による表面のスケール密着状態で
評価した。
Table 7 shows the results of the thermal fatigue test using the pipes of the invention steel and the comparative steel. Thermal fatigue test is φ42.7mm
For high-frequency tube-forming pipes under stress, the minimum temperature is 200
And a heating / cooling cycle having an upper limit temperature of 900 ° C. were repeatedly applied. The heating and cooling rates were 3 ° C./min, and the holding time at the upper and lower temperature limits was 0.5 min. The stress application is the constraint rate (the ratio of the applied strain to the free thermal expansion of the material)
50%. The test results were evaluated based on the number of failure cycles (the number of cycles when the maximum tensile stress during the test was reduced to 75% of the initial stress) and the scale adhesion state of the surface visually.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【表3】 [Table 3]

【0058】[0058]

【表4】 [Table 4]

【0059】[0059]

【表5】 [Table 5]

【0060】[0060]

【表6】 [Table 6]

【0061】[0061]

【表7】 [Table 7]

【0062】表4〜5の結果にみられるように,本発明
鋼は,900℃の連続酸化試験で酸化増量が0.02kg/m2
下, 1000℃の連続酸化試験で酸化増量が0.4kg/m2以下と
非常に良好な耐高温酸化性を示す。同時に,耐スケール
剥離性にも優れ,900℃の試験では全くスケール剥離せ
ず,1000℃の試験でもスケール剥離量は0.02kg/m2以下
と極微量である。これらの特性は,前述したように酸化
増量の抑制に対してはSiの添加が, またスケール剥離
の抑制に対してはMnの添加が有効に作用し,これら両
方の特性はMn/Si比によって支配される。
As can be seen from the results in Tables 4 and 5, the steel of the present invention had an oxidation weight gain of not more than 0.02 kg / m 2 in the continuous oxidation test at 900 ° C. and 0.4 kg / m 2 in the continuous oxidation test at 1000 ° C. It shows very good high temperature oxidation resistance of m 2 or less. At the same time, it excels in scale peeling resistance. At 900 ° C, it does not peel at all, and even at 1000 ° C, the amount of scale peeling is as small as 0.02 kg / m 2 or less. As mentioned above, the addition of Si effectively suppresses the oxidation increase, and the addition of Mn effectively suppresses the scale exfoliation, as described above. Both of these characteristics depend on the Mn / Si ratio. Ruled.

【0063】さらに表4〜5の結果を見ると,Cr,Mn,
Siの総量が14.7以上である鋼は,930 ℃で200 時間の
連続加熱を行っても酸化増量は 0.2 kg/m2以下であり,
異常酸化は生じていない。Cr,Mn,Siの総量が15.5以
上である鋼は,950℃で200時間の連続加熱でも酸化増量
が 0.2 kg/m2以下であり,異常酸化は生じていない。そ
してこれら異常酸化を生じない鋼のスケール密着性はい
ずれも良好である。
Looking further at the results in Tables 4 and 5, it can be seen that Cr, Mn,
Steel with a total amount of Si of 14.7 or more has an oxidation weight of 0.2 kg / m 2 or less even after continuous heating at 930 ° C for 200 hours.
No abnormal oxidation has occurred. Steel with a total amount of Cr, Mn, and Si of 15.5 or more has an oxidation increase of 0.2 kg / m 2 or less even after continuous heating at 950 ° C. for 200 hours, and does not show abnormal oxidation. All of these steels that do not cause abnormal oxidation have good scale adhesion.

【0064】これに対し,比較鋼G08に見られるよう
に,Si量とMn量が通常のフエライト系ステンレス鋼と
同程度のものでは,たとえMn/Si比が本発明で規定す
る範囲であっても,両元素の量が本発明で規定する下限
値より低いので,900 ℃においてすでに異常酸化を起こ
してしまい,スケール剥離量も著しい。比較鋼F12はS
i量が本発明で規定する下限未満であるため,他の成分
は本発明で規定する範囲であっても1000℃の酸化試験に
おいて異常酸化を起こしている。比較鋼F14はSi量を
本発明で規定する範囲で含むものの,スケール剥離を抑
制するMn量が本発明で規定する下限値未満であるため
に,酸化物の殆んど全部が剥離してしまう。
On the other hand, as shown in the comparative steel G08, when the amount of Si and the amount of Mn are almost the same as those of ordinary ferritic stainless steel, the Mn / Si ratio falls within the range specified in the present invention. Also, since the amounts of both elements are lower than the lower limits specified in the present invention, abnormal oxidation has already occurred at 900 ° C., and the amount of scale peeling is remarkable. Comparative steel F12 is S
Since the i content is less than the lower limit specified in the present invention, the other components have caused abnormal oxidation in the oxidation test at 1000 ° C. even in the range specified in the present invention. Although the comparative steel F14 contains the Si content within the range specified in the present invention, almost all of the oxides are separated because the Mn amount that suppresses scale separation is less than the lower limit specified in the present invention. .

【0065】このような傾向は,MnとSiの相関を見る
とより顕著になる。例えば, F11のようにSiが本発明
規定の上限より多い鋼, F14のようにMn量が本発明で
規定するよりも低い鋼およびF16のようにMn/Si比が
本発明で規定する比より小さい鋼は,いずれもSi量に
対するMnの相対量が適正範囲よりも少ないのでスケー
ル剥離量が多く,また1000℃では異常酸化を招くことが
ある。
This tendency becomes more remarkable when the correlation between Mn and Si is viewed. For example, a steel such as F11 in which Si is larger than the upper limit of the present invention, a steel such as F14 in which the Mn content is lower than specified in the present invention, and a Mn / Si ratio such as F16 in which the Mn / Si ratio is higher than the ratio specified in the present invention. In all small steels, the relative amount of Mn to the Si amount is smaller than an appropriate range, so that the amount of scale peeling is large, and at 1000 ° C., abnormal oxidation may be caused.

【0066】他方, F13のようにMn量が本発明で規定
するより多い鋼およびF15のようにMn/Si比が本発明
で規定する比よりも高い鋼は,Siの添加に対してMn添
加量が多いので,900 ℃でのスケール剥離量は抑制され
るものの,酸化増量が多く,1000℃では異常酸化を起こ
す。
On the other hand, a steel having a higher Mn content, such as F13, as defined in the present invention and a steel, such as F15, having an Mn / Si ratio higher than the ratio specified in the present invention, have Mn added to Si added. Although the amount is large, the amount of scale peeling at 900 ° C is suppressed, but the amount of oxidation increase is large and abnormal oxidation occurs at 1000 ° C.

【0067】さらに, 前記の(3)式の要件 (表1〜3に
おいて(3) 式の値をGで示す)を満たさないF17は 900
℃〜1000℃の温度域でオーステナイト相 (室温観察時に
はマルテンサイト相) が生成し,オーステナイト相を起
点として異常酸化が起こる。このため酸化増量およびス
ケール剥離量とも多く, 高温酸化特性が本質的に劣って
いる。
Further, F17 which does not satisfy the requirement of the above-mentioned equation (3) (the value of the equation (3) is indicated by G in Tables 1 to 3) is 900
An austenite phase (martensite phase when observed at room temperature) is formed in the temperature range of ℃ to 1000 ℃, and abnormal oxidation occurs starting from the austenite phase. For this reason, both the amount of oxidation increase and the amount of scale peeling are large, and the high-temperature oxidation characteristics are essentially inferior.

【0068】他方, 表6の低温靭性および加工性試験結
果から,本発明鋼E01〜E08並びにA1〜A7は,いず
れも破面遷移温度が−40℃以下と非常に低く,低温靭性
に優れることがわかる。これに対し,比較鋼E09,E10
の破面遷移温度は−20℃,0℃と高い温度となり,本発
明鋼に比べて低温靭性に劣っている。
On the other hand, from the results of the low-temperature toughness and workability tests shown in Table 6, the steels of the present invention E01 to E08 and A1 to A7 all have very low fracture surface transition temperatures of -40 ° C. or less, and are excellent in low-temperature toughness. I understand. In contrast, comparative steels E09 and E10
The fracture surface transition temperature was as high as −20 ° C. and 0 ° C., and was inferior in low-temperature toughness as compared with the steel of the present invention.

【0069】また,加工性についても,本発明鋼E01〜
E08並びにA1〜A7はすべて35%異常の全伸びを示し
且つ均一伸びも25%以上であり,非常に良好な結果が得
られている。これに対し,比較鋼E09は良好であるもの
の,比較鋼E10では全伸びが30%,均一伸びが20%であ
り,本発明鋼のものより劣っている。なお,曲げ加工性
については,いずれの鋼も密着まで曲げ加工が可能であ
るという結果が得られた。
The workability of the steels E01 to E10 of the present invention was also improved.
E08 and A1 to A7 all show an abnormal total elongation of 35% and a uniform elongation of 25% or more, and very good results are obtained. On the other hand, the comparative steel E09 is good, but the comparative steel E10 has a total elongation of 30% and a uniform elongation of 20%, which is inferior to that of the steel of the present invention. Regarding the bending workability, it was found that all steels can be bent to close contact.

【0070】さらに表6の高温特性試験の結果から,本
発明鋼はいずれも 0.2%耐力が 700℃で100 N/mm2
上, 900 ℃で13 N/mm2以上を示し, また破損繰り返し数
は 600℃(180N/mm2 ), 900℃(30 N/mm2)のいずれの場合
も107 サイクル以上の値を示しており, 高温強度と高温
疲労特性に優れることがわかる。
Further, from the results of the high-temperature property tests shown in Table 6, the steels of the present invention all exhibited 0.2% proof stress of 100 N / mm 2 or more at 700 ° C., 13 N / mm 2 or more at 900 ° C. Shows a value of 10 7 cycles or more in both cases of 600 ° C (180 N / mm 2 ) and 900 ° C (30 N / mm 2 ), demonstrating excellent high temperature strength and high temperature fatigue properties.

【0071】表7の結果は,本発明鋼は,加熱・冷却の
繰り返しおよび引張・圧縮の繰り返し応力を受けても,
母材および溶接部ともスケールの剥離が見られないこと
を示している。本発明鋼の熱疲労特性はCr量の高いSUS
430J1Lと同程度を示す。ただしSUS430J1Lは試験中にス
ケール剥離が生じた。同様に,比較鋼F14も熱疲労特性
は本発明鋼に比べると若干劣る程度であるが,Mnの添
加量が本発明範囲から外れるためにこのような厳しい試
験条件下ではスケール剥離を生じる。
The results in Table 7 show that the steel of the present invention was subjected to the repeated stress of heating / cooling and the repeated stress of tension / compression.
This shows that no peeling of the scale was observed in both the base material and the weld. The thermal fatigue characteristics of the steel of the present invention are SUS with high Cr content.
Shows the same level as 430J1L. However, scale peeling occurred during the test for SUS430J1L. Similarly, the comparative fatigue strength of the comparative steel F14 is slightly inferior to that of the steel of the present invention, however, scale detachment occurs under such severe test conditions because the amount of Mn added is out of the range of the present invention.

【0072】[0072]

【発明の効果】以上説明したように, 本発明によれば,
Cr量が比較的低いフエライト系ステンレス鋼にあっ
て,700℃〜950℃の高温で使用されかつ高温酸化特性お
よびスケール剥離量が重要視される排ガス管路部材とし
て十分に耐用できる安価な材料が提供され,特に自動車
エンジンのエキゾーストマニホールドを構成する材料或
いは火力発電システムの高温排ガス管路部材を構成する
材料として経済的にも特性的にも従来材に比べると優位
な材料が提供され, この分野の技術の進展に貢献するこ
とができる。
As described above, according to the present invention,
An inexpensive ferritic stainless steel with a relatively low Cr content that can be used at high temperatures of 700 ° C to 950 ° C and that can be sufficiently durable as an exhaust gas pipe member where high-temperature oxidation characteristics and the amount of scale peeling are important. In particular, a material that is superior to conventional materials in terms of economy and characteristics as a material for an exhaust manifold of an automobile engine or a material for a high-temperature exhaust gas pipe member of a thermal power generation system is provided. Technology development.

【図面の簡単な説明】[Brief description of the drawings]

【図1】1000℃の耐高温酸化性およびスケール密着性に
及ぼす鋼中のSi/Mn比の関係を示す図である。
FIG. 1 is a graph showing the relationship between the Si / Mn ratio in steel on the high-temperature oxidation resistance at 1000 ° C. and the scale adhesion.

【図2】破面遷移温度に及ぼす鋼中のCu量の影響を示
す図である。
FIG. 2 is a diagram showing the effect of the amount of Cu in steel on the fracture surface transition temperature.

【図3】引張試験における全伸びおよび均一伸びに及ぼ
す鋼中のCu量の影響を示す図である。
FIG. 3 is a view showing the effect of the amount of Cu in steel on the total elongation and uniform elongation in a tensile test.

【図4】大気雰囲気中で 930℃で 200時間連続加熱後の
酸化増量に及ぼす鋼中の (Cr+Mn+Si)の総量の影響
を示す図である。
FIG. 4 is a view showing the effect of the total amount of (Cr + Mn + Si) in steel on the increase in oxidation after continuous heating at 930 ° C. for 200 hours in an air atmosphere.

【図5】大気雰囲気中で 950℃で 200時間連続加熱後の
酸化増量に及ぼす鋼中の (Cr+Mn+Si)の総量の影響
を示す図である。
FIG. 5 is a view showing the effect of the total amount of (Cr + Mn + Si) in steel on the increase in oxidation after continuous heating at 950 ° C. for 200 hours in an air atmosphere.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−125491(JP,A) 特開 平4−228547(JP,A) 特開 昭60−13060(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 302 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-125491 (JP, A) JP-A-4-228547 (JP, A) JP-A-60-13060 (JP, A) (58) Field (Int. Cl. 6 , DB name) C22C 38/00 302

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%において, C:0.03%以下, Si:0.80%〜1.20%, Mn:0.60%〜1.50%, Cr:11.0%〜15.5%, Nb:0.20%〜0.80%, Ti:0.1%以下(無添加を含む), Cu:0.02%〜0.30%未満, N:0.03%以下, Al:0.05%以下(無添加を含む), O:0.012%以下, ただし,上記の範囲において, 0.7≦Mn/Si≦1.5 ・・・(1) 1221.6 (C+N)−55.1Si+65.7Mn−8.7Cr−99.5Ti
−40.4Nb+1.1Cu+54≦0 ・・・(3) の関係(1)および(3)を同時に満足するようにこれらの元
素を含有し,残部がFeおよび不可避的不純物からな
り,大気雰囲気下900℃で100時間連続加熱後の酸化増量
が0.02kg/m2以下でスケール剥離量が0.01kg/m2以下,同
1000℃で100時間連続加熱後の酸化増量が0.4kg/m2以下
でスケール剥離量が0.02kg/m2以下である耐高温酸化性
およびスケール密着性に優れたフエライト系ステンレス
鋼。
1. In mass%, C: 0.03% or less, Si: 0.80% to 1.20%, Mn: 0.60% to 1.50%, Cr: 11.0% to 15.5%, Nb: 0.20% to 0.80%, Ti: 0.1 % Or less (including no addition), Cu: 0.02% to less than 0.30%, N: 0.03% or less, Al: 0.05% or less (including no addition), O: 0.012% or less. ≤Mn / Si≤1.5 (1) 1221.6 (C + N) -55.1Si + 65.7Mn-8.7Cr-99.5Ti
-40.4Nb + 1.1Cu + 54 ≦ 0 ··· (3) Relationship (1) containing these elements so as to satisfy our and the (3) At the same time, the balance being Fe and unavoidable impurities, 900 under an air atmosphere After continuous heating at 100 ° C for 100 hours, the oxidation gain is 0.02 kg / m 2 or less, and the scale peeling amount is 0.01 kg / m 2 or less.
1000 ° C. for 100 hours high-temperature oxidation resistance scale peeling amount of oxidation weight gain is 0.4 kg / m 2 or less of after continuous heating is 0.02 kg / m 2 or less and scale adhesion excellent ferritic stainless steel.
【請求項2】 鋼は,内燃機関の排ガス管路を構成する
部材に加工されている請求項1に記載の耐高温酸化性お
よびスケール密着性に優れたフエライト系ステンレス
鋼。
2. The ferrite stainless steel according to claim 1, wherein the steel is processed into a member constituting an exhaust gas pipe of an internal combustion engine.
【請求項3】 内燃機関の排ガス管路を構成する部材
は,自動車エンジンに接続されたエキゾーストマニホー
ルドである請求項2に記載のフエライト系ステンレス
鋼。
3. The ferrite stainless steel according to claim 2, wherein the member constituting the exhaust gas line of the internal combustion engine is an exhaust manifold connected to an automobile engine.
JP10913494A 1993-04-27 1994-04-26 Ferrite stainless steel with excellent high-temperature oxidation resistance and scale adhesion Expired - Fee Related JP2896077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10913494A JP2896077B2 (en) 1993-04-27 1994-04-26 Ferrite stainless steel with excellent high-temperature oxidation resistance and scale adhesion

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP12211293 1993-04-27
JP5-122112 1993-04-27
JP12216293 1993-04-27
JP5-122162 1993-04-27
JP10913494A JP2896077B2 (en) 1993-04-27 1994-04-26 Ferrite stainless steel with excellent high-temperature oxidation resistance and scale adhesion

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP33141398A Division JP3710302B2 (en) 1993-04-27 1998-11-20 Ferritic stainless steel with excellent high-temperature oxidation resistance and scale adhesion

Publications (2)

Publication Number Publication Date
JPH0711394A JPH0711394A (en) 1995-01-13
JP2896077B2 true JP2896077B2 (en) 1999-05-31

Family

ID=27311408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10913494A Expired - Fee Related JP2896077B2 (en) 1993-04-27 1994-04-26 Ferrite stainless steel with excellent high-temperature oxidation resistance and scale adhesion

Country Status (1)

Country Link
JP (1) JP2896077B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140117506A (en) 2012-02-15 2014-10-07 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
US9885099B2 (en) 2012-03-09 2018-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233833B2 (en) * 1995-09-20 2001-12-04 新日本製鐵株式会社 Steel material excellent in high-density energy beam cutting property and method for producing the same
JP2002275590A (en) * 2001-03-14 2002-09-25 Nisshin Steel Co Ltd Ferritic stainless steel for welding having excellent workability in weld zone
JP5390175B2 (en) * 2007-12-28 2014-01-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent brazeability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140117506A (en) 2012-02-15 2014-10-07 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
US10030282B2 (en) 2012-02-15 2018-07-24 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
US9885099B2 (en) 2012-03-09 2018-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip

Also Published As

Publication number Publication date
JPH0711394A (en) 1995-01-13

Similar Documents

Publication Publication Date Title
JP5138504B2 (en) Ferritic stainless steel for exhaust gas flow path members
WO1991014796A1 (en) Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance
JP5141296B2 (en) Ferritic stainless steel with excellent high temperature strength and toughness
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
JP3468156B2 (en) Ferritic stainless steel for automotive exhaust system parts
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
KR100308401B1 (en) Ferritic stainless steel with excellent high temperature oxidation resistance and scale adhesion
JP2000303149A (en) Ferritic stainless steel for automotive exhaust system parts
JP3551892B2 (en) Heat resistant ferritic stainless steel and its steel plate
JP2004149916A (en) Ferritic steel sheet concurrently improved in formability, high-temperature strength, high-temperature oxidation resistance, and low-temperature toughness
JP2803538B2 (en) Ferritic stainless steel for automotive exhaust manifold
JP2896077B2 (en) Ferrite stainless steel with excellent high-temperature oxidation resistance and scale adhesion
JP7278079B2 (en) Cold-rolled stainless steel sheet, hot-rolled stainless steel sheet, and method for manufacturing hot-rolled stainless steel sheet
JP3915717B2 (en) Thin stainless steel sheet
JP3710302B2 (en) Ferritic stainless steel with excellent high-temperature oxidation resistance and scale adhesion
JPH0533104A (en) Heat resisting ferritic stainless steel excellent in heat resistance toughness at low temperature, and weldability
JPH0987809A (en) Hot rolled plate of chromium-containing austenitic stainless steel for automobile exhaust system material
JPH08239737A (en) Heat resistant austentic stainlss steel excellent in hot workability and sigma-embrittlement resistance
JP2942073B2 (en) Ferritic stainless steel for exhaust manifold with excellent high-temperature strength
JP2923825B2 (en) Ferritic stainless steel sheet for heat resistance with excellent high-temperature strength and weldability
JP3705391B2 (en) Nb-containing ferritic stainless steel with excellent low temperature toughness of hot-rolled sheet
JP2004018914A (en) Ferritic stainless steel with excellent high-temperature strength, high-temperature oxidation resistance and high-temperature salt damage resistance
JP6665936B2 (en) Ferritic stainless steel
JP2879630B2 (en) Ferrite heat-resistant stainless steel with excellent high-temperature salt damage properties

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees