JP2841131B2 - Activated sludge treatment method for sewage - Google Patents

Activated sludge treatment method for sewage

Info

Publication number
JP2841131B2
JP2841131B2 JP17433091A JP17433091A JP2841131B2 JP 2841131 B2 JP2841131 B2 JP 2841131B2 JP 17433091 A JP17433091 A JP 17433091A JP 17433091 A JP17433091 A JP 17433091A JP 2841131 B2 JP2841131 B2 JP 2841131B2
Authority
JP
Japan
Prior art keywords
load
sludge
amount
aerobic
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17433091A
Other languages
Japanese (ja)
Other versions
JPH04371295A (en
Inventor
秀樹 岩部
真治 大庭
正六 川内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanshin Engineering Co Ltd
Kubota Corp
Original Assignee
Hanshin Engineering Co Ltd
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanshin Engineering Co Ltd, Kubota Corp filed Critical Hanshin Engineering Co Ltd
Priority to JP17433091A priority Critical patent/JP2841131B2/en
Publication of JPH04371295A publication Critical patent/JPH04371295A/en
Application granted granted Critical
Publication of JP2841131B2 publication Critical patent/JP2841131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、下水や産業廃水等の汚
水処理における活性汚泥処理法に関するものである。 【0002】 【従来の技術】活性汚泥処理法による汚水の浄化は、反
応槽内における適切な溶存酸素の下で、活性汚泥が汚水
中の有機物を栄養源として摂取し、増殖する過程で、汚
水中の有機物を吸着・酸化することによって行なわれる
ものである。このため活性汚泥処理法の設計及び運転管
理には、反応槽内の活性汚泥が汚濁源である有機物を吸
着・酸化して増殖する反応の平衡維持が重要である。 【0003】この反応の速度は、曝気時間、活性汚泥
量、流入有機物量など様々な因子によって異なるが、こ
れら各因子の内、基本的要因として流入有機物量(BO
D量)と、反応槽内活性汚泥量との比を「BOD−SS
負荷」として表し、この値の範囲により各処理方式を定
め、運転管理上の重要なパラメータとしている。例え
ば、標準活性汚泥法では、BOD−SS負荷の値を0.
2〜0.4kg/kg−SS/dayと、また長時間曝
気法では0.03〜0.05kg/kg−SS/day
等としている。従って処理の安定化のためにはBOD−
SS負荷を一定に維持することが重要であると考え、こ
のための適正な反応槽内汚泥濃度を設定し、その管理を
余剰汚泥引き抜き量によって行っている。 【0004】この余剰汚泥引き抜き量による反応槽内汚
泥濃度の管理方法は、流入負荷量に対し適切な槽内汚泥
量を定めて管理すべき槽内汚泥濃度を算出し、この算出
された汚泥濃度に応じて沈澱池より適量の余剰汚泥を引
き抜く方法をとっているが、余剰汚泥濃度は沈澱池から
の返送汚泥と同一であるため流入水量変動や汚泥の沈降
速度に強く影響され、そのため濃度変動が大きい。この
引き抜き汚泥量は余剰汚泥濃度と引き抜き量(流量)の
積であり、下水処理では流入量の変動が大きいので余剰
汚泥濃度が大きく変動し、所定の槽内汚泥濃度を確保す
るための引き抜き汚泥量の調整が極めて困難である。 【0005】一方最近の水処理の研究成果によれば、活
性汚泥処理においてはBOD−SS負荷よりも汚泥滞留
時間(通常表現)、すなわち反応槽内の固形物(活性汚
泥)の滞留時間と定義されているSRT(Solids
Retention Time)がより基本的要因で
あると考えられ、このSRTを適正に維持することがよ
り重要であることが明らかになっている。SRTは反応
槽内の活性汚泥量と汚泥の処理系外への流出量(余剰汚
泥量と処理水SS量の和であり、余剰汚泥量で近似でき
る)との比であるが、従来の沈澱池から余剰汚泥を引き
抜く方法では、流入負荷変動により引き抜きの汚泥濃度
が大幅に変動するため、SRTを適正に維持することは
極めて困難であった。そこで、上記の欠点を解決するた
めに、SRTの調整を容易にするための手段として案出
されたのが特願平2−293126号の活性汚泥処理法
である。 【0006】すなわち、この発明は、反応槽に汚泥混合
液を定量送出するポンプを設置し、該反応槽内の汚泥混
合液を定量的に引き抜き、汚泥として処理系外に排出す
ることによって、SRTを常に設定された値に制御する
ようにしたもので、反応槽から直接汚泥を定量的に抜き
取ることにより、流入汚水の水量、水質及び反応槽内の
汚泥濃度や返送汚泥濃度の変化に拘らずSRTを一定に
保つものである。 【0007】 【発明が解決しようとする課題】しかし、上記の方法
は、流入する水量、水質の負荷変動の小さいときは極め
て有効であるが、流入負荷変動が大きい場合、例えば、
観光地に立地する下水処理場のように、負荷量が観光人
口により大きく左右され、しかも週末と平日とで大きく
異なる場合には、SRTを一定にすると、MLSS濃度
が変動し、負荷変動に対応できる限界があることがわか
った。 【0008】これは、活性汚泥法は原則的には、BOD
−SS負荷で示されるような、汚泥量当たりの負荷量を
一定に保つことが処理を安定させる基本である。一般に
処理施設の設計では、流入負荷の高い時点を基準に設計
されるが、さきに述べた観光地の例のように、流入負荷
変動が大きく実際の負荷が小さい場合、上記の手段によ
りSRTを一定とした運転を行うとMLSS濃度が低下
する。一方、MLSS濃度を一定とした運転ではSRT
が大きく変化する。これら双方の運転条件下で、平日の
極端に負荷量が減る場合、直接的には処理への影響は小
さいが、次の週末に大きな負荷がかかった場合、処理機
能が回復しないことが多い。 【0009】特にこの傾向は、嫌気、好気を繰り返すこ
とにより硝化脱窒を行う生物学的脱窒法において顕著で
ある。活性汚泥中の硝化細菌は、負荷条件に見合う菌体
量が保持される条件下では活性が維持されるが、負荷変
動が大きいと、それに対応した活性を維持することは極
めて困難となる。 【0010】例えば、反応槽に水中エアレータを設置し
て嫌気、好気を繰り返す単槽法において、流入負荷量に
応じた汚泥の引き抜きを行いMLSS濃度を一定とした
運転を行う時、平日の流入汚水量が少なく、NH−N
負荷が小さい状態が続く条件下では、嫌気、好気運転時
間比を負荷の高い週末と同じモードで運転すると、SR
TまたはASRTが長くなりすぎるため、汚泥中の硝化
菌が死滅.減少し活性が低下する。このような状態から
急激に負荷上昇がおきると、その変化に追従できず処理
機能が低下し水質が悪化する。このような負荷変動が大
きい処理場では、長期にわたって活性を維持し処理機能
を保つことは難しい。 【0011】そこで、本発明は、このような負荷変動が
大きい場合にも十分な機能を発揮することができる活性
汚泥による汚水の処理法を提供しようとするものであ
る。 【0012】 【課題を解決するための手段】本発明者は、上記の問題
点を解決するために鋭意研究を重ねた結果、余剰汚泥と
して反応槽から直接汚泥混合液を引抜くようにし、しか
も流入負荷量に応じた量を引き抜く。その結果、流入負
荷量が大きく変動する場合にはSRTは変化することに
なるが、嫌気処理時間に対する好気処理時間の実質的な
比率を流入負荷量に応じて調節することによって、好気
条件下での反応槽内の固形物の滞留時間(Aerobi
c Solids Retention Time)と
定義されるASRTを一定に制御することで良好な処理
性能が発揮されることを見いだし、本発明をするに至っ
た。 【0013】すなわち、本発明の活性汚泥処理法は、嫌
気、好気を繰返して活性汚泥処理する反応槽に、汚泥混
合液の一部を直接系外に排出する引き抜き手段を設け
て、流入る負荷量に応じて引き抜き余剰汚泥量を調節す
るとともに、併せて嫌気処理時間に対する好気処理時間
の実質的な比率を、流入負荷量に応じて調節することに
より、ASRTを一定に制御するようにしたことを特徴
とするものである。 【0014】本発明での対象となる反応槽の形式は、単
一の反応槽において嫌気と好気を繰返す単槽法と、嫌気
と好気との行える反応槽を複数縦列した嫌気好気循環変
法が好ましい。また、嫌気槽と好気槽とを交互に多段に
並べた多段嫌気好気法にも適用可能である。 【0015】反応槽よりの汚泥混合液の引き抜き手段と
しては、一般的に、反応槽の底部よりポンプにより引き
抜くようにし、嫌気好気循環変法にあっては、最終段の
反応槽より引き抜く。引き抜いた汚泥混合液は余剰汚泥
として系外にある濃縮沈澱池に送り処理される。 【0016】本発明においては、反応槽への流入負荷量
に応じそれに反比例するSRTとなるように、ポンプに
より、汚泥引抜量≒汚泥混合液引き抜き量を調節する。
すなわち、流入負荷量の増大、減少に応じて汚泥引き抜
き量を増大、減少させることになる。 【0017】また、本発明では、反応槽への流入負荷量
に応じ、嫌気処理時間に対する好気処理時間の比率を調
節する。この調節は、一般的に、反応槽内へ空気を送入
して行なう曝気時間と曝気休止時間のどちらか一方また
は両方を調節することで行なうことができる。 【0018】本発明は、上記の汚泥引き抜き量の調節と
好気時間比率の両方の調節を複合して行なうことによっ
て、ASRTを一定に制御しようとするものである。こ
のASRTとは、好気条件下における反応槽内の固形物
の滞留時間(日)である。 SRT=反応槽内の活性汚泥量(反応槽内の固形物量に同じ)(kg)/余剰 汚泥量(kg/日) であり、余剰汚泥を反応槽から直接引き抜くとすれば、 SRT=MLSS×V/(MLSS×Qe) ここで、MLSS:反応槽内の活性汚泥濃度(反応槽内の固形物濃度に同じ )(mg/L) V :反応槽容積(m) Qe:余剰汚泥引き抜き量(m/日) また、 HRT=24xV/Q 本式をVで解くと、 V=(Q/24)xHRT したがって、SRTは次式で表される。 SRT=MLSS×(Q/24)×HRT/(MLSS×Qe) =Q×HRT/(Qe×24) ここで、Q:流入汚水量(m/日) HRT:水理学的滞留時間(時間) ASRT=SRT×X ここで、X:好気処理時間比率(−) (1日の中の好気処理時間の割合であり、好気処理時間/24時間) である。すなわち、ASRTとは、活性汚泥の滞留時間
(固形物の滞留時間に同じ)のうち、好気処理を受けて
いる時間(日数)をいうのであり、嫌気好気処理法にお
けるASRTは、引き抜き余剰汚泥量の調節および好気
処理時間の設定により決まるものである(ただし、好気
処理のみの方法では、SRT=ASRTとなる)。 【0019】 【作用】上記構成の本発明によれば、反応槽への流入負
荷量の増減に対応して、反応槽から直接引き抜く汚泥量
の調節と、好気処理時間比の調節とによって、ASRT
が一定となるように制御することにより、負荷変動が大
きい処理場においても、常に良好な処理機能が発揮さ
れ、効率的な汚水処理を達成することができる。 【0020】 【実施例】以下、本発明の実施例について添付した図面
および表を参照して説明する。 【0021】実施例1 (1)本実施例は単槽法への実施を例とするもので、使
用した装置は図1に示すように、単一の反応槽1の中に
汚水の混合撹拌と酸素供給とを行なう水中エアレータ2
を設置し、スイッチの切替えなどによりコンプレッサー
Cからの空気(酸素)の供給、停止を行ない、空気の供
給停止の際は混合撹拌のみを行なえるようにし、それぞ
れ反応槽1内に必要な好気状態と嫌気状態とが交互に形
成できるようになっている。3は沈澱池、4は濃縮沈澱
池で、沈澱池3の汚泥は返送汚泥としてポンプpによ
り反応槽1に戻され、上澄液は系外に流出される。ま
た、反応槽1にはその底部から汚泥混合液を引抜くため
のポンプPが設けられており、引抜かれた混合液は濃
縮沈澱池4に送られ、分離された汚泥は濃縮余剰汚泥と
して排出され、分離水は反応槽1に戻されるようになっ
ている。 【0022】(2)実験条件 表1に示すように、7日
間を1サイクルとして、処理量は、2日間を2.0m
/日とし、他の5日間は1.0m/日に減らすことで
負荷変動をつけた。水質は、時間変動はあるものの、1
日当りで見ると、BODは170mg/L前後、T−N
は25mg/L前後と変らず、反応槽1への負荷はほぼ
水量変動に比例したものになった。1日24時間の中の
流入水量は一定とした。嫌気好気時間比Xは、コンプレ
ッサーからの空気供給をON−OFFすることで調節す
るが、本発明の実験では、負荷の大きい6日目と7日目
は0.5として、60分ON、60分OFFの繰り返し
とし、負荷の小さい1日〜5日目には比率Xを0.25
として30分ON、90分OFFを繰返した。対照実験
では、一律に比率を0.5として60分ON、60分O
FFを7日間のサイクルを通して行った。 【0023】反応槽1から直接引き抜く余剰汚泥量は、
余剰汚泥の発生量が流入水量にほぼ比例することから、
流入水量に比例させて引き抜き量を決定した。すなわ
ち、1〜5日目で0.05m/日、6〜7日目で0.
1m/日とした。その糸吉果、SRTは各々40日と
20日となった。また、嫌気好気時間比Xの設定によ
り、本発明ではASRTは一定の10日、対照実験では
1〜5日目が20日、6〜7日目が10日となった。な
お、返送汚泥は、反応槽内のMLSSがほぼ一定となる
ように流入水量に比例させ、返送比100%とした。 【0024】 【表−1】 【0025】(3)実験成績 上記実験による成績を図
3に示す。本発明では、流入水量が少なく負荷が小さい
場合は好気時間を滅少し、反対に、流入水量が大きく負
荷が大きい場合は好気時間を増加して、ASRTを一定
となるように制御したため、処理水中のNH−N、N
−N濃度は安定して低く、1週間を通して約80%
のT−N除去率が確保された。 【0026】これに対し、対照実験では、低負荷の時は
硝化が進みNH−Nは低下するがNO−Nが多く残
留し、反対に高負荷の時はNH−Nが多く残留する。
このことは、高負荷時に合せた施設の設計を行ない、運
転条件を定めても、負荷変動が大きいと所定の性能を発
揮しないためである。 【0027】この実験例では、本発明と対照実験とで同
一の負荷条件であっても、高負荷時においてNH−N
の硝化率に差が生じている。これは大きな負荷変動条件
下で、硝化菌の活性が高水準に保持されているかどうか
の違いによるものであり、本発明のようにASRTを調
整するために、低負荷時に好気時間を減らすような工夫
をすれば、常に一定量以上の負荷が硝化菌にかかること
になり、次に高負荷時となっても活性が低下しないため
である。 【0028】実施例2 (1)本実施例は嫌気好気循環変法への実施の例とする
もので、使用した装置は図2に示すように、反応槽1
は、多段、この場合は5段に分かれ、1a〜1eと縦列
されており、各槽1a〜1eにそれぞれ撹拌装置5と、
ブロワBからの空気配管7にバルブ8を介して接続され
た水中曝気装置6とが設置されており、バルブ8の開閉
により空気の供給、停止が行なわれ、停止すると嫌気状
態での撹拌が行なわれ、空気を供給すると好気状態とな
るようにされ、終端の槽1eからポンプPにより、始
端の槽1aに液が循環される。汚水は始端の槽1aに供
給され、例えば前半の2槽1a,1bで脱窒反応、後半
の3槽1c,1d,1eで硝化反応が進み、硝化された
混合液の一部が循環され脱窒が生じることになる。汚泥
混合液の引き抜きは終端の槽1eの底部からポンプP
により行なうようになっており、その他の構成について
は実施例1と同様である。 【0029】(2)実験条件 反応槽は各槽1a〜1e
がそれぞれ0.1m(100L)で、全体として0.
5mの容量である。実験条件は表2に示すとおりであ
り、本発明では、流入する負荷量(≒処理水量)に合せ
て余剰汚泥量を増減させるとともに、各槽1a〜1eの
運転方法を嫌気、好気の選択を変更して、反応槽1全体
としての嫌気、好気の時間比率を実質的に調節すること
により、ASRTをほぼ一定(8.4〜9日)に保持し
た。これに対し、対照実験では、余剰汚泥量は同様な調
整を行ったが、各槽1a〜1eの運転方法は、負荷変動
によらず一定とした。その結果として、ASRTは平日
(1〜5日目)で16.8日、週末(6、7日目)で9
日と変化した。 【0030】上記の条件で、約1カ月の馴養を行なった
後、データを採取した。なお、循環液量は、全実験期間
で0.8m/日と一定とした。また、MLSSは、流
入水量に対し、返送比率を100%とした結果、280
0〜3300mg/Lの範囲であった。 【0031】 【表−2】【0032】(3)実験成績 上記実験による成績を表
3に示す。本発明では、負荷変動に影響されず、BO
D,SSおよび窒素は良好に除去できていることがわか
る。これに対し、対照実験では、負荷の小さい平日で
は、BOD,SSの除去は良好であったが、硝化槽(好
気槽)の負荷が過小なため、NH4−Nは良好に処理さ
れたが、硝化循環液中の溶存酸素が高く、この持ち込み
によって、嫌気槽での脱窒が不十分になる結果となっ
た。また、週末においては、本発明と同じ処理条件での
結果でありながら、窒素除去率が劣る結果となった。こ
れは、硝化細菌が平日の低負荷時に、負荷が軽くなりす
ぎ、その活性が低下しているところへ、週末の高負荷が
かかり、それへの対応ができなかったことによる。表3
に示されるように、本発明では、負荷変動に影響され
ず、BOD,SSおよび窒素は良好に除去できた。 【0033】 【表−3】 【0034】 【発明の効果】以上のように、本発明は、流入負荷量に
応じた余剰汚泥の引き抜きを行い、さらに実質的な好気
時間比率を調節することにより、ASRTを一定に制御
するようにしたので、低負荷時における硝化細菌の死滅
もなくその菌体量を適切に保持することができ、大きな
負荷変動にも活性を低下させずに良好な処理ができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating activated sludge in treating sewage such as sewage and industrial wastewater. [0002] Purification of sewage by an activated sludge treatment method is a process in which activated sludge takes up organic matter in sewage as a nutrient source and grows under appropriate dissolved oxygen in a reaction tank. It is carried out by adsorbing and oxidizing the organic substances in it. For this reason, it is important for the design and operation management of the activated sludge treatment method to maintain the equilibrium of the reaction in which the activated sludge in the reaction tank adsorbs and oxidizes the organic matter which is a polluting source and proliferates. [0003] The rate of this reaction depends on various factors such as aeration time, activated sludge amount, and amount of inflowing organic matter. Among these factors, the amount of inflowing organic matter (BO) is a basic factor.
D amount) and the ratio of the activated sludge amount in the reaction tank to “BOD-SS
It is expressed as "load", and each processing method is determined according to the range of this value, and is set as an important parameter in operation management. For example, in the standard activated sludge method, the value of the BOD-SS load is set to 0.1.
2 to 0.4 kg / kg-SS / day, and 0.03 to 0.05 kg / kg-SS / day in the long-time aeration method.
And so on. Therefore, BOD-
We consider it important to keep the SS load constant, and set an appropriate sludge concentration in the reaction tank for this purpose, and manage it by the excess sludge withdrawal amount. The method of managing the sludge concentration in the reaction tank based on the excess sludge withdrawal amount is as follows. The sludge concentration in the tank to be managed is determined by determining an appropriate sludge amount in the tank with respect to the inflow load, and the calculated sludge concentration is calculated. A method of extracting an appropriate amount of excess sludge from the sedimentation basin is used, but the excess sludge concentration is the same as the sludge returned from the sedimentation basin, so it is strongly affected by fluctuations in the amount of inflow water and sludge settling speed, and therefore fluctuations in concentration Is big. The amount of the extracted sludge is a product of the excess sludge concentration and the amount of the extracted sludge (flow rate). In the sewage treatment, the fluctuation of the inflow amount is large, so that the excess sludge concentration fluctuates greatly, and the extracted sludge for securing the predetermined sludge concentration in the tank. Adjusting the volume is extremely difficult. On the other hand, according to recent research results on water treatment, activated sludge treatment is defined as sludge residence time (normal expression), ie, residence time of solid matter (activated sludge) in a reaction tank, rather than BOD-SS load. SRT (Solids
Retention time is considered to be a more fundamental factor, and it has become clear that maintaining this SRT properly is more important. SRT is the ratio of the amount of activated sludge in the reaction tank to the amount of sludge flowing out of the treatment system (the sum of the amount of excess sludge and the amount of treated water SS, which can be approximated by the amount of excess sludge). In the method of pulling out excess sludge from the pond, it is extremely difficult to properly maintain the SRT because the sludge concentration in the pulling-out fluctuates significantly due to fluctuations in the inflow load. Then, in order to solve the above-mentioned drawbacks, the activated sludge treatment method of Japanese Patent Application No. 2-293126 has been proposed as a means for facilitating the adjustment of the SRT. That is, according to the present invention, a pump is installed in a reaction tank for quantitatively feeding a sludge mixture, and the sludge mixture in the reaction tank is quantitatively withdrawn and discharged as sludge out of the treatment system. Is constantly controlled to the set value, and by quantitatively extracting sludge directly from the reaction tank, regardless of the amount of influent wastewater, water quality, and changes in the sludge concentration in the reaction tank and the return sludge concentration This is to keep the SRT constant. [0007] However, the above method is extremely effective when the load fluctuation of the amount of inflowing water and water quality is small, but when the fluctuation of the inflow load is large, for example,
If the load is greatly affected by the tourist population, such as a sewage treatment plant located in a tourist area, and if it is significantly different between weekends and weekdays, the MLSS concentration will fluctuate if the SRT is kept constant, responding to load fluctuations It turns out there is a limit to what you can do. [0008] This is because activated sludge method is, in principle, BOD
Maintaining a constant load per sludge amount, as indicated by -SS load, is the basis for stabilizing the treatment. In general, the design of a treatment facility is designed based on the point of high inflow load, but when the inflow load fluctuation is large and the actual load is small, as in the example of the sightseeing spot mentioned earlier, the SRT is set by the above means. When the operation is performed at a constant level, the MLSS concentration decreases. On the other hand, when the MLSS concentration is constant, the SRT
Changes greatly. Under both of these operating conditions, when the load is extremely reduced on weekdays, the effect on processing is small directly, but when a heavy load is applied on the next weekend, the processing function often does not recover. This tendency is particularly remarkable in a biological denitrification method in which nitrification and denitrification are performed by repeating anaerobic and aerobic. Nitrifying bacteria in the activated sludge maintain their activity under the condition that the amount of cells corresponding to the loading condition is maintained, but it is extremely difficult to maintain the activity corresponding to a large variation in the loading. For example, in a single tank method in which an underwater aerator is installed in a reaction tank and anaerobic and aerobic are repeated, when sludge is extracted in accordance with the inflow load and the operation is performed with the MLSS concentration kept constant, the inflow on weekdays is performed. sewage quantity is small, NH 4 -N
Under the condition where the load is kept small, the anaerobic / aerobic operation time ratio is set to the same mode as the weekend with a high load, and the SR
Nitrogen bacteria in sludge are killed because T or ASRT becomes too long. The activity decreases. If the load suddenly rises from such a state, the change cannot be followed, and the processing function is reduced and the water quality is deteriorated. In a processing plant having such a large load fluctuation, it is difficult to maintain the activity and maintain the processing function for a long time. Accordingly, the present invention is to provide a method for treating wastewater with activated sludge which can exhibit a sufficient function even when such a load fluctuation is large. Means for Solving the Problems The inventor of the present invention has conducted intensive studies to solve the above-mentioned problems, and as a result, the sludge mixture is directly extracted from the reaction tank as excess sludge. Withdraw the amount corresponding to the inflow load. As a result, when the inflow load changes greatly, the SRT changes. However, by adjusting the substantial ratio of the aerobic processing time to the anaerobic processing time in accordance with the inflow load, the aerobic condition is adjusted. Residence time of the solids in the reactor below (Aerobi
It has been found that good processing performance can be exhibited by controlling the ASRT defined as c Solids Retention Time) at a constant level, and the present invention has been accomplished. In other words, according to the activated sludge treatment method of the present invention, a drawing tank for directly discharging a part of the sludge mixture directly out of the system is provided in a reaction tank for performing activated sludge treatment by repeating anaerobic and aerobic treatments. The ASRT is controlled to be constant by adjusting the amount of excess sludge withdrawal according to the load and adjusting the substantial ratio of the aerobic treatment time to the anaerobic treatment time according to the inflow load. It is characterized by having done. [0014] The type of the reaction tank to be used in the present invention is a single tank method in which anaerobic and aerobic are repeated in a single reaction tank, and an anaerobic aerobic circulation in which a plurality of reaction tanks capable of performing anaerobic and aerobic are arranged in tandem. A variant is preferred. Also, the present invention can be applied to a multistage anaerobic aerobic method in which an anaerobic tank and an aerobic tank are alternately arranged in multiple stages. As a means for extracting the sludge mixed liquid from the reaction tank, generally, the mixed liquid is extracted from the bottom of the reaction tank by a pump. In the modified anaerobic and aerobic circulation method, the mixed liquid is extracted from the last reaction tank. The withdrawn sludge mixture is sent to a concentrated sedimentation basin outside the system as excess sludge for treatment. In the present invention, the amount of sludge withdrawn / the amount of sludge mixed solution withdrawn is adjusted by a pump so that the SRT is inversely proportional to the inflow load into the reaction tank.
That is, the sludge withdrawal amount is increased or decreased according to the increase or decrease of the inflow load amount. In the present invention, the ratio of the aerobic treatment time to the anaerobic treatment time is adjusted according to the inflow load into the reaction tank. In general, this adjustment can be performed by adjusting one or both of the aeration time and the aeration pause time performed by feeding air into the reaction tank. The present invention intends to control the ASRT to a constant level by combining the adjustment of the sludge withdrawal amount and the adjustment of the aerobic time ratio. The ASRT is the residence time (days) of solids in the reaction tank under aerobic conditions. SRT = Activated sludge amount in the reaction tank (same as the solid matter amount in the reaction tank) (kg) / Excess sludge amount (kg / day), and if excess sludge is drawn directly from the reaction tank, SRT = MLSS × V / (MLSS × Qe) Here, MLSS: Activated sludge concentration in the reaction tank (same as solid matter concentration in the reaction tank) (mg / L) V: Reaction tank volume (m 3 ) Qe: Excess sludge withdrawal amount (M 3 / day) HRT = 24 × V / Q When this equation is solved by V, V = (Q / 24) × HRT Therefore, SRT is represented by the following equation. SRT = MLSS × (Q / 24) × HRT / (MLSS × Qe) = Q × HRT / (Qe × 24) where Q: inflowing wastewater (m 3 / day) HRT: hydraulic retention time (hour) ASRT = SRT × X where X: aerobic processing time ratio (−) (Aerobic processing time ratio in one day, aerobic processing time / 24 hours). That is, the ASRT refers to the time (days) during which aerobic treatment is performed in the residence time of activated sludge (same as the residence time of solids), and the ASRT in the anaerobic aerobic treatment method is the extraction surplus. It is determined by the adjustment of the amount of sludge and the setting of the aerobic treatment time (however, in a method using only aerobic treatment, SRT = ASRT). According to the present invention having the above-described structure, the sludge amount drawn directly from the reaction tank and the aerobic treatment time ratio can be adjusted according to the increase / decrease of the inflow load into the reaction tank. ASRT
Is controlled to be constant, a good treatment function is always exhibited even in a treatment plant where the load variation is large, and efficient wastewater treatment can be achieved. Embodiments of the present invention will be described below with reference to the accompanying drawings and tables. Example 1 (1) This example is directed to a single-tank method, and the apparatus used is as shown in FIG. Underwater aerator 2 for supplying oxygen and oxygen
To supply and stop the air (oxygen) from the compressor C by switching a switch, etc., so that only the mixing and stirring can be performed when the supply of the air is stopped. The state and the anaerobic state can be alternately formed. 3 sedimentation tank, 4 is a concentrate sedimentation tank, sludge sedimentation 3 is returned to the reaction tank 1 by a pump p 1 as return sludge, supernatant is discharged out of the system. Further, the reaction vessel 1 is a pump P 2 for withdrawing the sludge mixture is provided from the bottom, withdrawn mixture is sent to the concentration sedimentation tank 4, separated sludge as a concentrated excess sludge The discharged water is returned to the reaction tank 1. (2) Experimental Conditions As shown in Table 1, the treatment amount was 2.0 m 3 for two days, with one cycle being seven days.
/ Day, and for the other 5 days, the load was changed by reducing the load to 1.0 m 3 / day. Water quality varies with time,
When viewed on a daily basis, BOD is around 170 mg / L, T-N
Was about 25 mg / L, and the load on the reaction tank 1 became almost proportional to the fluctuation in the amount of water. The amount of inflow water during 24 hours a day was constant. The anaerobic-aerobic time ratio X is adjusted by turning on / off the air supply from the compressor. In the experiment of the present invention, the 0.5 day is set to 0.5 on the 6th and 7th days when the load is large, and the 60 minute ON, OFF is repeated for 60 minutes, and the ratio X is set to 0.25 on the first to fifth days when the load is small.
ON for 30 minutes and OFF for 90 minutes were repeated. In the control experiment, the ratio was uniformly set to 0.5, and ON for 60 minutes and O for 60 minutes.
FF was performed through a 7 day cycle. The amount of excess sludge directly withdrawn from the reaction tank 1 is as follows:
Since the amount of excess sludge generated is almost proportional to the amount of inflow water,
The withdrawal amount was determined in proportion to the inflow water amount. That is, 0.05 m 3 / day on the 1st to 5th days, and 0.1 m 3 / day on the 6th to 7th days.
1 m 3 / day. The Itoyoshika and SRT were 40 and 20 days, respectively. In addition, by setting the anaerobic-aerobic time ratio X, in the present invention, the ASRT was constant at 10 days, and in the control experiment, 1 to 5 days was 20 days, and 6 to 7 days was 10 days. The returned sludge was made proportional to the amount of inflow water so that the MLSS in the reaction tank was almost constant, and the return ratio was 100%. [Table 1] (3) Experimental Results The results of the above experiments are shown in FIG. In the present invention, when the amount of inflow water is small and the load is small, the aerobic time is reduced. Conversely, when the amount of inflow water is large and the load is large, the aerobic time is increased so that the ASRT is controlled to be constant. NH 4 -N in the treated water, N
O x -N concentration is low and stable, approximately 80% throughout the week
TN removal rate was secured. On the other hand, in the control experiment, when the load is low, nitrification proceeds and NH 4 -N decreases, but a large amount of NO x -N remains. On the contrary, when the load is high, a large amount of NH 4 -N remains. I do.
This is because even if the facility is designed for a high load and the operating conditions are determined, the predetermined performance is not exhibited if the load fluctuation is large. In this experimental example, even under the same load conditions in the present invention and the control experiment, NH 4 -N
There is a difference in the nitrification rate of This is due to the difference in whether the activity of nitrifying bacteria is maintained at a high level under a large load fluctuation condition. In order to adjust the ASRT as in the present invention, it is necessary to reduce the aerobic time at a low load. This is because, if a proper measure is taken, a load of a certain amount or more will always be applied to the nitrifying bacteria, and the activity will not decrease even when the load becomes high next time. Example 2 (1) This example is an example of a modified anaerobic / aerobic circulation method, and the apparatus used is a reaction tank 1 as shown in FIG.
Is divided into multiple stages, in this case, five stages, and is cascaded with 1a to 1e.
An underwater aeration device 6 connected to the air pipe 7 from the blower B via a valve 8 is installed. Supply and stop of air are performed by opening and closing the valve 8, and when stopped, anaerobic stirring is performed. which is to be the aerobic state and for supplying air by a pump P 3 from the end of the vessel 1e, the liquid is circulated to the starting end of the vessel 1a. The sewage is supplied to the starting tank 1a. For example, the denitrification reaction proceeds in the first two tanks 1a and 1b, and the nitrification reaction proceeds in the second three tanks 1c, 1d and 1e, and a part of the nitrified mixture is circulated and desorbed. Nitrogen will form. The sludge mixture is withdrawn by pump P 2 from the bottom of the last tank 1e.
The other configuration is the same as that of the first embodiment. (2) Experimental conditions The reaction tanks were each of the tanks 1a to 1e.
Are 0.1 m 3 (100 L), respectively, and
Is the capacity of 5m 3. The experimental conditions are as shown in Table 2. In the present invention, the amount of excess sludge is increased or decreased in accordance with the inflow load (≒ treated water amount), and the operation method of each of the tanks 1a to 1e is selected between anaerobic and aerobic. Was changed to substantially adjust the time ratio of anaerobic and aerobic conditions in the entire reaction tank 1 to keep the ASRT almost constant (8.4 to 9 days). On the other hand, in the control experiment, the amount of excess sludge was adjusted in the same manner, but the operation method of each of the tanks 1a to 1e was constant regardless of the load variation. As a result, the ASRT was 16.8 days on weekdays (days 1 to 5) and 9 on weekends (days 6 and 7).
The day has changed. After acclimatization for about one month under the above conditions, data was collected. The amount of circulating fluid was constant at 0.8 m 3 / day during the entire experiment. In addition, the MLSS calculated that the return ratio was 100% of the
The range was from 0 to 3300 mg / L. [Table 2] (3) Experimental Results Table 3 shows the results of the above experiments. In the present invention, BO is not affected by load fluctuation.
It can be seen that D, SS and nitrogen were successfully removed. On the other hand, in the control experiment, on weekdays with a small load, the removal of BOD and SS was good, but the load on the nitrification tank (aerobic tank) was too small, so that NH 4 -N was well treated. However, the dissolved oxygen in the nitrification circulating fluid was high, and this brought in that the denitrification in the anaerobic tank became insufficient. On the weekend, the results were obtained under the same processing conditions as the present invention, but the nitrogen removal rate was poor. This is due to the fact that when the nitrifying bacteria were lightly loaded on weekdays, the load became too light and their activity was reduced, and a high load was applied on the weekend, and it was not possible to cope with the load. Table 3
As shown in Table 2, in the present invention, BOD, SS and nitrogen were successfully removed without being affected by load fluctuation. [Table 3] As described above, according to the present invention, the excess sludge is extracted according to the inflow load, and the ASRT is controlled to be constant by adjusting the substantial aerobic time ratio. As a result, the amount of nitrifying bacteria can be appropriately maintained without death of the nitrifying bacteria at a low load, and good treatment can be performed without reducing the activity even under a large load fluctuation.

【図面の簡単な説明】 【図1】本発明方法の実施例に適用する装置の概要図で
ある。 【図2】同他の装置の概要図である。 【図3】実施例1の実験成績を示す図である。 【符号の説明】 1 1a〜1e 反応槽 2 水中エアレータ 3 沈澱池 4 濃縮沈澱池 5 撹拌装置 6 水中曝気装置 7 空気配管 8 バルブ B ブロワ C コンプレッサー P〜P ポンプ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an apparatus applied to an embodiment of the method of the present invention. FIG. 2 is a schematic diagram of another device. FIG. 3 is a diagram showing experimental results of Example 1. [Reference Numerals] 1 1 a to 1 e reaction vessel 2 water aerator 3 sedimentation tank 4 and concentrated sedimentation basin 5 stirrer 6 underwater aeration device 7 air pipe 8 valve B Blower C compressor P 1 to P 3 pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川内 正六 大阪市此花区四貫島2丁目26番7号 阪 神動力機械 株式会社内 (56)参考文献 特開 平4−166295(JP,A) (58)調査した分野(Int.Cl.6,DB名) C02F 3/30 C02F 3/34 C02F 3/12──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shoroku Kawauchi 2-26-7 Shinkanjima, Konohana-ku, Osaka Hanshin Power Machinery Co., Ltd. (56) References JP-A-4-166295 (JP, A) (58) ) Surveyed field (Int.Cl. 6 , DB name) C02F 3/30 C02F 3/34 C02F 3/12

Claims (1)

(57)【特許請求の範囲】 嫌気、好気を繰り返して活性汚泥処理する反応槽に、汚
泥混合液の一部を直接系外に排出する引き抜き手段を設
け、流入水量の増大、減少にほぼ比例して汚泥混合液の
引き抜き量の増減を調節し、それによって変化したSR
Tに対し、嫌気処理時間に対する好気処理時間の実質的
な比率となる1日の中の好気処理時間の割合を、流入負
荷量が小さい時には小さく、大きい時には大きく調節す
ることにより、ASRTを一定に制御するようにしたこ
とを特徴とする、汚水の活性汚泥処理法。
(57) All Claims anaerobic, the reaction vessel to the activated sludge process is repeated aerobic, withdrawal means for discharging a portion of the sludge mixture directly out of the system provided, increase of the inflow water amount, almost reduced Proportion of sludge mixture
Adjust the increase / decrease of the withdrawal amount, and thereby change the SR
Substantially the aerobic processing time for the anaerobic processing time for T
Ratio of aerobic processing time in a day
Adjust the load small when the load is small and large when the load is large.
By Rukoto, characterized by being adapted to control the ASRT constant, activated sludge treatment of sewage.
JP17433091A 1991-06-19 1991-06-19 Activated sludge treatment method for sewage Expired - Lifetime JP2841131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17433091A JP2841131B2 (en) 1991-06-19 1991-06-19 Activated sludge treatment method for sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17433091A JP2841131B2 (en) 1991-06-19 1991-06-19 Activated sludge treatment method for sewage

Publications (2)

Publication Number Publication Date
JPH04371295A JPH04371295A (en) 1992-12-24
JP2841131B2 true JP2841131B2 (en) 1998-12-24

Family

ID=15976756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17433091A Expired - Lifetime JP2841131B2 (en) 1991-06-19 1991-06-19 Activated sludge treatment method for sewage

Country Status (1)

Country Link
JP (1) JP2841131B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061503A1 (en) * 1999-04-13 2000-10-19 N.S. Consultants Ltd. Soil water activated sludge treating system and method therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289277A (en) * 2005-04-12 2006-10-26 Tsukishima Kikai Co Ltd Nitrate forming nitrification/denitrification method, method for nitrifying/denitrifying ammonia nitrogen-containing liquid and nitrate forming nitrification/denitrification equipment
JP5463952B2 (en) * 2010-02-26 2014-04-09 東レ株式会社 Treatment method of wastewater containing oil
JP6024232B2 (en) * 2012-06-20 2016-11-09 株式会社明電舎 Activated sludge concentration control method
JP6448177B2 (en) * 2013-07-26 2019-01-09 株式会社クボタ Aerobic / anaerobic combined reaction tank and operation method thereof
JP6829585B2 (en) * 2016-11-14 2021-02-10 株式会社日水コン Sewage treatment system and sewage treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061503A1 (en) * 1999-04-13 2000-10-19 N.S. Consultants Ltd. Soil water activated sludge treating system and method therefor

Also Published As

Publication number Publication date
JPH04371295A (en) 1992-12-24

Similar Documents

Publication Publication Date Title
US5182021A (en) Biological process for enhanced removal of ammonia, nitrite, nitrate, and phosphate from wastewater
US7147778B1 (en) Method and system for nitrifying and denitrifying wastewater
US11878926B2 (en) Mainstream deammonification process employing bypass primary effluent and step feeding
JP2659167B2 (en) Sewage denitrification dephosphorization method and apparatus
JP2841131B2 (en) Activated sludge treatment method for sewage
JP4114128B2 (en) Waste water purification apparatus and method
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
US5972220A (en) Pre-thickened aerobic digester system
JP3271521B2 (en) Wastewater nitrogen removal method and apparatus
WO2000061503A1 (en) Soil water activated sludge treating system and method therefor
SG186810A1 (en) Sewage treatment apparatus
JP2912905B1 (en) Denitrification and dephosphorization of organic wastewater
JP2001087793A (en) Method and apparatus for treating waste water
KR100195903B1 (en) Nitrogen and phosphor removal method and device of organic wastewater
KR100416693B1 (en) Method for removing nutrients of domestic sewage using 2 step aeration and an apparatus used therefor
KR0183334B1 (en) Biological treatment of nitrogen from waste water
KR20010091457A (en) A sewage treating method for improving the nitrogen removal and a sewage treating device for the same
JPH1094796A (en) Treatment of waste water and device therefor
JP3327979B2 (en) Septic tank sludge treatment method and equipment
JP2500974B2 (en) Method for denitrifying and dephosphorizing organic wastewater
JPH09141294A (en) Biological nitrogen removing method
KR200289790Y1 (en) An Activated Sludge of Sewage Treating System
KR20000036253A (en) Waste water treatment apparatus
JP3237691B2 (en) Biological treatment method and apparatus
JPH02284695A (en) Treatment of waste water

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111023

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111023

Year of fee payment: 13