JP2851696B2 - Thermal storage type air conditioner - Google Patents
Thermal storage type air conditionerInfo
- Publication number
- JP2851696B2 JP2851696B2 JP31860490A JP31860490A JP2851696B2 JP 2851696 B2 JP2851696 B2 JP 2851696B2 JP 31860490 A JP31860490 A JP 31860490A JP 31860490 A JP31860490 A JP 31860490A JP 2851696 B2 JP2851696 B2 JP 2851696B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- refrigerant
- storage tank
- heat exchange
- heat storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、空気を熱源とする空気調和機において、夜
間電力を利用するための蓄熱機能、及びその制御機能を
備えた蓄熱式空気調和機に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using air as a heat source, a heat storage function for utilizing nighttime electric power, and a heat storage type air conditioner having a control function thereof.
従来の技術 従来の蓄熱式空気調和機については、既にさまざまな
開発がなされており、例えば、冷凍・第62巻第714号
(昭和62年4月号)P358に示されているような蓄熱式空
気調和機がある。その基本的な技術について述べると、
第5図に示すように、空冷ヒートポンプ1は、圧縮機2,
四方弁3,室外側熱交換器4,室外側膨張弁5,フロン対ブラ
イン熱交換器6を環状に順次接続して冷凍サイクルAを
形成し、一方、フロン対ブライン熱交換器6,ブライン対
水熱交換器7,蓄熱槽8,ブラインポンプ9を環状に順次接
続してブライン循環サイクルBを形成している、また、
負荷側についてはブライン対水熱交換器7,蓄熱槽8,冷温
水ポンプ10,室内機11を環状に順次接続して冷温水循環
サイクルCを形成している。2. Description of the Related Art Various types of conventional regenerative air conditioners have already been developed. For example, a regenerative air conditioner as shown in Refrigeration, Vol. 62, No. 714 (April, 1987) P358 There is an air conditioner. Describing the basic technology,
As shown in FIG. 5, the air-cooled heat pump 1 includes a compressor 2,
The refrigeration cycle A is formed by sequentially connecting the four-way valve 3, the outdoor heat exchanger 4, the outdoor expansion valve 5, and the chlorofluorocarbon-to-brine heat exchanger 6 in an annular manner, while the chlorofluorocarbon-to-brine heat exchanger 6, and the brine-pair The water heat exchanger 7, the heat storage tank 8, and the brine pump 9 are sequentially connected in a ring to form a brine circulation cycle B.
On the load side, a brine / water heat exchanger 7, a heat storage tank 8, a cold / hot water pump 10, and an indoor unit 11 are sequentially connected in a ring to form a cold / hot water circulation cycle C.
この蓄熱式空気調和機において夜間運転は、冷凍サイ
クルAにおいて四方弁3によって製氷運転,蓄熱運転が
切り替えられ、製氷運転時は図中の実線矢印の方向に冷
房が流れて冷房サイクルが形成され、フロン対ブライン
熱交換器6を介してブライン循環サイクルBにおける蓄
熱槽8内の伝熱管12周囲に氷として蓄冷される。また、
蓄熱運転時には図中の破線方向に冷媒が流れて暖房サイ
クルが形成され、同じくフロン対ブライン熱交換器6を
介してブライン循環サイクルBにおける蓄熱槽8内に温
水として蓄熱される。この場合、ブライン対水熱交換器
7は使用されない。In the nighttime operation of the regenerative air conditioner, the four-way valve 3 switches the ice making operation and the heat storage operation in the refrigeration cycle A. During the ice making operation, cooling flows in the direction indicated by the solid line arrow in the figure to form a cooling cycle. The heat is stored as ice around the heat transfer tubes 12 in the heat storage tank 8 in the brine circulation cycle B via the CFC-brine heat exchanger 6. Also,
During the heat storage operation, the refrigerant flows in the direction of the broken line in the figure to form a heating cycle, and heat is stored as hot water in the heat storage tank 8 in the brine circulation cycle B via the CFC-brine heat exchanger 6. In this case, the brine-to-water heat exchanger 7 is not used.
一方、昼間運転は、冷温水循環サイクルCにおいて蓄
熱槽8内の冷温水を冷温水ポンプ10により室内機11へ送
り、冷暖房を行う。この際、冷温水循環サイクルCでの
効率を高めるべく、冷凍サイクルA、ブライン循環サイ
クルBを冷房、あるいは暖房モードで運転して、ブライ
ン対水熱交換器7を介して冷温水循環サイクルC内の冷
温水の予冷、あるいは予熱を行う。On the other hand, in the daytime operation, in the cold / hot water circulation cycle C, the cold / hot water in the heat storage tank 8 is sent to the indoor unit 11 by the cold / hot water pump 10 to perform cooling / heating. At this time, in order to increase the efficiency in the cold / hot water circulation cycle C, the refrigeration cycle A and the brine circulation cycle B are operated in the cooling or heating mode, and the cold / hot water in the cold / hot water circulation cycle C is passed through the brine-water heat exchanger 7. Pre-cool or pre-heat water.
以上のように、安価な夜間電力を利用して蓄冷・蓄熱
を行うことができるため夜間電力を使用しない空調機と
比較して経済的で、かつ電力利用の平準化が可能であ
る。As described above, since cold storage and heat storage can be performed by using inexpensive nighttime electric power, it is more economical than air conditioners that do not use nighttime electric power, and power usage can be leveled.
発明が解決しようとする課題 しかしながら、前述の従来例では、熱源側と負荷側と
の間に熱交換器2台を介しているため熱交換効率が悪
く、また負荷側へは冷温水を直接搬送するため、水漏れ
事故が生じた場合、近年OA化が進歩したオフィス内のOA
機器への水損は避けられないという欠点を有していた。Problems to be Solved by the Invention However, in the above-mentioned conventional example, the heat exchange efficiency is poor because two heat exchangers are interposed between the heat source side and the load side, and cold and hot water is directly conveyed to the load side. In the event of a water leak accident, office automation in offices
There was a disadvantage that water damage to the equipment was inevitable.
そこで、本発明は、高効率で、かつ安全性の高い蓄熱
式空気調和機を提供することを目的とするものである。Therefore, an object of the present invention is to provide a heat storage type air conditioner with high efficiency and high safety.
課題を解決するための手段 上記課題を解決する本発明の技術的手段は、圧縮機
と、四方弁と、室外側熱交換器と、膨張弁と、切替弁と
を直列に接続し、1次側熱交換部と2次側熱交換部とを
有した冷媒対冷媒熱交換器及び1次側熱交換部と2次側
熱交換部とを有した蓄熱槽の各1次側熱交換部を並列に
配置した1次側冷凍サイクルと、前記冷凍対冷媒熱交換
器の2次側熱交換部と、蓄熱槽内の2次側熱交換部とを
並列に配置して、冷媒搬送ポンプと室内側熱交換器とを
接続した2次側冷凍サイクルとからなり、前記蓄熱槽を
平滑伝熱管から構成される1次側熱交換部と、管内側伝
熱面積を増大させて管内側における熱抵抗低減を図った
伝熱管から構成される2次側熱交換部と、蓄熱槽内に充
填した蓄熱材とより構成したものである。Means for Solving the Problems The technical means of the present invention for solving the above problems is to connect a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and a switching valve in series, A refrigerant-to-refrigerant heat exchanger having a side heat exchange section and a secondary side heat exchange section, and a primary heat exchange section of a heat storage tank having a primary side heat exchange section and a secondary side heat exchange section. A primary-side refrigeration cycle arranged in parallel, a secondary-side heat exchange section of the refrigeration-to-refrigerant heat exchanger, and a secondary-side heat exchange section in a heat storage tank are arranged in parallel, and a refrigerant transfer pump and a chamber are arranged. A secondary side refrigeration cycle connected to an inner side heat exchanger, wherein the heat storage tank has a primary side heat exchange section composed of a smooth heat transfer tube; It is composed of a secondary-side heat exchange section composed of a heat transfer tube whose reduction is intended, and a heat storage material filled in a heat storage tank.
ここで、前記蓄熱槽内の2次側熱交換部の伝熱管を管
内溝付き管、または管内にフィンを設置することによ
り、伝熱管の管内側における熱抵抗を低減することが可
能となる。Here, by providing the heat transfer tube of the secondary side heat exchange section in the heat storage tank with a tube with a groove in the tube or fins in the tube, it is possible to reduce the thermal resistance inside the tube of the heat transfer tube.
作用 この技術的手段による作用は次のようになる。Operation The operation of this technical means is as follows.
夜間は、圧縮機、四方弁、室外側熱交換器、膨張弁、
切替弁、冷媒対冷媒熱交換器の1次側熱交換部、蓄熱槽
内の1次側熱交換部とを連通した1次側冷凍サイクルに
おいて、切替弁を切替えて冷媒対冷媒熱交換器を使用し
ない状態にし、膨張弁を所定の開度に設定して、夜間に
安価な夜間電力を利用して、蓄熱槽内の伝熱管を介して
蓄熱材である水に蓄冷、または蓄熱しておく。At night, compressors, four-way valves, outdoor heat exchangers, expansion valves,
In the primary refrigeration cycle in which the switching valve communicates with the primary heat exchange section of the refrigerant-to-refrigerant heat exchanger and the primary heat exchange section in the heat storage tank, the switching valve is switched to switch the refrigerant-to-refrigerant heat exchanger. Not used, the expansion valve is set to a predetermined opening, and inexpensive nighttime electric power is used at night to cool or store heat in water as a heat storage material through a heat transfer tube in a heat storage tank. .
一方、昼間は基本的には1次側冷凍サイクルでの蓄冷
運転、または蓄熱運転を停止して、蓄熱槽内の、管内側
伝熱面積を増大させて管内側における熱抵抗低減を図っ
た伝熱管からなる2次側熱交換部、冷媒搬送ポンプ、室
内側熱交換器からなる2次側冷凍サイクルの運転を行
う。これにより、蓄熱槽内に蓄冷熱として蓄えられた蓄
熱材と冷媒が、蓄熱槽内の、管内側伝熱面積を増大させ
て管内側における熱抵抗低減を図った伝熱管からなる2
次側熱交換部を介して高速に熱交換して、その冷媒を冷
媒搬送ポンプにて室内側熱交換器へ搬送して室内空気と
熱交換(冷房、または暖房)する。従って、夜間電力を
利用した蓄冷熱により昼間に暖房、または冷房運転が行
えるだけでなく、負荷応答性が高まり、運転費が大幅に
低減できる。On the other hand, during the daytime, basically, the cold storage operation or the heat storage operation in the primary refrigeration cycle is stopped to increase the heat transfer area inside the tube in the heat storage tank to reduce the heat resistance inside the tube. An operation of a secondary refrigeration cycle including a secondary heat exchange section including a heat tube, a refrigerant transport pump, and an indoor heat exchanger is performed. As a result, the heat storage material and the refrigerant stored as the cold storage heat in the heat storage tank are made up of the heat transfer tubes in the heat storage tank whose heat transfer area is increased by increasing the heat transfer area inside the tubes and reducing the heat resistance inside the tubes.
The heat is exchanged at a high speed via the secondary heat exchanger, and the refrigerant is conveyed to the indoor heat exchanger by the refrigerant conveying pump to exchange heat (cooling or heating) with the indoor air. Therefore, not only the heating or cooling operation can be performed in the daytime by the cold storage heat using the nighttime electric power, but also the load responsiveness is enhanced and the operating cost can be significantly reduced.
ここで、蓄熱槽内の1次側熱交換部についても伝熱管
の管内側伝熱面積を増大させることにより熱抵抗は低減
されるが、夜間蓄冷運転時においては蓄熱槽内の1次側
熱交換部周囲に着氷する氷層の熱抵抗が大きく、製造コ
スト等を考慮した場合、蓄熱槽内の2次側熱交換部の伝
熱管の管内側伝熱面積を増大させることに比べて熱抵抗
低減の効果は小さいため、蓄熱槽内の1次側熱交換部は
平滑管より構成している。Here, the heat resistance of the primary heat exchange part in the heat storage tank is also reduced by increasing the heat transfer area inside the heat transfer tube, but during the nighttime cold storage operation, the primary heat exchange in the heat storage tank is performed. The thermal resistance of the ice layer that accumulates around the heat exchanger is large. Considering the manufacturing cost, the heat transfer area of the heat transfer tube inside the heat transfer tube of the secondary heat exchanger in the heat storage tank is larger than that of the heat exchanger. Since the effect of reducing the resistance is small, the primary heat exchange section in the heat storage tank is formed of a smooth tube.
また、昼間運転において、室内負荷が蓄熱槽内の蓄冷
熱で賄えない場合は、1次側冷凍サイクルにおいて切替
弁を切替えて蓄熱槽の1次側熱交換部を使用しない状態
で運転し、蓄熱槽内の蓄冷熱に加えて、冷媒対冷媒熱交
換器を介して1次側冷凍サイクルにおける冷房・暖房能
力を2次側冷凍サイクル内の冷媒へ熱交換して、その冷
媒を冷媒搬送ポンプにて室内側熱交換器へ搬送して室内
空気と熱交換(冷房、または暖房)する。In the daytime operation, when the indoor load cannot be covered by the cold storage heat in the heat storage tank, the switching valve is switched in the primary refrigeration cycle, and the operation is performed without using the primary heat exchange unit of the heat storage tank. In addition to the cold storage heat in the heat storage tank, the cooling / heating capacity in the primary refrigeration cycle is exchanged with the refrigerant in the secondary refrigeration cycle via the refrigerant-to-refrigerant heat exchanger, and the refrigerant is transferred to the refrigerant transfer pump. Is transferred to the indoor heat exchanger to exchange heat with the indoor air (cooling or heating).
以上の作用により、夜間電力を利用した蓄冷熱により
低運転費にて冷房・暖房運転が行なえるだけでなく、蓄
熱槽内の、管内側伝熱面積を増大させて管内側における
熱抵抗低減を図った伝熱管からなる2次側熱交換部によ
り高速で蓄冷熱を取出すことが可能になり、負荷応答性
が向上する。By the above action, not only the cooling and heating operation can be performed at low operation cost by the cold storage heat using the nighttime electric power, but also the heat transfer area inside the pipe inside the heat storage tank is increased to reduce the thermal resistance inside the pipe. The intended secondary-side heat exchange section composed of the heat transfer tubes makes it possible to extract cold storage heat at a high speed, thereby improving load responsiveness.
また、前記蓄熱槽内の2次側熱交換部の伝熱管を管内
溝付き管、または管内にフィンを設置することにより、
伝熱管の管内側における熱抵抗を低減することが可能と
なる。In addition, by installing a fin in a tube with a groove in the tube or a tube in the secondary side heat exchange section in the heat storage tank,
It is possible to reduce the thermal resistance inside the heat transfer tube.
実 施 例 以下、本発明の一実施例を添付図面に基づき、蓄熱槽
内の2次側熱交換部の伝熱管に管内溝付き管を用いた場
合について説明を行うが、従来と同一構成については同
一符号を付し、その詳細な説明を省略する。EXAMPLE Hereinafter, an example of the present invention will be described with reference to the accompanying drawings, in which a grooved tube is used as a heat transfer tube of a secondary heat exchange unit in a heat storage tank. Are denoted by the same reference numerals, and a detailed description thereof will be omitted.
第1図は本発明の一実施例の蓄熱式空気調和機の冷凍
サイクル図である。FIG. 1 is a refrigeration cycle diagram of a regenerative air conditioner according to one embodiment of the present invention.
この実施例の蓄熱式空気調和機は、室外ユニット11と
室内ユニット12とからなり、室外ユニット11は、圧縮機
2、四方弁3、室外側熱交換器4、膨張弁5、三方弁KV
1、1次側熱交換部14aと2次側熱交換部14bとからなる
冷媒対冷媒熱交換機HEX、蓄熱材16を充填した、1次側
熱交換部13aと2次側熱交換部13bとからなる蓄熱槽ST
R、三方弁KV2、及び冷媒搬送ポンプPMとから構成されて
おり、室内ユニット12は、室内側熱交換器17から構成さ
れている。また、蓄熱槽STRの1次側熱交換部13aと2次
側熱交換部13bは第2図に示すように、1次側熱交換部1
3aは伝熱管P1のみより構成され、2次側熱交換部13bは
管内溝付き管P2より構成されている。The regenerative air conditioner of this embodiment includes an outdoor unit 11 and an indoor unit 12. The outdoor unit 11 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an expansion valve 5, and a three-way valve KV.
1, a refrigerant-to-refrigerant heat exchanger HEX composed of a primary heat exchange section 14a and a secondary heat exchange section 14b, a primary heat exchange section 13a and a secondary heat exchange section 13b filled with a heat storage material 16. Storage tank ST consisting of
R, a three-way valve KV2, and a refrigerant transport pump PM, and the indoor unit 12 includes an indoor heat exchanger 17. Further, as shown in FIG. 2, the primary heat exchange section 13a and the secondary heat exchange section 13b of the heat storage tank STR are connected to the primary heat exchange section 1a.
3a is constituted only by the heat transfer tube P1, and the secondary-side heat exchange portion 13b is constituted by a tube P2 having an in-tube groove.
室外ユニット11において、圧縮機2と、四方弁3と、
室外側熱交換器4と、膨張弁5とを順次連通し、さらに
三方弁KV1を介して冷媒対冷媒熱交換器HEXの1次側熱交
換部14aと、蓄熱槽STR内の1次側熱交換部13aとを並列
に連通して1次側冷凍サイクルを形成している。一方、
蓄熱槽内STRの2次側熱交換部13bと、切替弁KV2と、冷
媒対冷媒熱交換器HEXの2次側熱交換部14bと、可逆式冷
媒搬送ポンプPMと、室内側熱交換器17とを順次連通して
なる2次側冷凍サイクルを形成している。In the outdoor unit 11, the compressor 2, the four-way valve 3,
The outdoor heat exchanger 4 and the expansion valve 5 are sequentially communicated with each other, and furthermore, the primary heat exchange part 14a of the refrigerant-to-refrigerant heat exchanger HEX via the three-way valve KV1, and the primary heat in the heat storage tank STR. The primary refrigeration cycle is formed by communicating with the exchange section 13a in parallel. on the other hand,
The secondary heat exchanger 13b of the heat storage tank STR, the switching valve KV2, the secondary heat exchanger 14b of the refrigerant-to-refrigerant heat exchanger HEX, the reversible refrigerant transfer pump PM, and the indoor heat exchanger 17 Are sequentially communicated to form a secondary refrigeration cycle.
次に、この一実施例の構成における作用を説明する。
下表は本実施例における各場合の四方弁3、膨張弁5、
三方弁KV1,KV2の開閉状態、及び各熱交換器の作用状態
(蒸発器、あるいは凝縮器)を示す。以下、下表を参照
にして説明する。Next, the operation of the configuration of the embodiment will be described.
The following table shows the four-way valve 3, the expansion valve 5,
The open / close state of the three-way valves KV1 and KV2 and the operation state of each heat exchanger (evaporator or condenser) are shown. Hereinafter, description will be given with reference to the following table.
を示す。 Is shown.
まず、夜間の製氷・蓄熱運転(1次側冷凍サイクル)
について説明する。First, ice making and heat storage operation at night (primary refrigeration cycle)
Will be described.
1次側冷凍サイクルにおいて、蓄熱槽STRが作用し、
冷媒対冷媒熱交換器HEXは作用しないように三方弁KV1を
切替え、2次側冷凍サイクル内の冷媒搬送ポンプPMは停
止している。この場合の1次側冷凍サイクルの作用を以
下説明していく。尚、四方弁3のモードについては、圧
縮機2吐出側と室外側熱交換器4とを、かつ、圧縮機2
吸入側と蓄熱槽STRとを連通する場合を冷房モード、圧
縮機2吐出側と蓄熱槽STRとを、かつ、圧縮機2吸入側
と室外側熱交換器4とを連通する場合を暖房モードと定
義し、三方弁KV1については1次側冷凍サイクル内にて
蓄熱槽STRと膨張弁5とを連通する設定を第1モード,
冷媒対冷媒熱交換器HEXと膨張弁5とを連通する設定を
第2モードとして、また三方弁KV2については2次側冷
凍サイクル内にて冷媒対冷媒熱交換器HEXを介さず蓄熱
槽STRと室内ユニット12とを連通する設定を第3モー
ド,蓄熱槽STR、冷媒対冷媒熱交換器HEX、室内ユニット
12とを連通する設定を第4モードと定義する。In the primary side refrigeration cycle, the heat storage tank STR operates,
The three-way valve KV1 is switched so that the refrigerant-to-refrigerant heat exchanger HEX does not operate, and the refrigerant transport pump PM in the secondary refrigeration cycle is stopped. The operation of the primary refrigeration cycle in this case will be described below. The mode of the four-way valve 3 is such that the discharge side of the compressor 2 and the outdoor heat exchanger 4 are connected to each other.
The cooling mode is when the suction side communicates with the heat storage tank STR, and the heating mode is when the compressor 2 discharge side communicates with the heat storage tank STR and the compressor 2 suction side communicates with the outdoor heat exchanger 4. For the three-way valve KV1, the first mode is set to connect the heat storage tank STR and the expansion valve 5 in the primary refrigeration cycle.
The setting for communicating the refrigerant-to-refrigerant heat exchanger HEX and the expansion valve 5 is set to the second mode, and the three-way valve KV2 is connected to the heat storage tank STR without passing through the refrigerant-to-refrigerant heat exchanger HEX in the secondary refrigeration cycle. The third mode is set to communicate with the indoor unit 12, the heat storage tank STR, the refrigerant-to-refrigerant heat exchanger HEX, and the indoor unit
The setting for communicating with 12 is defined as a fourth mode.
夜間製氷運転; 四方弁3を冷房モード,膨張弁5を所定の開度,三方
弁KV1を第1モードとする。この時、圧縮機2から送ら
れる高温高圧の冷媒は、室外側熱交換器4にて凝縮し、
膨張弁5で減圧されて液あるいは二相状態となり、蓄熱
槽STR内の1次側熱交換部13aの管内にて蒸発して蓄熱材
16から吸熱した後、圧縮機2へ戻る。このとき、1次側
熱交換部13aは伝熱管P1のみであるので槽内の自然対流
が阻害されることなく、槽内の伝熱管全体に比較的均一
に管外側に氷が生成されていく。Night ice making operation: The four-way valve 3 is in the cooling mode, the expansion valve 5 is in the predetermined opening degree, and the three-way valve KV1 is in the first mode. At this time, the high-temperature and high-pressure refrigerant sent from the compressor 2 condenses in the outdoor heat exchanger 4,
The pressure is reduced by the expansion valve 5 to be in a liquid or two-phase state, and the heat storage material evaporates in the tube of the primary side heat exchange section 13a in the heat storage tank STR.
After absorbing heat from 16, the flow returns to the compressor 2. At this time, since the primary side heat exchange part 13a is only the heat transfer tube P1, the natural convection in the tank is not hindered, and ice is relatively uniformly generated outside the heat transfer tube in the tank. .
夜間蓄熱運転; 四方弁3を暖房モード,膨張弁5を所定の開度,三方
弁KV1を第1モードとする。この時、圧縮機2から送ら
れる高温高圧の冷媒は、蓄熱槽STR内の1次側熱交換部1
3aの管内にて凝縮して蓄熱材16へ放熱した後、膨張弁5
で減圧されて液あるいは二相状態となり、室外側熱交換
器4の管内にて蒸発して室外から吸熱した後、圧縮機2
へ戻る。このとき、蓄熱槽STR内では夜間蓄熱運転の場
合と同様に、槽内の自然対流が阻害されることなく、温
水として蓄熱される。Night heat storage operation: The four-way valve 3 is in the heating mode, the expansion valve 5 is in the predetermined opening degree, and the three-way valve KV1 is in the first mode. At this time, the high-temperature and high-pressure refrigerant sent from the compressor 2 is supplied to the primary heat exchange unit 1 in the heat storage tank STR.
After condensing in the pipe of 3a and releasing heat to the heat storage material 16, the expansion valve 5
After being decompressed into a liquid or two-phase state, evaporating in the pipe of the outdoor heat exchanger 4 and absorbing heat from outside, the compressor 2
Return to At this time, in the heat storage tank STR, as in the case of the nighttime heat storage operation, heat is stored as hot water without hindering natural convection in the tank.
次に、昼間運転について説明する。 Next, daytime driving will be described.
昼間の室内負荷が夜間運転による蓄冷(蓄熱)により賄
うことができる場合; この場合、蓄熱槽STRは蓄冷(蓄熱)されており、三
方弁KV2を第3モードとする。この状態で、2次側冷凍
サイクル内の冷媒は、冷媒搬送ポンプPMにて、蓄熱槽ST
R内の2次側熱交換部13bに送られ、2次側熱交換部13b
が管内溝付き管P2より構成されているため、管内側の伝
熱面積が大きくとれ、かつ高効率で蓄熱槽STR内の蓄熱
材16と高速で熱交換される。When the indoor load during the day can be covered by cold storage (heat storage) by night operation; in this case, the heat storage tank STR is cold stored (heat storage), and the three-way valve KV2 is set to the third mode. In this state, the refrigerant in the secondary refrigeration cycle is supplied to the heat storage tank ST by the refrigerant transfer pump PM.
R is sent to the secondary heat exchange section 13b in the secondary heat exchange section 13b
Is composed of a pipe P2 with a groove in the pipe, a large heat transfer area inside the pipe is obtained, and heat exchange with the heat storage material 16 in the heat storage tank STR is performed at high speed with high efficiency.
冷房時は第1図中の矢印aのように冷媒は流れ、蓄熱
槽STR内の2次側熱交換部13bにおいて冷却された液冷媒
は、室内側熱交換器17に送られ、そこで室内空気と熱交
換して室内空気を冷却すると共に、冷媒自身は高温のガ
ス冷媒となって蓄熱槽STR内の2次側熱交換部13bに戻る
という作用を繰り返す。During cooling, the refrigerant flows as indicated by an arrow a in FIG. 1, and the liquid refrigerant cooled in the secondary heat exchanger 13b in the heat storage tank STR is sent to the indoor heat exchanger 17, where the indoor air is cooled. In addition to cooling the indoor air by exchanging heat with the refrigerant, the refrigerant itself becomes a high-temperature gas refrigerant and returns to the secondary-side heat exchange section 13b in the heat storage tank STR.
また、暖房時は可逆式冷媒搬送ポンプPMにより第1図
中の矢印bのように冷媒は流れ、蓄熱槽STR内の2次側
熱交換部13bにおいて加熱されたガス冷媒は、室内側熱
交換器17に送られ、そこで室内空気と熱交換して室内空
気を加熱すると共に、冷媒自身は低温の液冷媒となって
冷媒搬送ポンプPMに戻るという作用を繰り返す。このよ
うにして、室内機での冷房(暖房)運転が行なわれる。In addition, during heating, the refrigerant flows as indicated by the arrow b in FIG. 1 by the reversible refrigerant transfer pump PM, and the gas refrigerant heated in the secondary heat exchange unit 13b in the heat storage tank STR is used for indoor heat exchange. The heat is exchanged with the room air to heat the room air, and the refrigerant itself becomes a low-temperature liquid refrigerant and returns to the refrigerant transport pump PM. Thus, the cooling (heating) operation in the indoor unit is performed.
昼間の室内負荷が夜間運転による蓄冷(蓄熱)により賄
うことができない場合; この場合も蓄熱槽STRは蓄冷(蓄熱)されているが、
1次側冷凍サイクルにおいて三方弁KV1を第1モードと
して冷媒対冷媒熱交換器HEXの2次側熱交換部14aを蒸発
器(凝縮器)として作用させて運転を行う。同時に、2
次側冷凍サイクルにおいて三方弁KV2を第4モードとし
て、冷媒対冷媒熱交換器HEXに2次側熱交換部14bを作用
させて運転を行う。この状態で、2次側冷凍サイクル内
の冷媒は、冷媒搬送ポンプPMにて、蓄熱槽STR内の2次
側熱交換部13bに送られ、2次側熱交換部13bは管内溝付
き管P2より構成されているため、管内側の伝熱面積が大
きくとれ、かつ高効率で蓄熱槽STR内の蓄熱材16と高速
で熱交換される。When the indoor load during the day cannot be covered by cold storage (heat storage) by night operation; in this case, the heat storage tank STR is also cold stored (heat storage).
