JP2892747B2 - Tilt or height detection method and device, and projection exposure method and device - Google Patents

Tilt or height detection method and device, and projection exposure method and device

Info

Publication number
JP2892747B2
JP2892747B2 JP2045387A JP4538790A JP2892747B2 JP 2892747 B2 JP2892747 B2 JP 2892747B2 JP 2045387 A JP2045387 A JP 2045387A JP 4538790 A JP4538790 A JP 4538790A JP 2892747 B2 JP2892747 B2 JP 2892747B2
Authority
JP
Japan
Prior art keywords
information
pitch
light
height
interference fringe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2045387A
Other languages
Japanese (ja)
Other versions
JPH03249513A (en
Inventor
良忠 押田
哲三 谷本
稔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2045387A priority Critical patent/JP2892747B2/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to US07/623,438 priority patent/US5227862A/en
Priority to EP90906337A priority patent/EP0426866B1/en
Priority to KR1019900702643A priority patent/KR930011884B1/en
Priority to DE69027738T priority patent/DE69027738T2/en
Priority to PCT/JP1990/000520 priority patent/WO1990013000A1/en
Publication of JPH03249513A publication Critical patent/JPH03249513A/en
Priority to US07/936,661 priority patent/US5392115A/en
Priority to US08/315,841 priority patent/US6094268A/en
Application granted granted Critical
Publication of JP2892747B2 publication Critical patent/JP2892747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体回路パターン、液晶等表示デバイスパ
ターン、等微細パターンの投影露光装置に係り、特に、
露光領域全面を高解像度で露光可能とする被露光物体の
傾きと高さを検出する手段を具備した投影露光装置に関
する。
The present invention relates to a projection exposure apparatus for fine circuit patterns such as semiconductor circuit patterns, display device patterns such as liquid crystals, and in particular,
The present invention relates to a projection exposure apparatus provided with means for detecting a tilt and a height of an object to be exposed, which makes it possible to expose the entire exposure area with high resolution.

〔従来の技術〕[Conventional technology]

半導体集積回路の微細パターンの露光、或いはTFT(T
hin Film Transistor)液晶テレビに代表される表示デ
バイスの大視野パターン中の駆動回路パターンの露光等
では露光領域内全体に亘って線幅ばらつきの少ない、原
画に忠実なパターンを露光する必要がある。特に半導体
集積回路の分野では今後0.5μmパターン以下の線幅パ
ターンを15mm近い領域全面に露光する必要があるが、パ
ターンの微細化に伴ない、結像する範囲(焦点深度)は
±1μm以下となる。このため、パターン結像面にウエ
ハ上のフォトレジスト面を正確に一致させることが不可
欠となる。これを現実するにはウエハ表面(フォトレジ
スト表面)の露光領域における傾きと高さを正確に検出
することが必要となる。
Exposure of fine patterns of semiconductor integrated circuits or TFT (T
When exposing a drive circuit pattern in a large-field pattern of a display device typified by a liquid crystal television or the like, it is necessary to expose a pattern faithful to the original image with a small line width variation over the entire exposure area. In the field of semiconductor integrated circuits, in particular, it is necessary to expose a line width pattern of 0.5 μm or less over the entire area close to 15 mm in the future, but as the pattern becomes finer, the imaging range (depth of focus) is ± 1 μm or less. Become. For this reason, it is essential to make the photoresist surface on the wafer exactly coincide with the pattern image plane. In order to realize this, it is necessary to accurately detect the inclination and the height in the exposure area of the wafer surface (photoresist surface).

従来特開昭63−7626号公報で示されている第1の公知
例では半導体レーザをウエハ表面上に斜め方向から集光
し、その集光位置を検出することにより高さを検出して
いる。またこの公知例ではウエハの多層構造に伴う多重
反射に対し、3波長の半導体レーザを用いて対応し、集
光位置を斜め入射方向と直角方向に変え、ウエハ上の異
なる場所の高さを求めている。本公知例は高さの検出を
主にしており、斜め入射方向と直角方向に場所を変え測
定し、傾きを検出することも可能であるが、直径20mm程
度の狭い領域の2ケ所を測定しても傾きの正確な値は得
にくい。それは本公知例で高さ検出を高精度に実現する
にはウエハ上の集光を充分に、即ち集光径をできるだけ
小さくする必要があるが、集光径を小さくするには集光
ビームの集光角(主光線に対する集光束の最外光線の
角)を大きくする必要があり、この結果主光線の入射角
度は小さくせざるを得ない。この角度を小さくする(ウ
エハ面に垂直な線からの角度が小さくなる)とウエハの
多層構造に伴なう多重干渉の影響は大きくなる。本公知
例ではこの課題に対し3波長を用いているが、それぞれ
の波長に対しては干渉の影響を受けており、根本的な課
題解決とならない。
In the first known example shown in Japanese Patent Application Laid-Open No. 63-7626, a semiconductor laser is focused on a wafer surface in an oblique direction, and the height is detected by detecting the focused position. . In this known example, the multiple reflections associated with the multilayer structure of the wafer are dealt with using a three-wavelength semiconductor laser, and the condensing position is changed to the oblique incidence direction and the direction perpendicular to the wafer, and the heights of different places on the wafer are obtained. ing. In this known example, the height is mainly detected, it is possible to measure by changing the location in the oblique incident direction and the direction perpendicular to the direction, and it is also possible to detect the inclination, but two places in a narrow area of about 20 mm in diameter are measured. However, it is difficult to obtain an accurate value of the inclination. In this known example, in order to realize height detection with high accuracy, it is necessary to sufficiently condense light on the wafer, that is, it is necessary to make the converging diameter as small as possible. It is necessary to increase the converging angle (the angle of the outermost ray of the converging beam with respect to the principal ray). As a result, the incident angle of the principal ray has to be reduced. When this angle is reduced (the angle from a line perpendicular to the wafer surface is reduced), the influence of multiple interference accompanying the multilayer structure of the wafer increases. In this known example, three wavelengths are used for this problem. However, each wavelength is affected by interference and does not solve the fundamental problem.

また従来の傾き検出の方法として特開昭63−199420号
公報で示されている第2の公知例では投影レンズを通し
て露光波長と異なる傾き検出光を照射し、反射光を集光
し、集光位置から傾きを検出しているが、ウエハにほぼ
垂直或いは浅い角度で入射させるため後述の理由から下
地からの反射光との干渉の影響が無視できなくなり、正
確な検出は困難となる。
In a second known example of a conventional tilt detection method disclosed in JP-A-63-199420, a tilt detection light having a wavelength different from the exposure wavelength is irradiated through a projection lens, and reflected light is collected. Although the inclination is detected from the position, the light is incident on the wafer at a substantially perpendicular or shallow angle, so that the influence of interference with the reflected light from the base cannot be ignored for the reasons described below, and accurate detection becomes difficult.

更に従来の多層構造物体に対する高さ検出の方法とし
て特開昭63−247741号公報で示される第3の公知例では
下地膜からの反射光を別々に分離しているが、このよう
な方法は半導体回路作成のプロセスに登場する薄い膜に
対して実行困難である。
Further, as a conventional method for detecting a height of a multi-layer structure object, in a third known example disclosed in Japanese Patent Application Laid-Open No. 63-247741, light reflected from a base film is separated separately. It is difficult to perform on thin films that appear in the process of making semiconductor circuits.

またLSIの露光工程の後段、例えば配線パターンの露
光工程になると、ウエハ表面の凹凸は大きくなり、この
上に塗布されたフォトレジストももともとのウエハ表面
の凹凸程ではないが、かなりの凹凸を持つようになる。
このような構造に上述の従来の方式を適用すると、凹凸
のあるフォトレジストのどの部分の傾きや高さを計測し
ているか分からなくなり、従って精度が悪くなる。
Also, in the later stage of the LSI exposure process, for example, in the exposure process of the wiring pattern, the unevenness of the wafer surface becomes large, and the photoresist applied thereon has considerable unevenness, although not as large as the original wafer surface. Become like
When the above-described conventional method is applied to such a structure, it is difficult to know which part of the photoresist having irregularities is measuring the inclination and height, and thus the accuracy is deteriorated.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は露光領域内の傾きと高さの情報を、半
導体回路パターンを有するウエハ等多層構造に対し、正
確に得ると言う点について配慮されておらず、今後の0.
5μm以下の回路パターン露光に要求される高精度の傾
き及び高さ制御に対して問題があった。
The above prior art does not consider that information on the inclination and height in the exposure area is accurately obtained for a multilayer structure such as a wafer having a semiconductor circuit pattern.
There is a problem with the high-precision tilt and height control required for circuit pattern exposure of 5 μm or less.

本発明の目的は上記従来の課題を解決し、半導体プロ
セスのいかなるウエハに対しても露光領域におけるフォ
トレジスト表面の傾きと高さを正確に検出し、常に結像
面にレジスト表面或いはその近傍の最適位置に合せ、線
幅ばらつきの少ない高解像のパターンを露光する投影露
光装置を提供することにある。
An object of the present invention is to solve the above-mentioned conventional problems, accurately detect the inclination and height of a photoresist surface in an exposure region for any wafer in a semiconductor process, and always provide an image-forming surface with a resist surface or a vicinity thereof. An object of the present invention is to provide a projection exposure apparatus that exposes a high-resolution pattern with a small line width variation in accordance with an optimum position.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために本発明においては、可干渉
光源より出射した光を平行な照明光とし、ウエハ上のフ
ォトレジスト表面上にある投影光学系の露光領域に斜め
から入射角θで照射し、反射光と、上記光源から出射し
た光を分離して作った参照光をパターン検出器上で互に
所望の角度を付けて入射させ得られる干渉縞を検出す
る。この干渉縞ピッチと位相の変化からウエハ上のフォ
トレジスト表面の傾きと高さの変化を求めることが可能
となる。また入射角度を85゜以上にすることは平行光束
を用いている本発明では容易であり、入射角が大きいた
めフォトレジスト表面での反射が大部分となり、下地の
層構造の各層での反射に伴ない、発生する干渉の影響は
ほとんど無視できるようになる。またフォトレジスト入
射光をS偏光とすれば表面での反射が更に大きくなり精
度が向上する。
In order to achieve the above object, in the present invention, the light emitted from the coherent light source is made into parallel illumination light, and the light is irradiated from an oblique angle to the exposure area of the projection optical system on the photoresist surface on the wafer. Then, the reflected light and the reference light generated by separating the light emitted from the light source are incident on the pattern detector at a desired angle to each other, and the interference fringes obtained are detected. From the change in the interference fringe pitch and phase, it is possible to determine the change in the inclination and height of the photoresist surface on the wafer. In addition, it is easy to make the incident angle 85 ° or more in the present invention using a parallel light beam.Because the incident angle is large, the reflection on the photoresist surface becomes the majority, and the reflection on each layer of the underlying layer structure is Accordingly, the influence of the generated interference can be almost ignored. If the photoresist incident light is S-polarized light, the reflection on the surface is further increased, and the accuracy is improved.

また上記フォトレジスト表面で反射した光を平面鏡に
垂直に入射し、反射した光を再びフォトレジスト表面に
入射させ、この反射光を物体光として干渉パターンの情
報を得ればウエハの傾きや高さの検出を2倍の感度で実
行することが可能となり、更に精度の高い検出が可能と
なる。
Also, the light reflected on the photoresist surface is vertically incident on the plane mirror, and the reflected light is again incident on the photoresist surface. If the reflected light is used as the object light to obtain information on the interference pattern, the tilt and height of the wafer are obtained. Can be performed with twice the sensitivity, and more accurate detection can be performed.

また、上記参照光をフォトレジストの照射光および物
体光(反射光)と実効的にほぼ同一の方向に進み且つほ
ぼ同一の領域を通過するごとく構成することにより、各
光路は空気のゆらぎ等外乱を同じように受け、周囲環境
の変化の影響を受けにくい傾きおよび高さ検出が可能と
なる。
Further, by configuring the reference light so as to effectively travel in substantially the same direction as the irradiation light of the photoresist and the object light (reflected light) and pass through the substantially same area, each optical path is affected by disturbance such as air fluctuation. In the same manner, it is possible to detect a tilt and a height that are not easily affected by changes in the surrounding environment.

また得られた干渉縞の情報を高速フーリェ変換し、そ
の結果である縞のスペクトル近傍の情報から傾きΔθと
高さΔZを求めれば、実時間と看做せる程度に高速にΔ
θ,ΔZが求まる。またこの時フォトレジスト照射位置
がパターン検出手段であるアレイセンサ受光面と光学的
に共役(結像)な関係にあれば、ウエハ上の所望の領域
のみの情報を選び出し、その部分の傾きと高さを求める
ことが可能となる。
Further, if the obtained information on the interference fringes is subjected to a fast Fourier transform, and the slope Δθ and the height ΔZ are obtained from the information near the spectrum of the resulting fringes, the ΔΔ can be determined as fast as real time.
θ and ΔZ are obtained. At this time, if the photoresist irradiation position is in an optically conjugate (image-forming) relationship with the array sensor light-receiving surface as the pattern detecting means, information of only a desired region on the wafer is selected, and the inclination and height of that portion are selected. Can be obtained.

本発明においては、露光工程の後段で発生する比較的
大きなフォトレジスト表面の凹凸に対し、入射角を大き
くすることにより、レジストの高い部分に光を照射し、
凹の部分は凸部分の影とすることにより、干渉縞検出へ
の寄与を少くしている。この結果、本発明においては凸
部の上面を検出することになり、従来の方式では不確定
であった検出面を明確にしている。従って正しくレジス
ト表面の位置が検出できる。またこのように凹凸の大き
い被測定物になると凸面の上面の面積が反射光の強度に
影響を与える。この結果被測定面の場所により凸面の上
面の面積比が大きい所では巨視的に見て反射光量が大き
くなるため、アレイセンサ受光面で参照光との間で生じ
る干渉縞の分布が一様でなくなる。即ち上述のごとく、
被測定物とアレイセンサがほぼ共役な位置関係にある
時、被測定面の凸面の上面の面積比が大きい部分には干
渉縞の振幅は大きく、逆に上記面積比が小さい部分は振
幅は小さくなる。この結果このような振幅が場所により
異なる干渉縞をフーリェ変換し、その縞ピッチに相当す
るスペクトル情報から傾きと高さを求めると、精度が低
下することになる。このような対象に対し、本発明にお
いては、参照光を重畳させない、被測定物からの反射光
のみのパターンの強度分布を上述のアレイセンサで検出
しておき、この情報を用いて上記の干渉縞のパターン情
報を補正しその後にフーリェ変換を行なう。このように
すれば補正された干渉縞パターンは場所によらずほぼど
の場所でも同じ振幅となり、スペクトル情報から正確に
傾きと高さを求めることができるようになる。
In the present invention, for a relatively large unevenness of the photoresist surface generated in the later stage of the exposure step, by increasing the incident angle, by irradiating a high portion of the resist with light,
By making the concave portion a shadow of the convex portion, the contribution to interference fringe detection is reduced. As a result, in the present invention, the upper surface of the convex portion is detected, and the detection surface which is uncertain in the conventional method is clarified. Therefore, the position of the resist surface can be correctly detected. Further, in the case of an object to be measured having large irregularities, the area of the upper surface of the convex surface affects the intensity of the reflected light. As a result, when the area ratio of the upper surface of the convex surface is large depending on the location of the surface to be measured, the amount of reflected light increases macroscopically, so that the distribution of interference fringes generated with the reference light on the light receiving surface of the array sensor is uniform. Disappears. That is, as described above,
When the object to be measured and the array sensor have a substantially conjugated positional relationship, the amplitude of the interference fringes is large where the area ratio of the upper surface of the convex surface of the surface to be measured is large, and the amplitude is small where the area ratio is small. Become. As a result, if the interference fringes having different amplitudes at different locations are subjected to Fourier transform, and the slope and height are obtained from the spectral information corresponding to the fringe pitch, the accuracy will decrease. With respect to such an object, in the present invention, the reference light is not superimposed, the intensity distribution of the pattern of only the reflected light from the object to be measured is detected by the above-described array sensor, and the interference is determined using this information. The stripe pattern information is corrected, and then Fourier transform is performed. In this way, the corrected interference fringe pattern has the same amplitude at almost any location regardless of the location, and the slope and height can be accurately obtained from the spectrum information.

〔作用〕[Action]

上記のパターン検出器で得られる干渉縞の情報はピッ
チと位相の情報を有するため、傾きと高さの情報が同時
に得られる、しかも入射角度を85゜以上にするとフォト
レジスト表面での反射が大きくなり、フォトレジスト表
面の傾きや高さが正確に同時に求まる。
Since the information of the interference fringes obtained by the above pattern detector has the information of the pitch and the phase, the information of the inclination and the height can be obtained at the same time, and when the incident angle is set to 85 ° or more, the reflection on the photoresist surface becomes large. That is, the inclination and height of the photoresist surface can be accurately and simultaneously determined.

更に前述したごとく露光工程の後段でフォトレジスト
の凹凸が大きいウエハに対し、被測定物からの反射光の
みを検出し、この検出強度分布のデータを補正値として
用いることにより、レジスト表面の凸部の上面を主にそ
の高さと傾きが正確に求まる。この作用を以下に詳しく
説明する。今もし第10図のようにウエハ4の断面構造が
Si基板43の上に比較的大きな段差を持つ凹凸の42の層が
重なっていると、この上に塗布したフォトレジスト41
は、42の凹凸の層の段差に比べれば小さいが、凹凸の段
差が残る。このような凹凸のフォトレジスト表面に垂直
線に対して入射角度が85゜以上(例えば88゜)の平行レ
ーザビームを照射すると、第10図で斜線で示した部分の
みが正反射し、それ以外の部分であるビームは第11図に
第10図の拡大図として示すように、A1,B1,C1の光線に示
すように正反射光の方向とは異なる方向に散乱的に反射
する。この結果後述するように正反射光のみを取り出す
検出系にはA1,B1,C1の光線のように凸部の上面以外に当
る光は到達しない。このように凹凸部分から成る断面構
造の場合凸部の上面の面積にほぼ比例した強度の光が検
出器に達する。
Further, as described above, in the latter stage of the exposure step, only the reflected light from the object to be measured is detected on the wafer having large unevenness of the photoresist, and the data of the detected intensity distribution is used as a correction value, so that the convex portion on the resist surface is obtained. The height and inclination of the upper surface of the surface are accurately determined. This operation will be described in detail below. Now, if the cross-sectional structure of the wafer 4 is
When a layer of unevenness 42 having a relatively large step overlaps the Si substrate 43, the photoresist 41
Is smaller than the step of the 42 uneven layer, but the uneven step remains. When a parallel laser beam having an incident angle of 85 ° or more (for example, 88 °) with respect to a vertical line is irradiated on the photoresist surface having such irregularities, only the hatched portions in FIG. 10 are specularly reflected. As shown in the enlarged view of FIG. 10 in FIG. 11, the beam which is a part is scatteredly reflected in a direction different from the direction of the specularly reflected light as shown by the rays of A 1 , B 1 , C 1 . As a result, as will be described later, light hitting other than the upper surface of the convex portion, such as the light beams A 1 , B 1 , and C 1 , does not reach the detection system that extracts only regular reflection light. As described above, in the case of the cross-sectional structure including the concave and convex portions, light having an intensity substantially proportional to the area of the upper surface of the convex portion reaches the detector.

しかも、ウエハ面とアレイセンサの受光面はほぼ共役
な関係になっているので、結局断面構造が、ほとんど平
坦か、あるいは凹凸があっても凸の上面の面積比が大き
い部分に対応する所の強度が大きく、その逆は小さくな
る。その結果被測定物からの反射光のアレイセンサ上で
の強度分布Oxは例えば第5図のように場所によりレベル
が異なって来る。このような分布の光と、第6図のよう
に一定レベルの参照光Rxが干渉すると、第7図に示すよ
うに干渉縞の強度Ixの縞の振幅は場所により異なって来
る。以上説明した現象を更に理論的、定量的に説明す
る。アレイセンサに入射する被測定物からの反射光の強
度をOx、入射角をα、他方参照光の強度をRx、入射角
を−α(マイナスはアレイセンサ面の法線に対し、被
測定物からの反射光と逆の側に傾いていることを示す)
とし、これら両光がX方向に傾いていると、X方向に変
化する縞を検出する。得られる干渉縞強度Ix(X)は ここでλは検出光の波長であり、Δθは被測定物の傾き
であり、nは後述する被測定物での反射の回数であり、
mは検出光学系の結像倍率である。φ(Z)は高さの変
化に伴なう位相変化である。(1)式はΔθ<<α
<1よりn=1の時次のようになる。
In addition, since the wafer surface and the light receiving surface of the array sensor are in a substantially conjugate relationship, the cross-sectional structure eventually corresponds to a portion that is almost flat or has a large area ratio of the convex upper surface even if it has irregularities. The strength is high and vice versa. As a result, the level of the intensity distribution Ox of the reflected light from the measured object on the array sensor varies depending on the location as shown in FIG. 5, for example. When the light having such a distribution interferes with the reference light Rx at a fixed level as shown in FIG. 6, the amplitude of the interference fringe intensity Ix varies from place to place as shown in FIG. The phenomenon described above will be further described theoretically and quantitatively. The intensity of the reflected light from the object to be measured incident on the array sensor is Ox, the incident angle is α 1 , and the intensity of the reference light is Rx, and the incident angle is −α 1. (Indicates that it is tilted to the opposite side of the reflected light from the object)
If these two lights are inclined in the X direction, a stripe that changes in the X direction is detected. The obtained interference fringe intensity Ix (X) is Here, λ is the wavelength of the detection light, Δθ is the inclination of the object, n is the number of reflections on the object to be described later,
m is the imaging magnification of the detection optical system. φ (Z) is a phase change accompanying a change in height. Equation (1) is Δθ << α 1 <<
<1 When n = 1, the following is obtained.

もし、Ox,RxがXに依らず一定値を取るならば
(1)′式で与えられる検出信号をフーリェ変換するこ
とにより得られるフーリェスペクトルの縞周期に対応す
るスペクトルピーク位置とその近傍のデータを用いて、
Δθとφ(Z)の値を求めることが可能となる。しかし
一般にはOx,Rxは一定ではなく、特に前述したようにウ
エハのレジスト表面の凹凸の状況が場所により異なる場
合には第5図のようにOxが変化する。第5図のOxに対
し、仮に参照光の分布Rxが第6図に示すように一定値Rc
であっても(1)′式で与えられる干渉縞強度は第7図
のように場所により縞の振幅が異る。このような振幅変
化があるとIxのフーリェ変換は第9図の|F〔Ix〕|に示
すようにピーク値のまわりで拡がりを持ち、本来の縞周
期(傾き)や位相(高さ)の情報がかくれ、精度が低下
してしまう。
If Ox and Rx take constant values irrespective of X, the spectral peak position corresponding to the fringe period of the Fourier spectrum obtained by Fourier transforming the detection signal given by equation (1) 'and data in the vicinity thereof Using,
The values of Δθ and φ (Z) can be obtained. However, in general, Ox and Rx are not constant. In particular, as described above, when the unevenness of the resist surface of the wafer differs depending on the location, Ox changes as shown in FIG. Assuming that the reference light distribution Rx is a constant value Rc as shown in FIG.
However, the interference fringe intensity given by the expression (1) 'has a different fringe amplitude depending on the location as shown in FIG. With such an amplitude change, the Fourier transform of Ix has a spread around the peak value as shown by | F [Ix] | in FIG. 9, and the original fringe period (slope) and phase (height) Information is hidden and accuracy is reduced.

そこで干渉縞の検出に先立ち、参照光を遮光してお
き、被測定物からの反射光のみを同一の検出系で検出し
ておく。この値は当然Oxとなる。また第6図の例のよう
にRx=Rcでない場合、例えばRxが第14図のような場合に
は参照光のみの強度分布Rxを測定しておく。この2つの
測定値(Ox,Rx)又はRx=Rcの場合には1つの測定値(O
x)を補正値として、次の補正演算を行ない、補正信号I
cxを導出する。
Therefore, prior to the detection of interference fringes, the reference light is shielded, and only the reflected light from the measured object is detected by the same detection system. This value is naturally Ox. When Rx is not equal to Rc as in the example of FIG. 6, for example, when Rx is as shown in FIG. 14, the intensity distribution Rx of only the reference light is measured. These two measured values (Ox, Rx) or, if Rx = Rc, one measured value (Ox, Rx)
x) is used as a correction value, and the following correction operation is performed to obtain a correction signal I
Derive cx.

Ixは(1)式で与えられるから が求まる。この補正信号Icxをフーリェ変換すれば、第
9図の|F〔Icx〕|に示すように、ピーク値のまわりの
拡がりがなくなり、純粋な三角関数の鋭いスペクトルが
得られ、正確に傾きと高さが求まる。
Since Ix is given by equation (1) Is found. If the correction signal Icx is Fourier-transformed, as shown in | F [Icx] | in FIG. 9, the spread around the peak value is eliminated, and a sharp spectrum of a pure trigonometric function is obtained, and the slope and the height are accurately determined. Is found.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be described specifically with reference to examples.

第1図は本発明の一実施例である。本実施例では半導
体露光装置の露光チップに本発明の傾き及び高さ検出を
適用したものである。9はウエハ4に回路パターンを露
光するために用いるパターン原版が描画されたレチクル
である。このレチクル9には露光照明系81より水銀ラン
プ(図示せず)から出射したg線やi線或いはエキシマ
レーザーより出射した遠紫外光が照射される。レチクル
を透過した光は縮小レンズ8を透過することにより、ウ
エハステージ7上に固定されたウエハ4に塗布されたレ
ジストの表面上にレチクルの像として投射される。ウエ
ハ4上に描画されるパターンがサブミクロン、ハーフミ
クロン、更には0.3μm前後と細くなるのに伴ない焦点
深度は浅くなり、線幅が0.5μm以下になると傾きと高
さをそれぞれ±10-5rad,±0.1μm以内の精度で検出・
制御しないと、製品歩留りが低下する。第1図の100Xは
ウエハ上のレジスト表面のx方向の水平度、即ちy軸を
軸とする回転に伴う傾きと、高さを求める検出系であ
る。第1図には100Xと同様にy方向の水平度を検出する
100Yは省略している。1は半導体レーザ、或いはガスレ
ーザ等の指向性の高い光源であり、この光源を出射した
光はほぼ平行で所望の広がりを持たせた状態でビームス
プリッタ10により2分する。2分した一方の光16はビー
ムスプリッタ12,ミラー13を経由してウエハ4のレジス
ト表面に垂直線に対して85゜以上の入射角でかつS偏光
で照射する。レジストはこの照射光に対し、透明である
が、入射角が大きく、S偏光であるため、90%近い光は
レジスト内部に入らず直接反射し、折返しミラー14にほ
ぼ垂直に入射する。折返された光26′は往路と同一で逆
方向の光路を辿り、ビームスプリッタで反射され検出光
路に向う光26″になる。他方ビームスプリッタ10で分離
されたもう一方のビーム17は参照光として用いられる。
ビーム17はシャッタ(遮光手段)330により所望のタミ
イングでON−OFFされる。シャッタ330がON状態になると
参照光はビームスプリッタ12とミラー13を通過して、直
接折返しミラー14に垂直に入射する。折返されたビーム
27′は往路と同一で逆方向の光路を辿り、ビームスプリ
ッタ12で反射され検出光路に向う光27″になる。検出光
路に向う2つの上記ビーム26″と27″はレンズ21,22及
びノイズ除去用のピンホール或いは微小矩形開口を有す
る遮光板23を通り、アレイセンサ3上にそれぞれほぼ平
行の状態で重畳される。アレイセンサ3上には第2図及
び第3図の実線で示されるような干渉縞が発生し、この
強度分布Ixがアレイセンサ3で検出される。ウエハ4の
平行度が悪かったり、或いは各種工程を経るに伴いウエ
ハが反ることにより、ステップアンドリピートでウエハ
4をチップ或いは複数チップ単位で露光していくと、縮
小レンズの結像面とレジスト表面が傾き及び高さの点で
一致しなくなるので、上記のアレイセンサ3の検出情報
を元に下記の方法により、この傾きおよび高さを処理回
路5で検出し、この検出情報をもとにしてウエハステー
ジ7に具備された、ステージ制御機構(例えばピエゾ或
いはメカニカル微動機構により)を制御して、結像画と
レジスト表面を一致させ、露光する。なお第1図で800
は重ね露光に用いるアライメント系である。
FIG. 1 shows an embodiment of the present invention. In this embodiment, the tilt and height detection of the present invention is applied to an exposure chip of a semiconductor exposure apparatus. Reference numeral 9 denotes a reticle on which a pattern original used for exposing a circuit pattern on the wafer 4 is drawn. The reticle 9 is irradiated with g-rays or i-rays emitted from a mercury lamp (not shown) from the exposure illumination system 81 or far ultraviolet light emitted from an excimer laser. The light transmitted through the reticle is transmitted as a reticle image onto the surface of the resist applied to the wafer 4 fixed on the wafer stage 7 by transmitting through the reduction lens 8. The depth of focus becomes shallower as the pattern drawn on the wafer 4 becomes submicron, half micron, and further around 0.3 μm. When the line width becomes 0.5 μm or less, the inclination and height are respectively ± 10 −. Detection with accuracy within 5 rad, ± 0.1μm
If not controlled, product yield will decrease. Reference numeral 100X in FIG. 1 is a detection system for obtaining the horizontality of the resist surface on the wafer in the x direction, that is, the inclination and the height accompanying the rotation around the y axis. In FIG. 1, the horizontality in the y direction is detected similarly to 100X.
100Y is omitted. Reference numeral 1 denotes a light source having a high directivity such as a semiconductor laser or a gas laser. The light emitted from the light source is split into two by a beam splitter 10 in a state of being substantially parallel and having a desired spread. One of the two split lights 16 is applied to the resist surface of the wafer 4 through the beam splitter 12 and the mirror 13 at an incident angle of 85 ° or more with respect to a vertical line and with S-polarized light. Although the resist is transparent to this irradiation light, the incident angle is large and the light is S-polarized, so that nearly 90% of the light is directly reflected without entering the inside of the resist, and is incident on the turning mirror 14 almost perpendicularly. The folded light 26 'follows the same optical path as the outward path and travels in the opposite direction, and becomes light 26 "reflected by the beam splitter and directed to the detection optical path. On the other hand, the other beam 17 separated by the beam splitter 10 is used as reference light. Used.
The beam 17 is turned on and off by desired shuttering by a shutter (light blocking means) 330. When the shutter 330 is turned on, the reference light passes through the beam splitter 12 and the mirror 13 and directly enters the turning mirror 14 vertically. Folded beam
27 'follows the same optical path as the outward path but in the opposite direction, and becomes light 27 "reflected by the beam splitter 12 and directed to the detection optical path. The two beams 26" and 27 "directed to the detection optical path are formed by the lenses 21, 22 and noise. The light passes through a light-shielding plate 23 having a pinhole or a small rectangular opening for removal and is superimposed on the array sensor 3 in a substantially parallel state, as shown by solid lines in FIGS. Such an interference fringe is generated, and this intensity distribution Ix is detected by the array sensor 3. If the parallelism of the wafer 4 is poor or the wafer warps as it goes through various processes, the wafer 4 is step-and-repeat. Is exposed in units of chips or a plurality of chips, since the image plane of the reduction lens and the resist surface do not coincide with each other in terms of inclination and height, the following method is used based on the detection information of the array sensor 3 described above. , The inclination and height are detected by the processing circuit 5, and based on the detected information, a stage control mechanism (for example, a piezo or mechanical fine movement mechanism) provided on the wafer stage 7 is controlled to obtain an image and an image. After aligning the resist surface, exposure is performed, and in FIG.
Is an alignment system used for overlay exposure.

第2図、第3図は第1図の実施例でアレイセンサ3で
検出される信号であり、それぞれの図面で実線で示され
ている信号Ixは傾き及び高さが最適露光状態でのもので
ある。ウエハ4が最適露光状態からずれ傾くと、第2図
の点線のように縞のピッチがPからP′に変化する。又
ウエハが最適露光位置から高さ方向にずれると、第3図
の点線のように位相φzが変化する。この傾きと高さの
変化に伴なう干渉縞のピッチPと位相φzは(1)式で
n=2を入れればcosαより、 が成り立つ。但しθはウエハへの入射角、φsは位相
の初期定数である。
2 and 3 show signals detected by the array sensor 3 in the embodiment of FIG. 1. In each drawing, a signal Ix indicated by a solid line is a signal whose inclination and height are optimally exposed. It is. When the wafer 4 is deviated and tilted from the optimum exposure state, the pitch of the stripe changes from P to P 'as shown by the dotted line in FIG. When the wafer is shifted from the optimum exposure position in the height direction, the phase φz changes as shown by the dotted line in FIG. If the pitch P and the phase φz of the interference fringes accompanying the change in the inclination and the height are n = 2 in the equation (1), then cos α 1 Holds. However theta 1 is an incident angle to the wafer, .phi.s is the initial constant phase.

第4図は本発明の第1図の処理回路5の一部分51であ
り、本発明の一実施例を示したものである。第1図のア
レイセンサ3で検出され、A/D変換回路31でA/D変換され
た干渉縞のディジタル情報Ixは第4図に示す501のメモ
リ1に一旦格納される。この干渉縞の検出に先立ち、ウ
エハ4がステージ7に搬入され、露光を始める前に、第
1図のシャッタ(遮光手段)330を閉じ、参照光17を遮
光して、ウエハ4からの反射光26のみをアレイセンサ3
で検出しておく。この信号Oxは干渉縞の検出と同様にA/
D変換回路31でA/D変換されディジタル情報の形で第4図
に示す502のメモリ2に格納されている。前述したごと
くウエハ4上のレジストの表面の拡大図が第10図のよう
な凹凸形状であると、入射角θ(85゜以上の例えば88
゜)で入射した光のうち正反射光に寄与するのは凸部分
の上面であり、第10図の拡大図の斜線でハッチングした
ビームが正反射光となる。この凸部の上面の面積が小さ
くなると、このような凹凸構造部分からの反射光による
アレイセンサ3上の像は暗くなる。他方凹凸が小さい部
分或いは凹凸の凸部上面の面積の大きな部分に相当する
アレイセンサ3上の像は明るくなり、結果として、第5
図に示すようなウエハ4からの反射光像Oxがアレイセン
サ3上に形成される。上述したごとく、第1図に示すシ
ャッタ330を閉じることにより、このOxを検出できるの
で、この情報をメモリ2の502に記憶しておく。スチェ
ップアンドリピートでウエハ4を移動し露光を繰返す際
に、露光に先がけ、アレイセンサ3で干渉縞を検出する
と、参照光17の分布が第6図の様に一様であれば第7図
のような干渉縞Ixが検出され、第4図のメモリ1の501
に格納される。そこでこの2つの情報IxとOxを各メモリ
501及び502から取り出し演算手段1の503で下記の演算
を行い、補正干渉波形Icxを導出する。
FIG. 4 shows a part 51 of the processing circuit 5 of FIG. 1 of the present invention, showing one embodiment of the present invention. The digital information Ix of the interference fringes detected by the array sensor 3 in FIG. 1 and A / D converted by the A / D conversion circuit 31 is temporarily stored in the memory 1 501 shown in FIG. Prior to the detection of the interference fringes, before the wafer 4 is carried into the stage 7 and exposure is started, the shutter (light shielding means) 330 shown in FIG. 1 is closed, the reference light 17 is shielded, and the reflected light from the wafer 4 is reflected. Array sensor 3 for 26 only
Detect in advance. This signal Ox is A / A
The data is A / D converted by the D conversion circuit 31 and stored in the memory 2 of 502 shown in FIG. 4 in the form of digital information. As described above, if the enlarged view of the surface of the resist on the wafer 4 has a concavo-convex shape as shown in FIG. 10, the incident angle θ 1 (for example, 88
Among the light incident in (i), the light contributing to the specularly reflected light is the upper surface of the convex portion, and the beam hatched with oblique lines in the enlarged view of FIG. 10 is the specularly reflected light. When the area of the upper surface of the convex portion is reduced, the image on the array sensor 3 due to the reflected light from the concave-convex structure portion becomes dark. On the other hand, an image on the array sensor 3 corresponding to a portion having a small unevenness or a large area of the upper surface of the convex portion of the unevenness becomes bright.
A reflected light image Ox from the wafer 4 as shown in the figure is formed on the array sensor 3. As described above, this Ox can be detected by closing the shutter 330 shown in FIG. 1, and this information is stored in the memory 502. When the wafer 4 is moved in a step-and-repeat manner and the exposure is repeated, interference fringes are detected by the array sensor 3 prior to the exposure. If the distribution of the reference light 17 is uniform as shown in FIG. An interference fringe Ix as shown in the figure is detected, and 501 in the memory 1 in FIG.
Is stored in Therefore, these two information Ix and Ox are stored in each memory
The following calculation is performed by the 503 of the calculation means 1 taking out from 501 and 502 to derive a corrected interference waveform Icx.

但し、参照光の強度はほぼ一定値Rcになっている。こ
のようにして得られたIcxは第8図のように最早基本周
波数以外の成分は大幅に少なくなる。この結果この信号
を高速フーリエ変換手段504で高速フーリェ変換(FFT)
して得られる信号|F〔Icx〕|は第9図の実線に示すご
とく、補正前の信号のFFT|F〔Ix〕|に比べ基本周波数
の純粋なスペクトルが得られることになり、このスペク
トル情報から後述する方法により処理回路5内の演算手
段2の505で非常に精度の高い傾きと高さの情報(Δ
θ,ΔZ)が求められる。
However, the intensity of the reference light has a substantially constant value Rc. In the Icx obtained in this manner, components other than the fundamental frequency are greatly reduced as shown in FIG. As a result, this signal is subjected to fast Fourier transform (FFT) by the fast Fourier transform means 504.
As shown by the solid line in FIG. 9, the signal | F [Icx] | obtained as a result has a pure spectrum of the fundamental frequency compared to the FFT | F [Ix] | of the signal before correction. From the information, a very accurate slope and height information (Δ
θ, ΔZ) are obtained.

第12図は本発明の一実施例である。第1図と同一部品
番号は同一物を表わす。第12図で透過形グレーティング
18にほぼ平行光束で照射されたレーザ光はウエハ4に照
射される光16′と参照光17′に分離される。それぞれの
光は光シャッタ330′により遮光される。即ち第12図に
示す状態にシャッタ330′がある時は干渉縞がアレイセ
ンサ3で検出されているが、シャッタ330′が右に移動
し、開口Aoが第12図のARの位置と重なるとウエハ照明光
16′は遮光され、参照光17′のみがアレイセンサ3で検
出される。この参照光17′を検出すると第14図のように
若干分布にむらのある信号Rxが検出される。またシャッ
タ330′が左に移動し、開口ARが第12図のAoの位置に重
なると参照光17′が遮光され、ウエハ反射光のみがアレ
イセンサ3で検出される。このウエハ反射光は第1図の
実施例同様第13図のような分布Oxとなる。これらの分布
Rx,Oxは、A/D変換回路31の出力として第12図の処理回路
5′の一部である第17図の傾き及び高さ検出回路51′の
メモリ2′の502′とメモリ2の502にそれぞれ格納され
る。露光に先がけてメモリ2′の502′とメモリ2の502
に記憶しておいた上記RxとOxを用いて演算手段1′の50
3′により、下記の演算をステップアンドリピートで露
光する前に行う。Ixは第4図に示す場合と同様にメモリ
1の501に記憶されている。
FIG. 12 shows an embodiment of the present invention. 1 denote the same parts. Fig. 12 shows a transmission grating
The laser beam irradiated to the wafer 18 with a substantially parallel light beam is separated into a light 16 'to be irradiated on the wafer 4 and a reference light 17'. Each light is blocked by the optical shutter 330 '. That the state shown in FIG. 12 the shutter 330 'when it is but the interference fringes are detected by the array sensor 3, the shutter 330' is moved to the right, the position of A R of the opening A o is Figure 12 Overlap and wafer illumination light
16 'is shielded, and only the reference beam 17' is detected by the array sensor 3. When the reference light 17 'is detected, a signal Rx having a slightly uneven distribution is detected as shown in FIG. The shutter 330 is light-shielded 'moves to the left, opening A R overlaps the reference beam 17 to the position of A o of Figure 12', only the wafer reflected light is detected by the array sensor 3. This wafer reflected light has a distribution Ox as shown in FIG. 13 similarly to the embodiment of FIG. These distributions
Rx and Ox are output from the A / D conversion circuit 31 as 502 'of the memory 2' of the inclination and height detection circuit 51 'of FIG. 17, which is a part of the processing circuit 5' of FIG. 502 respectively. Prior to exposure, 502 'of memory 2' and 502 of memory 2
Using the above Rx and Ox stored in
According to 3 ', the following calculation is performed before exposure by step and repeat. Ix is stored in 501 of the memory 1 as in the case shown in FIG.

このIcxは第15図に示す干渉検出波形Ix(メモリ1の5
01に記憶されている。)と比較し、第16図に示すよう
に、基本周波数成分が主要であるため、前述したごとく
この信号Icxから高速フーリエ変換手段504及び演算手段
2′の505により正確に傾きと高さ(Δθ,ΔZ)を求
めることが可能となる。本実施例では第1図の実施例に
比べ、参照光17′の分布に少々のむらが残っていても正
確な検出が可能であるため、参照光17′の分布を一様に
するための光学系、例えばピンホール等の省略が可能で
あるばかりでなく、光の利用効率も大きくなり、出力の
小さな光源で検出することが可能となる。
This Icx is the interference detection waveform Ix (5 in the memory 1) shown in FIG.
01 is stored. 16), the fundamental frequency component is dominant as shown in FIG. 16, and therefore, as described above, the signal Icx is accurately corrected by the fast Fourier transform means 504 and the arithmetic means 2 '505 for the slope and height (Δθ , ΔZ) can be obtained. In the present embodiment, as compared with the embodiment of FIG. 1, accurate detection is possible even if a small amount of unevenness remains in the distribution of the reference light 17 '. Not only a system such as a pinhole can be omitted, but also the light use efficiency is increased, and it is possible to detect with a light source having a small output.

第18図は第4図および第17図に示すスペクトル情報処
理による干渉縞のピッチ(傾き)と位相(高さ)の高精
度算出手段2′の505の具体的構成を示す図である。検
出され補正された信号Ixcは基本周波数成分以外の信号
はほとんど含まれていないため、以下に示す演算を行う
ことによりピッチと位相が正確に求められる。Ixcは実
数であり、これを複素フーリェ変換手段504で複素フー
リェ変換すると次式のF〔I〕が求まる。
FIG. 18 is a diagram showing a specific configuration of 505 of the high-accuracy calculating means 2 'of the pitch (slope) and phase (height) of interference fringes by the spectrum information processing shown in FIGS. 4 and 17. Since the detected and corrected signal Ixc contains almost no signal other than the fundamental frequency component, the pitch and phase can be accurately obtained by performing the following calculation. Ixc is a real number, and when this is subjected to complex Fourier transform by complex Fourier transform means 504, F [I] of the following equation is obtained.

このスペクトルをAjとすると|Aj|は基本周波数成分に
相当するスペクトル位置j=joで鋭いピーク値を持つ。
算出ステップ5051で算出された離散的に得られるスペク
トルAjoのjoとjo+1,jo-1の位置に於る値Aj+1,Ajo-1から
以下に示す方法により正確にピッチPと位相θが求ま
る。Ajo,Ajo+1,Ajo-1の複素数の値を以下の様に実数部
と虚数部に書きなおす。
Assuming that this spectrum is Aj, | Aj | has a sharp peak value at a spectrum position j = jo corresponding to the fundamental frequency component.
Calculation step of discretely obtained spectrum Ajo calculated in 5051 jo and j o + 1, j o- 1 position in於Ru value A j + 1, A precise pitch by the following method from jo-1 P and the phase θ z are obtained. Rewrite the complex values of Ajo, Ajo + 1 and Ajo -1 into the real and imaginary parts as follows.

Ajo=Ro+i Io …(8) Ajo+1=R++i I+ …(9) Ajo-1=R-+i I- …(10) これらFFTで得られた値から内積計算ステップ5052に
より次の値(複素数ベクトルの内積値)を求める。
Ajo = Ro + i Io ... ( 8) A jo + 1 = R + + i I + ... (9) A jo-1 = R - + i I - ... (10) Next the inner product calculation step 5052 from the value obtained in these FFT (The inner product value of a complex vector).

この値を用い次のΔを求める。 Using this value, the next Δ is obtained.

このようにして求めたΔを用い、真のピーク位置ステ
ップ5055により真のスペクトルピークjRは次式で求め
る。
Using the Δ thus obtained, the true spectrum peak j R is obtained by the following equation by the true peak position step 5055.

jR=jo+Δ …(14) 次に位相値φzは上記Δを用い、真のピーク位置での
位相ステップ5056により次式で与えられる。
j R = jo + Δ (14) Next, the phase value φz is given by the following formula by the phase step 5056 at the true peak position using the above Δ.

ここでφjo(6)式から求められ次式を満たす。 Here, the following expression is obtained from the expression φjo (6).

(14)式で与えられたΔを用い、(15)式から初期位
相値φzが求まる。
Using Δ given in equation (14), an initial phase value φz is obtained from equation (15).

(1)′式を求めた時と同様に(1)式より干渉縞の
ピッチPは被測定物(ウエハ4)での反射の回数nに対
し、 となる((3)式はn=2の場合である。)。
As in the case of obtaining the equation (1) ′, the pitch P of the interference fringes is determined by the equation (1) with respect to the number of reflections n on the measured object (wafer 4). (Equation (3) is for the case of n = 2).

また、ピッチP(FFTの入力となった干渉縞信号の1
ピッチ当りのサンプル点数、但し実数)は P=N/jR …(17) で与えられるから(3)′と(14)式より Δθ=Cθ×(jR−jS)/n …(18) 但しCθ=λm/(2N)(定数) jS=2Nsinα1/λ(定数) ステージの傾き制御量Δθがステージの傾き制御量算
出ステップ5057により求まる。このΔθがステージの傾
き制御量となる。
The pitch P (1 of the interference fringe signal input to the FFT)
The number of sample points per pitch, where a real number, is given by P = N / j R (17). From equation (3) ′ and equation (14), Δθ = C θ × (j R −j S ) / n ( 18) However, C θ = λm / (2N) (constant) j S = 2N sin α 1 / λ (constant) The stage tilt control amount Δθ is obtained by the stage tilt control amount calculating step 5057. This Δθ is the tilt control amount of the stage.

他方真の位相値φzからは定数である初期位相φ
(ΔZ=0、即ち初期の合焦点での位相)を用いて
(4)式を求めたのと同様に ΔZ=λ(φ−φ)/(4nπcosθ) となるので((4)式ではn=2) ΔZ=CZ(φ−φ)/n 但しCZ=λ/(4πcosθ)(定数) ステージ上下制御量ΔZがステージ上下制御量算出ス
テップ5058により求まる。このΔZがステージ高さ制御
量となる。以上100XのX軸の検出と同様Y軸についても
100Yにより上記のステージの傾き制御量Δθとステージ
高さ制御量ΔZが求まる。このX軸及びY軸のΔθ,Δ
Zをそれぞれ、Δθx,ΔZx,Δθy,ΔZyとする。ΔZに
ついては2つの値が得られるので、一方のみを用いる
か、平均ΔZ=(ΔZx+ΔZy)/2を用い、Δθx,Δθy,
ΔZ(又はΔZx又はΔZy)の3つの値によりウエハステ
ージ7の光軸と直角な2方向と光軸方向を制御すること
により、露光光学系の焦点面(傾きと高さが一定)にウ
エハ4の表面を一致させることができ、レチクル9上に
形成された回路パターンを露光縮小レンズ8により高い
解像度の回路パターンとしてウエハ4上に露光すること
ができる。しかもこの検出演算は高速(数ms)で行うこ
とが可能であるため、ウエハ4上のチップをステップ移
動して露光する毎に行えば、ウエハ全面を高解像度で、
且つ高スループットで露光することが可能となる。
On the other hand, from the true phase value φz, the initial phase φ which is a constant
S ([Delta] Z = 0, i.e. initial phase in focus) with (4) a was determined in the same manner as ΔZ = λ (φ Z -φ S ) / (4nπcosθ 1) and since ((4 In equation (3), n = 2) ΔZ = C ZZ −φ S ) / n where C Z = λ / (4πcos θ 1 ) (constant) The stage vertical control amount ΔZ is obtained by the stage vertical control amount calculation step 5058. This ΔZ is a stage height control amount. As with the detection of the X axis at 100X,
The stage tilt control amount Δθ and the stage height control amount ΔZ are obtained from 100Y. Δθ, Δ of the X axis and Y axis
Let Z be Δθx, ΔZx, Δθy, ΔZy, respectively. Since two values can be obtained for ΔZ, only one of them is used, or the average ΔZ = (ΔZx + ΔZy) / 2 is used, and Δθx, Δθy,
By controlling two directions perpendicular to the optical axis of the wafer stage 7 and the optical axis direction by three values of ΔZ (or ΔZx or ΔZy), the wafer 4 is positioned on the focal plane (the inclination and height are constant) of the exposure optical system. And the circuit pattern formed on the reticle 9 can be exposed on the wafer 4 by the exposure reduction lens 8 as a high-resolution circuit pattern. Moreover, since this detection operation can be performed at a high speed (several ms), every time a chip on the wafer 4 is step-moved and exposed, the entire surface of the wafer 4 can be obtained with high resolution.
Exposure can be performed at high throughput.

上記実施例では補正された干渉縞からピッチと傾きを
求める方法としてフーリエ変換を用いているが、例えば
正弦波と振幅の中心で切り切られた位置からピッチと位
相を求める等の方法によりピッチと傾きを求めることも
可能であり、フーリエ変換に限定されるものではない。
また本発明の傾きと高さの検出方法は上記の実施例の半
導体露光装置に限定されるものではなく、検出対象から
の反射光の分布にむらを生じる対象に対して特に有効に
適用できるものである。
In the above embodiment, the Fourier transform is used as a method of calculating the pitch and the inclination from the corrected interference fringes.However, for example, the pitch and the phase are obtained by a method of obtaining the pitch and the phase from the position cut off at the center of the sine wave and the amplitude. It is also possible to obtain the inclination, and the present invention is not limited to the Fourier transform.
Further, the tilt and height detection method of the present invention is not limited to the semiconductor exposure apparatus of the above-described embodiment, and can be particularly effectively applied to a target that causes uneven distribution of reflected light from the detection target. It is.

〔発明の効果〕〔The invention's effect〕

本発明によれば光学的多層物体でしかも表面形状が凹
凸から成る半導体ウエハのような対象に対し表面の傾き
や高さを正確に検出することが可能となる。この結果特
に今後のLSIの微細化に対しても焦点深度の比較的浅い
縮小露光装置を用いても、ウエハの表面状態の異なる全
ての工程で高い歩留りでLSIパターンを露光することが
可能となる。
According to the present invention, it is possible to accurately detect the inclination and height of the surface of an object such as a semiconductor wafer which is an optical multi-layer object and whose surface shape is uneven. As a result, it is possible to expose the LSI pattern with a high yield in all processes having different wafer surface conditions, even if a reduction exposure apparatus having a relatively shallow depth of focus is used, especially for future LSI miniaturization. .

また本発明によれば上記対象に限定されず、表面の層
構造、或いはパターンの状態に依存せず、広い対象物に
わたり、その表面の傾きと高さを高精度で求めることが
できる。
Further, according to the present invention, the inclination and height of the surface can be obtained with high accuracy over a wide range of objects without being limited to the above-mentioned object and regardless of the state of the surface layer structure or pattern.

また本発明によれば一般に周期的波形が得られている
信号の周期或いはピッチと初期位相を非常に正確に検出
でき広い応用範囲にわたる高精度の上記計測が可能とな
る。
Further, according to the present invention, generally, the period or pitch and the initial phase of a signal from which a periodic waveform is obtained can be detected very accurately, and the above-described measurement can be performed with high accuracy over a wide range of application.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す構成図、第2図及び第
3図は本発明の原理を説明するための図、第4図は第1
図に示す処理回路の一部を示す概略構成図、第5図乃至
第9図は各々本発明の効果を示す図、第10図は凹凸パタ
ーンへの高入射角の照射光の反射光を示す図、第11図は
第10図の部分拡大図、第12図は第1図とは異なる本発明
の他の一実施例を示す構成図、第13図乃至第16図は各々
本発明の効果を示す図、第17図は第12図に示す処理回路
の一部を示す概略構成図、第18図は第4図及び第17図に
示す演算手段2、2′の演算フローを示した図である。 1……レーザ光源、10,12……ビームスプリッタ、3…
…アレイセンサ、4……ウエハ、5……処理回路、7…
…ステージ、8……縮小レンズ、9……レチクル、81…
…照明系、800……アライメント系
FIG. 1 is a block diagram showing an embodiment of the present invention, FIGS. 2 and 3 are diagrams for explaining the principle of the present invention, and FIG.
5 to 9 each show the effect of the present invention, and FIG. 10 shows reflected light of irradiation light at a high incident angle on the concavo-convex pattern. FIG. 11, FIG. 11 is a partially enlarged view of FIG. 10, FIG. 12 is a block diagram showing another embodiment of the present invention different from FIG. 1, and FIGS. 13 to 16 are effects of the present invention. 17, FIG. 17 is a schematic configuration diagram showing a part of the processing circuit shown in FIG. 12, and FIG. 18 is a diagram showing the operation flow of the operation means 2, 2 'shown in FIG. 4 and FIG. It is. 1 ... laser light source, 10,12 ... beam splitter, 3 ...
... array sensor, 4 ... wafer, 5 ... processing circuit, 7 ...
... Stage, 8 ... Reduction lens, 9 ... Reticle, 81 ...
… Lighting system, 800 …… Alignment system

Claims (15)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】可干渉性の光を被測定物に照射し、該被測
定物からの反射光と、上記可干渉性の光と干渉する参照
光とで発生する干渉縞情報を検出し、上記被測定物から
の反射光のみによる情報を採取し、この採取された情報
を用いて上記検出された干渉縞情報について補正し、こ
の補正された干渉縞情報から干渉縞のピッチ若しくは該
ピッチと位相の情報を算出し、この算出された干渉縞の
ピッチ若しくは該ピッチと位相の情報に基いて被測定物
の傾き若しくは高さを検出することを特徴とする傾き若
しくは高さ検出方法。
An object is irradiated with coherent light, and interference fringe information generated by reflected light from the object and reference light interfering with the coherent light is detected. The information obtained by only the reflected light from the object to be measured is collected, and the detected interference fringe information is corrected using the collected information, and the pitch of the interference fringes or the pitch is calculated from the corrected interference fringe information. A tilt or height detection method comprising calculating phase information and detecting the pitch or the calculated pitch of the interference fringes or the tilt or height of the measured object based on the pitch and phase information.
【請求項2】上記参照光のみによる情報を採取し、この
採取された情報を用いて上記補正を行うことを特徴とす
る請求項1記載の傾き若しくは高さ検出方法。
2. The tilt or height detecting method according to claim 1, wherein information based on only the reference light is collected, and the correction is performed using the collected information.
【請求項3】上記干渉縞のピッチと位相との情報の算出
を、補正された干渉縞情報をフーリエ変換して得られる
スペクトル情報に基いて行うことを特徴とする請求項1
又は2の何れかに記載の傾き若しくは高さ検出方法。
3. The method according to claim 1, wherein the calculation of the information on the pitch and phase of the interference fringes is performed based on spectrum information obtained by performing Fourier transform on the corrected interference fringe information.
Or the tilt or height detection method according to any of 2.
【請求項4】可干渉性の光を被測定物に照射する第1の
照射手段と、上記可干渉性の光と干渉する参照光を照射
する第2の照射手段と、上記第1の照射手段から照射さ
れた光によって被測定物から得られる反射光と上記第2
の照射手段から照射された参照光とで発生する干渉縞情
報を検出する干渉縞情報検出手段と、上記被測定物から
の反射光のみによる情報を採取する採取手段と、該採取
手段から採取された情報を用いて上記干渉縞情報検出手
段により検出された干渉縞情報について補正する補正手
段と、該補正手段によって補正された干渉縞情報から干
渉縞のピッチ若しくは該ピッチと位相の情報を算出し、
この算出された干渉縞のピッチ若しくは該ピッチと位相
の情報に基いて被測定物の傾き若しくは高さを検出する
傾き若しくは高さ検出手段とを備えたことを特徴とする
傾き若しくは高さ検出装置。
4. A first irradiating means for irradiating an object to be measured with coherent light, a second irradiating means for irradiating reference light interfering with the coherent light, and the first irradiating means. The reflected light obtained from the object to be measured by the light
Interference fringe information detecting means for detecting interference fringe information generated by the reference light emitted from the irradiating means, collecting means for collecting information only by reflected light from the object to be measured, and collecting means for collecting information from the collecting means. Correction means for correcting the interference fringe information detected by the interference fringe information detection means using the obtained information, and calculating the pitch of the interference fringes or information on the pitch and phase from the interference fringe information corrected by the correction means. ,
A tilt or height detecting device comprising: a tilt or height detecting means for detecting a tilt or a height of the measured object based on the calculated pitch of the interference fringes or information on the pitch and the phase. .
【請求項5】上記採取手段は更に参照光のみによる情報
を採取する手段を有し、上記補正手段は更に該手段で採
取される参照光のみによる情報を用いて上記補正を行う
手段を有することを特徴とする請求項4記載の傾き若し
くは高さ検出装置。
5. The method according to claim 1, wherein the collecting means further includes means for collecting information using only the reference light, and the correcting means further includes means for performing the correction using information based on only the reference light collected by the means. The inclination or height detecting device according to claim 4, characterized in that:
【請求項6】上記第1の照射手段は、被測定物への可干
渉性の光の入射角を85゜以上になるように構成したこと
を特徴とする請求項4記載の傾き若しくは高さ検出装
置。
6. The tilt or height according to claim 4, wherein said first irradiating means is configured so that an incident angle of coherent light to the object to be measured is 85 ° or more. Detection device.
【請求項7】上記傾き若しくは高さ検出手段における干
渉縞のピッチ若しくは該ピッチと位相の情報の算出を、
補正された干渉縞情報をフーリエ変換して得られるスペ
クトル情報に基いて行うように構成したことを特徴とす
る請求項4又は5又は6の何れかに記載の傾き若しくは
高さ検出装置。
7. The method for calculating the pitch of interference fringes or the information on the pitch and phase in the inclination or height detecting means,
7. The tilt or height detecting device according to claim 4, wherein the correction is performed based on spectral information obtained by Fourier-transforming the corrected interference fringe information.
【請求項8】マスクに形成された回路パターンを基板上
に投影光学系により投影露光する投影露光方法におい
て、可干渉性の光を基板に照射し、該基板からの反射光
と、上記可干渉性の光と干渉する参照光とで発生する干
渉縞情報を検出し、上記基板からの反射光のみによる情
報を採取し、この採取された情報を用いて上記検出され
た干渉縞情報について補正し、この補正された干渉縞情
報から干渉縞のピッチ若しくは該ピッチと位相の情報を
算出し、この算出された干渉縞のピッチ若しくは該ピッ
チと位相の情報に基いて基板の傾き若しくは高さを検出
し、検出された基板の傾き若しくは高さの情報に基いて
マスク又は基板の少なくとも一方を上記投影光学系の光
軸に直交する2軸の回り及び上記光軸に沿って微動させ
てマスクの回路パターンの結像面と基板面とが一致する
如くレベリング制御することを特徴とする投影露光方
法。
8. A projection exposure method for projecting and exposing a circuit pattern formed on a mask onto a substrate by a projection optical system, irradiating the substrate with coherent light, and reflecting light from the substrate and the coherent light. The interference fringe information generated by the neutral light and the interfering reference light is detected, information is collected only by the reflected light from the substrate, and the detected interference fringe information is corrected using the collected information. Calculating the pitch of the interference fringes or the information of the pitch and phase from the corrected interference fringe information, and detecting the inclination or height of the substrate based on the calculated pitch of the interference fringes or the information of the pitch and phase. Then, at least one of the mask and the substrate is finely moved around two axes orthogonal to the optical axis of the projection optical system and along the optical axis based on the detected information on the inclination or height of the substrate, and the circuit of the mask is provided. Patter Projection exposure method characterized by the imaging surface and the substrate surface of the emissions are leveling control as match.
【請求項9】上記参照光のみによる情報を採取し、この
採取された情報を用いて上記補正を行うことを特徴とす
る請求項8記載の投影露光方法。
9. The projection exposure method according to claim 8, wherein information based on only the reference light is collected, and the correction is performed using the collected information.
【請求項10】上記干渉縞のピッチと位相との情報の算
出を、補正された干渉縞情報をフーリエ変換して得られ
るスペクトル情報に基いて行うことを特徴とする請求項
8又は9の何れかに記載の投影露光方法。
10. The method according to claim 8, wherein the calculation of the information on the pitch and phase of the interference fringes is performed based on spectrum information obtained by performing Fourier transform on the corrected interference fringe information. Or a projection exposure method.
【請求項11】マスクに形成された回路パターンを基板
上に投影光学系により投影露光する投影露光装置におい
て、マスク又は基板の少なくとも一方を上記投影光学系
の光軸に直交する2軸の回りに傾動すると共に上記光軸
に沿って移動する移動手段と、可干渉性の光を上記基板
に照射する第1の照射手段と、上記可干渉性の光と干渉
する参照光を照射する第2の照射手段と、上記第1の照
射手段から照射された光によって基板から得られる反射
光と上記第2の照射手段から照射された参照光とで発生
する干渉縞情報を検出する干渉縞情報検出手段と、上記
基板からの反射光のみによる情報を採取する採取手段
と、該採取手段から採取された情報を用いて上記干渉縞
情報検出手段により検出された干渉縞情報について補正
する補正手段と、該補正手段によって補正された干渉縞
情報から干渉縞のピッチ若しくは該ピッチと位相の情報
を算出し、この算出された干渉縞のピッチ若しくは該ピ
ッチと位相の情報に基いて基板の傾き若しくは高さを検
出する傾き若しくは高さ検出手段と、該傾き若しくは高
さ検出手段から検出された傾き若しくは高さ情報に基い
てマスクの回路パターンの結像面と基板面とが一致する
ごとく上記移動手段を制御するレベリング制御手段とを
備えたことを特徴とする投影露光装置。
11. A projection exposure apparatus for projecting and exposing a circuit pattern formed on a mask onto a substrate by a projection optical system, wherein at least one of the mask and the substrate is rotated about two axes orthogonal to the optical axis of the projection optical system. Moving means for tilting and moving along the optical axis; first irradiating means for irradiating the substrate with coherent light; and second means for irradiating reference light interfering with the coherent light. Irradiating means; and interference fringe information detecting means for detecting interference fringe information generated by reflected light obtained from the substrate by the light radiated from the first irradiating means and reference light radiated from the second irradiating means. A collecting unit that collects information based only on light reflected from the substrate; a correcting unit that corrects interference fringe information detected by the interference fringe information detecting unit using information collected from the collecting unit; Based on the interference fringe information corrected by the corrector, information on the pitch of the interference fringes or information on the pitch and phase is calculated, and the inclination or height of the substrate is calculated based on the calculated pitch of the interference fringes or the information on the pitch and phase. The tilt or height detecting means to be detected and the moving means are controlled based on the tilt or height information detected by the tilt or height detecting means so that the image plane of the circuit pattern of the mask coincides with the substrate surface. A projection exposure apparatus comprising:
【請求項12】上記採取手段として遮光手段を有するこ
とを特徴とする請求項11記載の投影露光装置。
12. The projection exposure apparatus according to claim 11, further comprising a light shielding means as said collection means.
【請求項13】上記採取手段は更に参照光のみによる情
報を採取する手段を有し、上記補正手段は更に該手段で
採取される参照光のみによる情報を用いて上記補正を行
う手段を有することを特徴とする請求項11記載の投影露
光装置。
13. The apparatus according to claim 1, wherein said collection means further includes means for collecting information using only reference light, and said correction means further includes means for performing said correction using information only using reference light collected by said means. 12. The projection exposure apparatus according to claim 11, wherein:
【請求項14】上記第1の照射手段は、被測定物への可
干渉性の光の入射角を85゜以上になるように構成したこ
とを特徴とする請求項11記載の投影露光装置。
14. The projection exposure apparatus according to claim 11, wherein said first irradiating means is configured so that an incident angle of coherent light to the object to be measured is 85 ° or more.
【請求項15】上記傾き若しくは高さ検出手段における
干渉縞のピッチ若しくは該ピッチと位相の情報の算出
を、補正された干渉縞情報をフーリエ変換して得られる
スペクトル情報に基いて行うように構成したことを特徴
とする請求項11乃至又は12又は13又は14の何れかに記載
の投影露光装置。
15. A configuration in which the inclination or height detecting means calculates the pitch of the interference fringes or the information of the pitch and phase based on the spectrum information obtained by performing the Fourier transform on the corrected interference fringe information. 15. The projection exposure apparatus according to claim 11, wherein:
JP2045387A 1989-04-21 1990-02-28 Tilt or height detection method and device, and projection exposure method and device Expired - Lifetime JP2892747B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2045387A JP2892747B2 (en) 1990-02-28 1990-02-28 Tilt or height detection method and device, and projection exposure method and device
EP90906337A EP0426866B1 (en) 1989-04-21 1990-04-20 Projection/exposure device and projection/exposure method
KR1019900702643A KR930011884B1 (en) 1989-04-21 1990-04-20 Projection exposure device and projection exposure method
DE69027738T DE69027738T2 (en) 1989-04-21 1990-04-20 PROJECTION AND PLAYBACK CONTROL AND PROJECTION AND PLAYBACK METHOD
US07/623,438 US5227862A (en) 1989-04-21 1990-04-20 Projection exposure apparatus and projection exposure method
PCT/JP1990/000520 WO1990013000A1 (en) 1989-04-21 1990-04-20 Projection/exposure device and projection/exposure method
US07/936,661 US5392115A (en) 1989-04-21 1992-08-28 Method of detecting inclination of a specimen and a projection exposure device as well as method of detecting period of periodically varying signal
US08/315,841 US6094268A (en) 1989-04-21 1994-09-30 Projection exposure apparatus and projection exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2045387A JP2892747B2 (en) 1990-02-28 1990-02-28 Tilt or height detection method and device, and projection exposure method and device

Publications (2)

Publication Number Publication Date
JPH03249513A JPH03249513A (en) 1991-11-07
JP2892747B2 true JP2892747B2 (en) 1999-05-17

Family

ID=12717861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2045387A Expired - Lifetime JP2892747B2 (en) 1989-04-21 1990-02-28 Tilt or height detection method and device, and projection exposure method and device

Country Status (1)

Country Link
JP (1) JP2892747B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583619B2 (en) * 2000-09-13 2010-11-17 富士フイルム株式会社 Method for detecting fringe image analysis error and method for correcting fringe image analysis error
JP4607311B2 (en) * 2000-11-22 2011-01-05 富士フイルム株式会社 Wavefront shape measurement method and measurement wavefront shape correction method for large observation object by aperture synthesis
JP2010192470A (en) * 2009-02-13 2010-09-02 Canon Inc Measurement apparatus, exposure apparatus, and device manufacturing method
JP2024083066A (en) * 2022-12-09 2024-06-20 株式会社ニューフレアテクノロジー Position measurement device, charged particle beam drawing device, and mark position measurement method

Also Published As

Publication number Publication date
JPH03249513A (en) 1991-11-07

Similar Documents

Publication Publication Date Title
US5004348A (en) Alignment device
US7551262B2 (en) Exposure apparatus having a position detecting system and a wavelength detector
EP0534758B1 (en) Method and device for measuring positional deviation between a plurality of diffraction gratings on the same object
US5426503A (en) Method of testing a phase shift mask and a testing apparatus used therein in the ultraviolet wavelength range
US5568257A (en) Adjusting device for an alignment apparatus
US20220260929A1 (en) Improvements in metrology targets
US5596204A (en) Method for aligning processing areas on a substrate with a predetermined position in a static coordinate system
US6198527B1 (en) Projection exposure apparatus and exposure method
US7929113B2 (en) Measurement apparatus, measurement method, exposure apparatus, and device manufacturing method
JP2892747B2 (en) Tilt or height detection method and device, and projection exposure method and device
TW200912275A (en) Method and device for image measurement, exposure apparatus, substrate for image measurement, and device manufacturing method
JP2677217B2 (en) Inspection apparatus and inspection method for phase shift mask
JPH08219718A (en) Plane position detector
JP2814538B2 (en) Alignment device and alignment method
JPH07161611A (en) Position detecting apparatus
JP3265031B2 (en) Surface shape detection method and projection exposure apparatus
JP2506725B2 (en) Pattern defect inspection system
JP4565248B2 (en) Position detection apparatus and adjustment method thereof
JPH06120116A (en) Best focus measuring method
JPH06267824A (en) Exposure
JPH1140476A (en) Method for selecting exposing condition and inspection device used therefor
JP3305058B2 (en) Exposure method and apparatus
JPH055604A (en) Position detection method and pattern forming method and apparatus using the same
JPH10270347A (en) Method and device for detecting alignment offset
JP2000258300A (en) Apparatus and method for measuring focusing characteristics of projection optical system and exposure device