In the primary refrigeration cycle, the three-way valve KV1 is operated in the first mode, and the secondary heat exchange section 14a of the refrigerant-to-refrigerant heat exchanger HEX operates as an evaporator (condenser). At the same time, 2
In the secondary refrigeration cycle, the three-way valve KV2 is set to the fourth mode, and the operation is performed with the secondary heat exchange unit 14b acting on the refrigerant-to-refrigerant heat exchanger HEX. In this state, the refrigerant in the secondary-side refrigeration cycle is sent to the secondary-side heat exchange unit 13b in the heat storage tank STR by the refrigerant transfer pump PM, and the secondary-side heat exchange unit 13b is connected to the pipe P2 having an internal groove. As a result, the heat transfer area inside the tube can be increased, and heat exchange with the heat storage material 16 in the heat storage tank STR can be performed with high efficiency at high speed.
冷房時は第1図中の矢印aのように冷媒は流れ、蓄熱
槽STR内の2次側熱交換部13bにおいて冷却された冷媒
は、更に、冷媒対冷媒熱交換器HEXの2次側熱交換部14b
へ送られ、1次側冷凍サイクル内の冷媒対冷媒熱交換器
HEXの2次側熱交換部14aとの熱交換により冷却され液冷
媒となり、その後、室内側熱交換器17に送られ、そこで
室内空気と熱交換して室内空気を冷却すると共に、冷媒
自身は高温のガス冷媒となって蓄熱槽STR内の2次側熱
交換部13bに戻るという作用を繰り返す。During cooling, the refrigerant flows as indicated by an arrow a in FIG. 1, and the refrigerant cooled in the secondary heat exchange unit 13b in the heat storage tank STR further cools the secondary heat of the refrigerant-to-refrigerant heat exchanger HEX. Exchange unit 14b
Refrigerant to the refrigerant heat exchanger in the primary refrigeration cycle
HEX is cooled by heat exchange with the secondary heat exchange part 14a to become a liquid refrigerant, and then sent to the indoor heat exchanger 17, where it exchanges heat with indoor air to cool the indoor air, and the refrigerant itself is cooled. The operation of returning to the secondary-side heat exchange unit 13b in the heat storage tank STR as a high-temperature gas refrigerant is repeated.
また、暖房時は第1図中の矢印bのように冷媒は流
れ、冷媒対冷媒熱交換器HEXの2次側熱交換部14bにおい
て加熱された冷媒は、更に、蓄熱槽STR内の2次側熱交
換部13bへ送られ、蓄熱槽内の蓄熱材16との熱交換によ
り加熱されガス冷媒となり、その後、可逆式冷媒搬送ポ
ンプPMにより、室内側熱交換器17に送られ、そこで室内
空気と熱交換して室内空気を加熱すると共に、冷媒自身
は低温の液冷媒となって可逆式冷媒搬送ポンプPMに戻る
という作用を繰り返す。In addition, at the time of heating, the refrigerant flows as indicated by the arrow b in FIG. 1, and the refrigerant heated in the secondary heat exchange section 14b of the refrigerant-to-refrigerant heat exchanger HEX further flows through the secondary storage in the heat storage tank STR. The heat is exchanged with the heat storage material 16 in the heat storage tank to be heated and converted into a gas refrigerant, and then sent to the indoor heat exchanger 17 by the reversible refrigerant transfer pump PM, where the indoor air is And heat the indoor air by exchanging heat with the refrigerant, and the refrigerant itself becomes a low-temperature liquid refrigerant and returns to the reversible refrigerant transport pump PM.
このようにして、昼間の室内負荷が大きい場合も対応
ができ、室内機での冷房・暖房運転が行われる。In this way, it is possible to cope with a large daytime indoor load, and the cooling / heating operation is performed by the indoor unit.
以上のように、圧縮機2と、四方弁3と、室外側熱交
換機4と、膨張弁5と、三方弁KV1とを直列に接続し、
1次側熱交換部14aと2次側熱交換部14bとを有した冷媒
対冷媒熱交換器HEX及び1次側熱交換部13aと2次側熱交
換部13bとを有した蓄熱槽STRの各1次側熱交換部を並列
に配置した1次側冷凍サイクルと、前記冷媒対冷媒熱交
換器HEXの2次側熱交換部14bと、蓄熱槽STR内の2次側
熱交換部13bとを並列に配置して、冷媒搬送ポンプPMと
室内側熱交換器17とを接続した2次側冷凍サイクルとか
らなり、前記蓄熱槽STRを平滑伝熱管P1から構成される
1次側熱交換部13aと、管内溝付き管P2から構成される
2次側熱交換部13bと、蓄熱槽STR内に充填した蓄熱材16
とより構成して、上記のように運転することにより、夜
間電力を利用した蓄冷(蓄熱)により低運転費にて冷房
(暖房)運転が行えるだけでなく、蓄熱槽STR内の管内
溝付き管P1からなる2次側熱交換部13bにより高速で蓄
冷(蓄熱)を取出すことが可能になり、負荷応答性が向
上する。As described above, the compressor 2, the four-way valve 3, the outdoor heat exchanger 4, the expansion valve 5, and the three-way valve KV1 are connected in series,
A refrigerant-to-refrigerant heat exchanger HEX having a primary heat exchange section 14a and a secondary heat exchange section 14b and a heat storage tank STR having a primary heat exchange section 13a and a secondary heat exchange section 13b. A primary refrigeration cycle in which the primary heat exchange units are arranged in parallel, a secondary heat exchange unit 14b of the refrigerant-to-refrigerant heat exchanger HEX, and a secondary heat exchange unit 13b in the heat storage tank STR. Are arranged in parallel, a secondary-side refrigeration cycle in which the refrigerant transfer pump PM and the indoor side heat exchanger 17 are connected, and the heat storage tank STR is a primary-side heat exchange section composed of a smooth heat transfer tube P1. 13a, a secondary heat exchange section 13b composed of a pipe P2 with a groove in the pipe, and a heat storage material 16 filled in the heat storage tank STR.
By operating as described above, cooling (heating) operation can be performed at low operation cost by cold storage (heat storage) using nighttime electric power, and a pipe with a groove in a pipe in the heat storage tank STR. Cold storage (heat storage) can be taken out at high speed by the secondary side heat exchange section 13b composed of P1, and load responsiveness is improved.
以上は蓄熱槽内の2次側熱交換部13bの伝熱管に管内
溝付き管P2を用いた場合について説明したが、第4図に
他の実施例として示すが、蓄熱槽内の2次側熱交換部の
伝熱管管内にフィンFを設置した場合にも管内溝付き管
P2と同様の効果がある。The above description has been made on the case where the pipe P2 with the groove in the pipe is used as the heat transfer pipe of the secondary-side heat exchange section 13b in the heat storage tank. FIG. 4 shows another embodiment. Even if the fin F is installed in the heat transfer tube of the heat exchange section, the tube with a groove in the tube
It has the same effect as P2.
発明の効果 以上のように本発明は、圧縮機と、四方弁と、室外側
熱交換器と、膨張弁と、切替弁とを直列に接続し、1次
側熱交換部と2次側熱交換部とを有した冷媒対冷媒熱交
換器及び1次側熱交換部と2次側熱交換部とを有した蓄
熱槽の各1次側熱交換部を並列に配置した1次側冷凍サ
イクルと、前記冷媒対冷媒熱交換器の2次側熱交換部
と、蓄熱槽内の2次側熱交換部とを並列に配置して、冷
媒搬送ポンプと室内側熱交換器とを接続した2次側冷凍
サイクルとからなり、前記蓄熱槽を平滑伝熱管から構成
される1次側熱交換部と、管内側伝熱面積を増大させて
管内側における熱抵抗低減を図った伝熱管から構成され
る2次側熱交換部と、蓄熱槽内に充填した蓄熱材とより
構成して、上記のように運転することにより、夜間電力
を利用した蓄冷熱により低運転費にて冷房・暖房運転が
行えるだけでなく、蓄熱槽内の、管内側伝熱面積を増大
させて管内側における熱抵抗低減を図った伝熱管から構
成される2次側熱交換部により高速で蓄冷熱を取出すこ
とが可能になり、負荷応答性が向上する。Advantageous Effects of the Invention As described above, the present invention connects a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and a switching valve in series, and connects a primary-side heat exchange unit and a secondary-side heat exchanger. A primary-side refrigeration cycle in which refrigerant-to-refrigerant heat exchangers having an exchange unit and primary heat exchange units of a heat storage tank having a primary heat exchange unit and a secondary heat exchange unit are arranged in parallel. And a secondary heat exchange part of the refrigerant-to-refrigerant heat exchanger and a secondary heat exchange part in the heat storage tank are arranged in parallel, and the refrigerant transfer pump and the indoor heat exchanger are connected. The heat storage tank is composed of a primary heat exchange unit composed of smooth heat transfer tubes, and a heat transfer tube configured to increase the heat transfer area inside the tube to reduce the heat resistance inside the tube. By using the secondary-side heat exchange unit and the heat storage material filled in the heat storage tank and operating as described above, nighttime electric power was used. Cooling / heating operation can be performed at low operating costs by using cold storage heat, and the secondary side is composed of heat transfer tubes that increase the heat transfer area inside the tubes in the heat storage tank to reduce the thermal resistance inside the tubes. The heat exchange section makes it possible to extract cold storage heat at a high speed, thereby improving load responsiveness.
また、前記蓄熱槽内の2次側熱交換部の伝熱管を管内
溝付き管、または管内にフィンを設置することにより、
伝熱管の管内側における熱抵抗を低減することが可能と
なる。In addition, by installing a fin in a tube with a groove in the tube or a tube in the secondary side heat exchange section in the heat storage tank,
It is possible to reduce the thermal resistance inside the heat transfer tube.
第1図は本発明の一実施例による蓄熱式空気調和機の冷
凍システム図、第2図は本発明の一実施例における蓄熱
槽内の熱交換器の断面図、第3図は本発明の一実施例に
おける蓄熱槽内の2次側熱交換器の横断面図、第4図は
本発明の他の実施例における蓄熱槽内の2次側熱交換器
として管内にフィンを設置した伝熱管の断面図、第5図
は従来例を示すヒートポンプ式空気調和機の冷凍システ
ム図である。 2……圧縮機、3……四方弁、4……室外側熱交換器、
5……膨張弁、13a……蓄熱槽の1次側熱交換部、13b…
…蓄熱槽の2次側熱交換部、14a……冷媒対冷媒熱交換
器の1次側熱交換部、14b……冷媒対冷媒熱交換器の2
次側熱交換部、16……蓄熱材、17……室内側熱交換器、
STR……蓄熱槽、P1……平滑伝熱管、P2……管内溝付き
管、P3……管内フィン付き管、HEX……冷媒対冷媒熱交
換器、PM……冷媒搬送ポンプ、KV1,KV2……三方弁、F
……フィン。FIG. 1 is a refrigeration system diagram of a regenerative air conditioner according to one embodiment of the present invention, FIG. 2 is a cross-sectional view of a heat exchanger in a heat storage tank in one embodiment of the present invention, and FIG. FIG. 4 is a cross-sectional view of a secondary heat exchanger in a heat storage tank in one embodiment, and FIG. 4 is a heat transfer tube having a fin installed in a tube as a secondary heat exchanger in a heat storage tank in another embodiment of the present invention. FIG. 5 is a refrigeration system diagram of a heat pump type air conditioner showing a conventional example. 2 ... Compressor, 3 ... Four-way valve, 4 ... Outdoor heat exchanger,
5 ... Expansion valve, 13a ... Primary heat exchange part of heat storage tank, 13b ...
... Secondary side heat exchange part of heat storage tank, 14a ... Primary side heat exchange part of refrigerant to refrigerant heat exchanger, 14b ... Refrigerant to refrigerant heat exchanger
Secondary heat exchange unit, 16: heat storage material, 17: indoor heat exchanger,
STR: Heat storage tank, P1: Smooth heat transfer tube, P2: Tube with internal groove, P3: Tube with internal fin, HEX: Refrigerant-to-refrigerant heat exchanger, PM: Refrigerant transfer pump, KV1, KV2 ... ... Three-way valve, F
……fin.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F25B 13/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) F25B 13/00
Claims (3)
膨張弁と、切替弁とを直列に接続し、1次側熱交換部と
2次側熱交換部とを有した冷媒対冷媒熱交換器及び1次
側熱交換部と2次側熱交換部とを有した蓄熱槽の各1次
側熱交換部を並列に配置した1次側冷凍サイクルと、 前記冷媒対冷媒熱交換器の2次側熱交換部と、蓄熱槽内
の2次側熱交換部とを並列に配置して、冷媒搬送ポンプ
と室内側熱交換器とを接続した2次側冷凍サイクルとか
らなり、 前記蓄熱槽を平滑伝熱管から構成される1次側熱交換部
と、管内側伝熱面積を増大させて管内側における熱抵抗
低減を図った伝熱管から構成される2次側熱交換部と、
蓄熱槽内に充填した蓄熱材とより構成した蓄熱式空気調
和機。1. A compressor, a four-way valve, an outdoor heat exchanger,
A refrigerant-to-refrigerant heat exchanger having an expansion valve and a switching valve connected in series and having a primary heat exchange section and a secondary heat exchange section, and a primary heat exchange section and a secondary heat exchange section A primary-side refrigeration cycle in which the respective primary-side heat exchange sections of a heat storage tank having: a secondary-side heat exchange section of the refrigerant-to-refrigerant heat exchanger; and a secondary-side heat in the heat storage tank. A primary-side heat exchange unit comprising a secondary-side refrigeration cycle in which a refrigerant transfer pump and an indoor-side heat exchanger are connected by arranging the heat-exchange units in parallel with each other; A secondary heat exchange section comprising a heat transfer tube having an increased heat transfer area inside the tube to reduce the heat resistance inside the tube;
A heat storage type air conditioner composed of a heat storage material filled in a heat storage tank.
管を管内溝付き管とした請求項(1)記載の蓄熱式空気
調和機。2. A heat storage type air conditioner according to claim 1, wherein the heat transfer tube is a tube with a groove in the secondary side heat exchange section in the heat storage tank.
ンを設置した伝熱管より構成した請求項(1)記載の蓄
熱式空気調和機。3. The regenerative air conditioner according to claim 1, wherein the secondary heat exchange section in the heat storage tank comprises a heat transfer tube having fins installed in the tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31860490A JP2851696B2 (en) | 1990-11-22 | 1990-11-22 | Thermal storage type air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31860490A JP2851696B2 (en) | 1990-11-22 | 1990-11-22 | Thermal storage type air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04187952A JPH04187952A (en) | 1992-07-06 |
JP2851696B2 true JP2851696B2 (en) | 1999-01-27 |
Family
ID=18100995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31860490A Expired - Fee Related JP2851696B2 (en) | 1990-11-22 | 1990-11-22 | Thermal storage type air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2851696B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014231922A (en) * | 2013-05-28 | 2014-12-11 | 東京瓦斯株式会社 | Floor panel heat removal system |
-
1990
- 1990-11-22 JP JP31860490A patent/JP2851696B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04187952A (en) | 1992-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0235216B2 (en) | ||
JP2006313034A (en) | Geothermal unit | |
JP2006292313A (en) | Geothermal unit | |
JP2851696B2 (en) | Thermal storage type air conditioner | |
JPH03294754A (en) | Air conditioner | |
JP3502155B2 (en) | Thermal storage type air conditioner | |
JP3814877B2 (en) | Thermal storage air conditioner | |
JP3297467B2 (en) | Thermal storage type air conditioner | |
JP3781340B2 (en) | Thermal storage refrigeration air conditioner | |
JP3056588B2 (en) | Thermal storage type air conditioner | |
JPH0849924A (en) | Heat storage type air-conditioner | |
JPH05620B2 (en) | ||
JP3236345B2 (en) | Thermal storage type air conditioner | |
JPH01174834A (en) | Air conditioning system for building | |
JP2705036B2 (en) | Thermal storage air conditioning system | |
JP2705032B2 (en) | Multi-room air conditioner | |
JPH0849933A (en) | Regenerative air-conditioner | |
JPH0849938A (en) | Regenerative air-conditioner | |
JPH1194395A (en) | Multi-room air conditioner | |
JP2705035B2 (en) | Thermal storage air conditioning system | |
JP3197107B2 (en) | Thermal storage type air conditioner | |
CN114623627A (en) | Method and system for improving refrigerant compression heat pump of artificial environment chamber | |
JPS611939A (en) | Air conditioning system | |
JPH05340630A (en) | Heat storage type air conditioner | |
JPH01107031A (en) | Air conditioning system for building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |