JP2810661B2 - Method for producing polyamic acid copolymer - Google Patents
Method for producing polyamic acid copolymerInfo
- Publication number
- JP2810661B2 JP2810661B2 JP62149164A JP14916487A JP2810661B2 JP 2810661 B2 JP2810661 B2 JP 2810661B2 JP 62149164 A JP62149164 A JP 62149164A JP 14916487 A JP14916487 A JP 14916487A JP 2810661 B2 JP2810661 B2 JP 2810661B2
- Authority
- JP
- Japan
- Prior art keywords
- diamine component
- group
- polyamic acid
- aromatic
- acid copolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、ポリイミド樹脂の前駆体であるポリアミド
酸の製造方法に係るものである。さらに詳しくは、極め
て優れた寸法安定性を有し、しかも従来公知のポリイミ
ド樹脂と同様に、優れた機械的諸特性を保持している新
規なポリイミド樹脂の前駆体となるポリアミド酸の製造
方法に係るものである。
(従来技術の説明,発明が解決しようとする問題点)
ポリイミド樹脂は高度の耐熱性、耐薬品性、電気的特
性、機械的特性、その他優れた諸特性を有していること
が知られており、特に耐熱性を有する電気絶縁フィル
ム、電線被膜をはじめとして、各種用途に非常に有用で
あり広く利用されている。しかしながら近年、より優れ
た寸法安定性を有し、しかも伸度等の機械的特性に優れ
たポリイミド樹脂に対する要求が高まってきており、こ
の目的で種々の検討が行われている。例えば、一般式
(I)
[式中,R0は4価の有機基である]
で表される反復単位からなるポリイミド膜は、伸度など
の機械的特性に優れているが、一般に線膨張係数及び湿
度膨張係数が大きく、寸法安定性が悪いことが知られて
いる。一方、一般式(II)
[式中,Rは水素又は一価の置換基,nは1−3の整数,R0
は前記と同様である]
で表される反復単位からなるポリイミド膜は、線膨張係
数及び湿度膨張係数が小さく寸法安定性に優れるもの
の、非常に脆弱であり、フィルムとしての実用性に欠
け、実際に工業的に使用できないという欠点を有してい
た。
また一般式(I)と一般式(II)の反復単位からなる
ランダム共重合ポリイミド膜等も必ずしも満足できる物
性を有していない。
本発明者らは、より優れた寸法安定性を有し、しかも
より優れた機械的諸特性を兼ね備えた新規なポリイミド
膜を見いだすべく鋭意検討の結果本発明に到達した。
(問題点を解決するための手段)
すなわち、本発明は有機溶媒中、全ジアミン成分に対
して10〜90モル%の芳香族ジアミン成分(A)と、この
ジアミン成分(A)に対して40〜99モル%の芳香族テト
ラカルボン酸二無水物を反応させてアミド酸プレポリマ
ーを得、次いでこのアミド酸プレポリマー溶液に全ジア
ミン成分に対して90〜10モル%の芳香族ジアミン成分
(B)を追加添加後、全ジアミン成分と等モルとなるよ
うに、不足分の芳香族テトラカルボン酸二無水物を添加
反応させるポリアミド酸共重合体の製造方法において、
ジアミン成分(A)が4,4′−ジアミノジフェニルエー
テルであり、かつ、ジアミン成分(B)が一般式(II
I)(式中、Rは、水素又はハロゲン原子、ニトロ基、水酸
基、メチル基又はメトキシ基からなる群から選ばれる少
なくとも1種であり、nは、Rが水素である場合には2
〜3であり、Rがハロゲン原子、ニトロ基、水酸基、メ
チル基又はメトキシ基である場合には1〜3の整数であ
る。)
で表わされる芳香族ジアミンであるか、又はジアミン成
分(A)が一般式(III)で表わされる芳香族ジアミン
であり、かつ、ジアミン成分(B)が4,4′−ジアミノ
ジフェニルエーテルであることを特徴とするポリアミド
酸共重合体の製造方法である。このポリアミド酸の溶液
を、流延又は塗布して膜状となしその膜を乾燥すると共
に該ポリアミド酸共重合体を、熱的あるいは化学的に脱
水閉環(イミド化)すると、寸法安定性と機械的性質を
兼ね備えたポリイミド共重合体膜を得ることができる。
本発明に用いる芳香族ジアミン成分(A)としては、
4,4′−ジアミノジフェニルエーテルやパラフェニレン
ジアミン、ジメチルベンジジン、ジメトキシベンジジ
ン、ジアミノパラテルフェニル等があげられる。芳香族
ジアミン成分(B)としては同様なジアミンを用いるこ
とができるがジアミン成分(A)とジアミン成分(B)
とは異なっていることが必要である。
本発明の効果を得るにより好ましい芳香族ジアミン成
分の組合せとしては、4,4′−ジアミノジフェニルエー
テルと次式,
[式中,R,nは前記と同様である]
で示される芳香族ジアミンとの組合せをあげることがで
きる。
上記の式で示される芳香族ジアミンは2種以上を組合
せて用いることも可能である。上記式中、Rは水素原子
又は一価の置換基であるが、置換基としてはハロゲン原
子,ニトロ基、水酸基あるいはメチル基、メトキシ基等
の一価の有機基をあげることができる。
本発明に用いる芳香族テトラカルボン酸無水物として
はピロメリット酸無水物、3,3′,4,4′−ビフェニルテ
トラカルボン酸二無水物、3,3′,4,4′−ベンゾフェノ
ンテトラカルボン酸二無水物、ナフタレン−1,2,5,6,−
テトラカルボン酸二無水物などがあげられ、本発明にお
いてはこれらを単独あるいは混合して用いることができ
る。
本発明においては重合時の単量体の添加方法が重要で
あり、全ジアミン成分に対して10〜90モル%、好ましく
は15〜85モル%、更に好ましくは20〜80モル%の芳香族
ジアミン成分(A)と、この芳香族ジアミン成分(A)
に対して40〜99モル%の芳香族テトラカルボン酸二無水
物とを反応させ、アミド酸プリポリマーを得る。次いで
このアミド酸プレポリマー溶液に、全ジアミン成分に対
して90〜10モル%、好ましくは85〜15モル%、更に好ま
しくは80〜20モル%の芳香族ジアミン成分(B)を追加
添加後、全ジアミン成分と等モルとなるように、不足分
の芳香族テトラカルボン酸二無水物を添加し、反応させ
て本発明のポリアミド酸共重合体を得る。
ポリアミド酸共重合体の生成反応に使用される有機溶
媒としては、例えば、ジメチルスルホキシド、ジエチル
スルホキシドなどのスルホキシド系溶媒、N.N−ジメチ
ルホルムアミド、N,N−ジエチルホルムアミドなどのホ
ルムアミド系溶媒、N,N−ジメチルアセトアミド、N,N−
ジエチルアセトアミドなどのアセトアミド系溶媒、N−
メチル−2−ピロリドン、N−ビニル−2−ピロリドン
などのピロリドン系溶媒、フェノール、o−,m−,又は
p−クレゾール、キシレノール、ハロゲン化フェノー
ル、カテコールなどのフェノール系溶媒、あるいはヘキ
サメチルホスホルアミド、γ−ブチロラクトンなどの有
機極性溶媒を挙げることができる。これらは単独又は混
合物として用いるのが望ましいが、更にはキシレン、ト
ルエンのような芳香族炭化水素の添加も可能である。ま
た、このポリアミド酸共重合体は、前記の有機溶媒中に
5〜40重量%、好ましくは5〜30重量%、更に好ましく
は5〜25重量%溶解されているのが取り扱いの面からも
望ましい。
反応温度は0〜100℃、好ましくは5〜80℃、更に好
ましくは5〜50℃の温度範囲である。
かくして得られたポリアミド酸共重合体溶液からポリ
イミドを得ることができるがこの製造方法としては一般
に公知の二つの方法が可能である。即ち、
(イ)熱的に脱水閉環(イミド化)する方法
(ロ)化学的に脱水閉環(イミド化)する方法がある。
詳しく説明すると、(イ)は例えばポリアミド酸溶液
を加熱ドラム或はエンドレスベルト上に流延し乾燥した
後、自己支持性の膜を得る。これをドラム或はエンドレ
スベルト上から引き剥し、両端を固定し、更に約450〜5
00℃の温度に徐々に加温し、乾燥イミド化し、ポリイミ
ド膜を得る方法である。
(ロ)では例えばポリアミド酸溶液に無水酢酸などの
脱水剤及びピリジン、ピリコン類、キノリン類などの三
級アミン類を混合後、(イ)と同様にしてポリイミド膜
が得られる。
このようにして得られるポリイミド共重合体は、極め
て優れた寸法安定性を有し、しかも従来公知のポリイミ
ド樹脂と同様に、伸度などの機械的特性に優れている。
例えば、一般式(I)や(II)の反復単位を有するポリ
イミドやコポリイミドよりも優れた寸法安定性と機械的
強度を有しているのである。
(実施例)
実施例中、ODAは4,4′−ジアミノジフェニルエーテ
ル、o−TLDはジメチルベンジジン、PMDAは無水ピロメ
リット酸を示す。
伸度は、JIS K−7113に準拠した方法で測定した。線
膨脹係数は、熱機械分析装置[TMA−10,セイコー電子株
式会社製]を用い、10℃/分の条件で測定し、200℃の
値で表した。湿度膨脹係数は、熱機械分析装置[TMA−3
0,島津製作所製]を用い、50℃の温度条件で相対湿度を
20%〜80%まで変化させて測定し、相対湿度20%〜80%
の間の平均値で表した。
比較例1
500ml四ツ口フラスコにODA21.54gを採取し、245.00g
のN,N−ジメチルアセトアミドを加え溶解した。他方、1
00mlナスフラスコにPMDA23.46gを採取し、前記ODA溶液
中に固形状で添加した。さらに、この100mlナスフラス
コ中の壁面に付着残存するPMDAを10.00gのN,N−ジメチ
ルアセトアミドで反応系(四ツ口フラスコ)内へ流し入
れた。更に引き続き1時間撹拌を続け、15重量%のポリ
アミド酸溶液(I)を得た。
一方、500ml四ツ口フラスコにo−TLD 22.20gを採取
し、245.00gのN,N−ジメチルアセトアミドを加え溶解
し、前記と同様の方法に従い22.80gのPMDAを反応させ15
重量%のポリアミド酸溶液(II)を得た。但し、最終の
壁面に付着残存するPMDAは10.00gのN,N−ジメチルアセ
トアミドで反応系(四ツ口フラスコ)内へ流し入れた。
いずれの場合も反応温度は5〜10℃に保ち、また以上の
操作でPMDAの取り扱い及び反応系内は乾燥窒素気流下に
置いた。
次に別途に、前記の方法により得られたポリアミド酸
溶液(I)98.58gを500ml四ツ口フラスコに採取し、更
にポリアミド酸溶液(II)101.42gを混入し、乾燥窒素
気流下5〜10℃で約10分間撹拌した。
得られたポリアミド酸混合溶液をガラス板状に流延塗
布し約100℃にて約60分間乾燥後、ポリアミド酸塗膜を
ガラス板より剥し、その塗膜を支持枠に固定し、その後
約100℃で約30分間、約200℃で約60分間、約300℃で約6
0分間加熱し、脱水閉環乾燥後15〜25ミクロンのポリイ
ミド膜を得た。これらのフィルムは以下の性質を示し
た。
線膨張係数(at 200℃)
0.6×10-5(cm/cm/℃)
湿度膨張係数(at 50℃)
1.0×10-5(cm/cm/RH%)
伸度 10%
比較列2
500ml四ツ口フラスコにODA10.62gとo−TLD 11.26gを
採取し、245.00gのN,N−ジメチルアセトアミドを加え溶
解した。他方、100mlナスフラスコにPMDA23.12gを採取
し、前記ジアミン混合溶液中に固形状で添加した。さら
に、この100mlナスフラスコ中の壁面に付着残存するPMD
Aを10.00gのN,N−ジメチルアセトアミドで反応系(四ツ
口フラスコ)内へ流し入れた。更に引き続き1時間撹拌
を続け、コポリアミド酸溶液を得た。反応温度は5〜10
℃に保った。但し以上の操作でPMDAの取り扱い及び反応
系内は乾燥窒素気流下に置いた。
次に比較例1の方法に従い、このコポリアミド酸溶液
よりコポリイミド膜を得た。このフィルムは以下の性質
を示した。
線膨張係数(at 200℃)
0.7×10-5(cm/cm/℃)
湿度膨張係数(at 50℃)
1.0×10-5(cm/cm/RH%)
伸度 8%
実施例1
500ml四ツ口フラスコに芳香族ジアミン成分(A)と
してODA10.62gを採取し、255.00gのN,N−ジメチルアセ
トアミドを加え溶解した。他方、100mlナスフラスコにP
MDA10.40gを採取し、前記ODA溶液中に固形状で添加し、
そのまま1時間撹拌を続けアミド酸プレポリマー溶液を
得た。次いで、50mlナスフラスコに芳香族ジアミン成分
(B)としてo−TLD 11.26gを採取し、このアミド酸プ
レポリマー溶液に固形状で添加し、添加したo−TLDが
完全に溶解するまで十分に撹拌した後、別途に100mlナ
スフラスコに不足分のPMDA12.72gを採取し、反応系(四
ツ口フラスコ)内へ固形状で添加した。引き続き1時間
撹拌を続けコポリアミド酸溶液を得た。反応温度は5〜
10℃に保った。但し、以上の操作でPMDAの取り扱い及び
反応系内は乾燥窒素気流下に置いた。
得られたコポリアミド酸混合溶液をガラス板状に流延
塗布し約100℃にて約60分間乾燥後、コポリアミド酸塗
膜をガラス板より剥し、その塗膜を支持枠に固定し、そ
の後約150℃で約30分間、約300℃で約60分間加熱し、脱
水閉環乾燥後15〜25ミクロンのポリイミド膜を得た。こ
のフィルムは以下の性質を示した。
線膨張係数(at 200℃)
0.3×10-5(cm/cm/℃)
湿度膨張係数(at 50℃)
0.5×10-5(cm/cm/RH%)
伸度 35%
実施例2
500ml四ツ口フラスコに芳香族ジアミン成分(A)と
してo−TLD11.26gを採取し、255.00gのN,N−ジメチル
アセトアミドを加え溶解した。他方、100mlナスフラス
コにPMDA10.40gを採取し、前記o−TLD溶液中に固形状
で添加し、そのまま1時間撹拌を続けアミド酸プレポリ
マー溶液を得た。次いで、50mlナスフラスコに芳香族ジ
アミン成分(B)としてODA10.62gを採取し、このアミ
ド酸プレポリマー溶液に固形状で添加し、添加したODA
が完全に溶解するまで十分に撹拌した後、別途に100ml
ナスフラスコに不足分のPMDA12.72gを採取し、反応系
(四ツ口フラスコ)内へ固形状で添加した。引き続き1
時間撹拌を続けコポリアミド酸溶液を得た。反応温度は
5〜10℃に保った。但し、以上の操作でPMDAの取り扱い
及び反応系内は乾燥窒素気流下に置いた。
得られたコポリアミド酸混合溶液をガラス板状に流延
塗布し約100℃にて約60分間乾燥後、コポリアミド酸塗
膜をガラス板より剥し、その塗膜を支持枠に固定し、そ
の後約150℃で約10分間、約200℃で約60分間、約300℃
で約60分間加熱し、脱水閉環乾燥後15〜25ミクロンのコ
ポリイミド膜を得た。このフィルムは以下の性質を示し
た。
線膨張係数(at 200℃)
0.3×10-5(cm/cm/℃)
湿度膨張係数(at 50℃)
0.5×10-5(cm/cm/RH%)
伸度 33%
Description: TECHNICAL FIELD The present invention relates to a method for producing a polyamic acid which is a precursor of a polyimide resin. More specifically, in a method for producing a polyamic acid which is a precursor of a novel polyimide resin having extremely excellent dimensional stability, and having excellent mechanical properties, as well as a conventionally known polyimide resin. It is related. (Description of the prior art, problems to be solved by the invention) It is known that polyimide resin has high heat resistance, chemical resistance, electrical properties, mechanical properties, and other excellent properties. In particular, it is very useful and widely used for various applications, particularly for heat-resistant electric insulating films and electric wire coatings. However, in recent years, demands for polyimide resins having more excellent dimensional stability and more excellent mechanical properties such as elongation have been increasing, and various studies have been made for this purpose. For example, the general formula (I) [In the formula, R 0 is a tetravalent organic group.] A polyimide film composed of a repeating unit represented by the formula is excellent in mechanical properties such as elongation, but generally has a large coefficient of linear expansion and a coefficient of humidity expansion. It is known that the dimensional stability is poor. On the other hand, the general formula (II) [Wherein, R is hydrogen or a monovalent substituent, n is an integer of 1-3, R 0
Is the same as the above.] A polyimide film comprising a repeating unit represented by the formula (1) has a small linear expansion coefficient and a low humidity expansion coefficient and is excellent in dimensional stability, but is very fragile and lacks practicality as a film. However, it has a disadvantage that it cannot be used industrially. In addition, a random copolymerized polyimide film composed of repeating units of the general formulas (I) and (II) does not necessarily have satisfactory physical properties. The present inventors have made intensive studies to find a novel polyimide film having better dimensional stability and more excellent mechanical properties, and have reached the present invention. (Means for Solving the Problems) That is, the present invention relates to an organic solvent in which 10 to 90 mol% of an aromatic diamine component (A) based on the total diamine component and 40% based on the diamine component (A). 9999 mol% of an aromatic tetracarboxylic dianhydride is reacted to obtain an amic acid prepolymer, and then 90 to 10 mol% of an aromatic diamine component (B ) After the addition, in the method for producing a polyamic acid copolymer by adding and reacting a shortage of aromatic tetracarboxylic dianhydride so as to be equimolar to all diamine components,
The diamine component (A) is 4,4'-diaminodiphenyl ether, and the diamine component (B) is represented by the general formula (II)
I) Wherein R is at least one selected from the group consisting of hydrogen or a halogen atom, a nitro group, a hydroxyl group, a methyl group and a methoxy group, and n is 2 when R is hydrogen.
And R is an integer of 1 to 3 when R is a halogen atom, a nitro group, a hydroxyl group, a methyl group or a methoxy group. Or the diamine component (A) is an aromatic diamine represented by the general formula (III), and the diamine component (B) is 4,4'-diaminodiphenyl ether. A method for producing a polyamic acid copolymer characterized by the following: This polyamic acid solution is cast or coated to form a film, the film is dried, and the polyamic acid copolymer is thermally or chemically dehydrated and ring-closed (imidized) to obtain dimensional stability and mechanical stability. Can be obtained. The aromatic diamine component (A) used in the present invention includes:
4,4'-diaminodiphenyl ether, paraphenylenediamine, dimethylbenzidine, dimethoxybenzidine, diaminoparaterphenyl and the like can be mentioned. The same diamine can be used as the aromatic diamine component (B), but the diamine component (A) and the diamine component (B)
Must be different from As a more preferable combination of the aromatic diamine components to obtain the effect of the present invention, 4,4′-diaminodiphenyl ether and the following formula: [Wherein, R and n are the same as those described above]. The aromatic diamine represented by the above formula can be used in combination of two or more kinds. In the above formula, R is a hydrogen atom or a monovalent substituent, and examples of the substituent include a halogen atom, a nitro group, a hydroxyl group or a monovalent organic group such as a methyl group or a methoxy group. As the aromatic tetracarboxylic anhydride used in the present invention, pyromellitic anhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid Acid dianhydride, naphthalene-1,2,5,6,-
Examples thereof include tetracarboxylic dianhydrides, and these can be used alone or as a mixture in the present invention. In the present invention, the method of adding the monomer during the polymerization is important, and 10 to 90 mol%, preferably 15 to 85 mol%, more preferably 20 to 80 mol% of the aromatic diamine relative to the total diamine component is used. Component (A) and this aromatic diamine component (A)
With an aromatic tetracarboxylic dianhydride in an amount of from 40 to 99 mol% to obtain an amic acid prepolymer. Next, 90 to 10 mol%, preferably 85 to 15 mol%, more preferably 80 to 20 mol% of the aromatic diamine component (B) is added to the amic acid prepolymer solution based on the total diamine component, Insufficient aromatic tetracarboxylic dianhydride is added and reacted so as to be equimolar to all diamine components to obtain the polyamic acid copolymer of the present invention. Examples of the organic solvent used for the polyamic acid copolymer production reaction include, for example, dimethyl sulfoxide, sulfoxide solvents such as diethyl sulfoxide, NN-dimethylformamide, N, N-formamide solvents such as diethylformamide, N, N -Dimethylacetamide, N, N-
Acetamide solvents such as diethylacetamide, N-
Pyrrolidone solvents such as methyl-2-pyrrolidone and N-vinyl-2-pyrrolidone; phenol solvents such as phenol, o-, m-, or p-cresol, xylenol, halogenated phenols, and catechol; or hexamethylphosphorol Organic polar solvents such as amide and γ-butyrolactone can be mentioned. It is desirable to use these alone or as a mixture, but it is also possible to add aromatic hydrocarbons such as xylene and toluene. The polyamic acid copolymer is preferably dissolved in the organic solvent in an amount of 5 to 40% by weight, preferably 5 to 30% by weight, more preferably 5 to 25% by weight, from the viewpoint of handling. . The reaction temperature is in the range of 0 to 100 ° C, preferably 5 to 80 ° C, more preferably 5 to 50 ° C. A polyimide can be obtained from the polyamic acid copolymer solution thus obtained, and two generally known methods can be used for the production. That is, there are (a) a method of thermally dehydrating a ring-closing (imidization) and (b) a method of chemically dehydrating a ring-closing (imidization). More specifically, (a) is to obtain a self-supporting film after, for example, casting a polyamic acid solution on a heating drum or an endless belt and drying it. Pull it off from the drum or endless belt, fix both ends, and further about 450-5
This is a method in which a polyimide film is obtained by gradually heating to a temperature of 00 ° C. and drying and imidizing. In (b), for example, after mixing a polyamic acid solution with a dehydrating agent such as acetic anhydride and a tertiary amine such as pyridine, pyricons and quinolines, a polyimide film is obtained in the same manner as in (a). The polyimide copolymer obtained in this way has extremely excellent dimensional stability, and is excellent in mechanical properties such as elongation like a conventionally known polyimide resin.
For example, it has better dimensional stability and mechanical strength than a polyimide or copolyimide having a repeating unit of the general formula (I) or (II). (Examples) In the examples, ODA indicates 4,4'-diaminodiphenyl ether, o-TLD indicates dimethylbenzidine, and PMDA indicates pyromellitic anhydride. The elongation was measured by a method based on JIS K-7113. The linear expansion coefficient was measured at 10 ° C./min using a thermomechanical analyzer [TMA-10, manufactured by Seiko Electronics Co., Ltd.] and expressed as a value at 200 ° C. The coefficient of humidity expansion is measured using a thermomechanical analyzer [TMA-3
0, manufactured by Shimadzu Corporation] to measure the relative humidity at 50 ° C.
Measured by changing from 20% to 80%, relative humidity 20% to 80%
It was represented by the average value between. Comparative Example 1 21.54 g of ODA was collected in a 500 ml four-necked flask, and 245.00 g
Of N, N-dimethylacetamide was added and dissolved. On the other hand, 1
23.46 g of PMDA was collected in a 00 ml eggplant flask and added as a solid to the ODA solution. Further, PMDA adhering and remaining on the wall surface in the 100 ml eggplant flask was poured into the reaction system (four-neck flask) with 10.00 g of N, N-dimethylacetamide. Stirring was further continued for 1 hour to obtain a 15% by weight polyamic acid solution (I). On the other hand, 22.20 g of o-TLD was collected in a 500 ml four-necked flask, 245.00 g of N, N-dimethylacetamide was added and dissolved, and reacted with 22.80 g of PMDA according to the same method as described above.
A weight% polyamic acid solution (II) was obtained. However, PMDA adhering and remaining on the final wall surface was poured into the reaction system (four-necked flask) with 10.00 g of N, N-dimethylacetamide.
In each case, the reaction temperature was maintained at 5 to 10 ° C., and the handling of PMDA and the inside of the reaction system were placed under a stream of dry nitrogen by the above operation. Next, separately, 98.58 g of the polyamic acid solution (I) obtained by the above method is collected in a 500 ml four-necked flask, and 101.42 g of the polyamic acid solution (II) is further mixed therein. Stirred at about 10 minutes. The obtained polyamic acid mixed solution was cast-coated on a glass plate and dried at about 100 ° C. for about 60 minutes.Then, the polyamic acid coating film was peeled off from the glass plate, and the coating film was fixed on a support frame. About 30 minutes at about 200 ° C, about 60 minutes at about 200 ° C, about 6 minutes at about 300 ° C
After heating for 0 minutes and dehydration ring closure drying, a polyimide film of 15 to 25 microns was obtained. These films exhibited the following properties: Linear expansion coefficient (at 200 ℃) 0.6 × 10 -5 (cm / cm / ℃) Humidity expansion coefficient (at 50 ℃) 1.0 × 10 -5 (cm / cm / RH%) Elongation 10% Comparative row 2 500ml 4 In a one-necked flask, 10.62 g of ODA and 11.26 g of o-TLD were collected, and dissolved by adding 245.00 g of N, N-dimethylacetamide. On the other hand, 23.12 g of PMDA was collected in a 100 ml eggplant flask, and added in a solid form to the diamine mixed solution. Furthermore, PMD adhering and remaining on the wall surface in this 100 ml eggplant flask
A was poured into the reaction system (four-necked flask) with 10.00 g of N, N-dimethylacetamide. Further, stirring was continued for 1 hour to obtain a copolyamic acid solution. Reaction temperature is 5-10
C. However, with the above operation, the handling of PMDA and the inside of the reaction system were placed under a stream of dry nitrogen. Next, a copolyimide film was obtained from this copolyamic acid solution according to the method of Comparative Example 1. This film exhibited the following properties: Linear expansion coefficient (at 200 ° C) 0.7 × 10 -5 (cm / cm / ° C) Humidity expansion coefficient (at 50 ° C) 1.0 × 10 -5 (cm / cm / RH%) Elongation 8% Example 1 500 ml 10.62 g of ODA as an aromatic diamine component (A) was collected in a one-necked flask, and 255.00 g of N, N-dimethylacetamide was added and dissolved. On the other hand, P
10.40 g of MDA was collected and added as a solid to the ODA solution,
Stirring was continued for 1 hour to obtain an amic acid prepolymer solution. Then, 11.26 g of o-TLD as an aromatic diamine component (B) was collected in a 50 ml eggplant flask, added in a solid state to this amic acid prepolymer solution, and sufficiently stirred until the added o-TLD was completely dissolved. After that, 12.72 g of the insufficient PMDA was separately collected in a 100 ml eggplant flask, and added as a solid to the reaction system (four-neck flask). Subsequently, stirring was continued for 1 hour to obtain a copolyamic acid solution. The reaction temperature is 5
Maintained at 10 ° C. However, in the above operation, the handling of PMDA and the inside of the reaction system were placed under a dry nitrogen stream. The resulting copolyamic acid mixed solution is cast on a glass plate and dried at about 100 ° C. for about 60 minutes.Then, the copolyamic acid coating film is peeled off from the glass plate, and the coating film is fixed to a support frame, and then After heating at about 150 ° C. for about 30 minutes and at about 300 ° C. for about 60 minutes, dehydration ring-closing and drying were performed to obtain a polyimide film of 15 to 25 μm. This film exhibited the following properties: Linear expansion coefficient (at 200 ° C) 0.3 × 10 -5 (cm / cm / ° C) Humidity expansion coefficient (at 50 ° C) 0.5 × 10 -5 (cm / cm / RH%) Elongation 35% Example 2 500 ml 4 11.26 g of o-TLD was collected as an aromatic diamine component (A) in a one-necked flask, and 255.00 g of N, N-dimethylacetamide was added and dissolved. On the other hand, 10.40 g of PMDA was collected in a 100 ml eggplant flask, added in a solid form to the o-TLD solution, and stirred for 1 hour to obtain an amic acid prepolymer solution. Then, 10.62 g of ODA as an aromatic diamine component (B) was collected in a 50 ml eggplant flask, added in a solid form to this amic acid prepolymer solution, and the added ODA was added.
After stirring thoroughly until completely dissolved, separate 100 ml
12.72 g of the insufficient PMDA was collected in an eggplant flask, and added in a solid state to the reaction system (four-neck flask). Continue 1
Stirring was continued for an hour to obtain a copolyamic acid solution. The reaction temperature was kept at 5-10 ° C. However, in the above operation, the handling of PMDA and the inside of the reaction system were placed under a dry nitrogen stream. The resulting copolyamic acid mixed solution is cast on a glass plate and dried at about 100 ° C. for about 60 minutes.Then, the copolyamic acid coating film is peeled off from the glass plate, and the coating film is fixed to a support frame, and then About 150 ° C for about 10 minutes, about 200 ° C for about 60 minutes, about 300 ° C
For about 60 minutes to obtain a copolyimide film of 15 to 25 microns after dehydration ring-closing and drying. This film exhibited the following properties: Linear expansion coefficient (at 200 ℃) 0.3 × 10 -5 (cm / cm / ℃) Humidity expansion coefficient (at 50 ℃) 0.5 × 10 -5 (cm / cm / RH%) Elongation 33%
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−111359(JP,A) 特開 昭60−161429(JP,A) 特開 昭63−254131(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-61-111359 (JP, A) JP-A-60-161429 (JP, A) JP-A-63-254131 (JP, A)
Claims (1)
の芳香族ジアミン成分(A)と、このジアミン成分
(A)に対して40〜99モル%の芳香族テトラカルボン酸
二無水物を反応させてアミド酸プレポリマーを得、次い
でこのアミド酸プレポリマー溶液に全ジアミン成分に対
して90〜10モル%の芳香族ジアミン成分(B)を追加添
加後、全ジアミン成分と等モルとなるように、不足分の
芳香族テトラカルボン酸二無水物を添加反応させるポリ
アミド酸共重合体の製造方法において、ジアミン成分
(A)が4,4′−ジアミノジフェニルエーテルであり、
かつ、ジアミン成分(B)が一般式(III) (式中、Rは、水素又はハロゲン原子、ニトロ基、水酸
基、メチル基又はメトキシ基からなる群から選ばれる基
であり、nは、Rが水素である場合には2〜3であり、
Rがハロゲン原子、ニトロ基、水酸基、メチル基又はメ
トキシ基である場合には1〜3の整数である。) で表わされる芳香族ジアミンであるか、又はジアミン成
分(A)が一般式(III)で表わされる芳香族ジアミン
であり、かつ、ジアミン成分(B)が4,4′−ジアミノ
ジフェニルエーテルであることを特徴とするポリアミド
酸共重合体の製造方法。 2.芳香族テトラカルボン酸二無水物成分が、ピロメリ
ット酸二無水物、ビフェニルテトラカルボン酸二無水物
及びベンゾフェノンテトラカルボン酸二無水物からなる
群から選ばれる酸二無水物である特許請求の範囲第1項
に記載のポリアミド酸共重合体の製造方法。(57) [Claims] 10 to 90 mol% of all diamine components in organic solvent
Of the aromatic diamine component (A) and 40 to 99 mol% of an aromatic tetracarboxylic dianhydride with respect to the diamine component (A) to obtain an amic acid prepolymer. 90 to 10 mol% of the aromatic diamine component (B) is added to the solution, and then the insufficient amount of the aromatic tetracarboxylic dianhydride is added so as to be equimolar to the total diamine component. In the method for producing a polyamic acid copolymer to be reacted, the diamine component (A) is 4,4′-diaminodiphenyl ether,
And the diamine component (B) has the general formula (III) (Wherein, R is a group selected from the group consisting of hydrogen or a halogen atom, a nitro group, a hydroxyl group, a methyl group and a methoxy group, and n is 2-3 when R is hydrogen;
When R is a halogen atom, a nitro group, a hydroxyl group, a methyl group or a methoxy group, it is an integer of 1 to 3. Or the diamine component (A) is an aromatic diamine represented by the general formula (III), and the diamine component (B) is 4,4'-diaminodiphenyl ether. A method for producing a polyamic acid copolymer, characterized in that: 2. The aromatic tetracarboxylic dianhydride component is an acid dianhydride selected from the group consisting of pyromellitic dianhydride, biphenyl tetracarboxylic dianhydride and benzophenone tetracarboxylic dianhydride. 2. The method for producing a polyamic acid copolymer according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62149164A JP2810661B2 (en) | 1987-06-17 | 1987-06-17 | Method for producing polyamic acid copolymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62149164A JP2810661B2 (en) | 1987-06-17 | 1987-06-17 | Method for producing polyamic acid copolymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63314241A JPS63314241A (en) | 1988-12-22 |
JP2810661B2 true JP2810661B2 (en) | 1998-10-15 |
Family
ID=15469195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62149164A Expired - Lifetime JP2810661B2 (en) | 1987-06-17 | 1987-06-17 | Method for producing polyamic acid copolymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2810661B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101429995B1 (en) * | 2013-04-04 | 2014-08-18 | 한서대학교 산학협력단 | A production method of porous polymer catalyst |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6416833A (en) * | 1987-07-10 | 1989-01-20 | Kanegafuchi Chemical Ind | Polyamic acid copolymer, polyimide copolymer therefrom and production thereof |
JPS6416834A (en) * | 1987-07-10 | 1989-01-20 | Kanegafuchi Chemical Ind | Polyamic acid copolymer, polyimide copolymer therefrom and production thereof |
JPS6416832A (en) * | 1987-07-10 | 1989-01-20 | Kanegafuchi Chemical Ind | Production of polyamic acid copolymer |
US5202412A (en) * | 1990-10-02 | 1993-04-13 | E. I. Du Pont De Nemours And Company | Polyimide copolymer precursors |
US6444783B1 (en) | 2000-12-21 | 2002-09-03 | E. I. Du Pont De Nemours And Company | Melt-processible semicrystalline block copolyimides |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60161429A (en) * | 1984-01-31 | 1985-08-23 | Sumitomo Bakelite Co Ltd | Preparation of heat-resistant resin |
JPS61111359A (en) * | 1984-11-06 | 1986-05-29 | Ube Ind Ltd | Polyamic acid solution composition and polyimide film |
JPS63254131A (en) * | 1987-04-10 | 1988-10-20 | Mitsubishi Electric Corp | Production of aromatic polyimide |
-
1987
- 1987-06-17 JP JP62149164A patent/JP2810661B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101429995B1 (en) * | 2013-04-04 | 2014-08-18 | 한서대학교 산학협력단 | A production method of porous polymer catalyst |
Also Published As
Publication number | Publication date |
---|---|
JPS63314241A (en) | 1988-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2744786B2 (en) | Polyimide with excellent thermal dimensional stability and polyamic acid used for it | |
US5081229A (en) | Polyimide having excellent thermal dimensional stability | |
JPH1036506A (en) | New polyimide composition and polyimide film | |
JP2810661B2 (en) | Method for producing polyamic acid copolymer | |
JP3048690B2 (en) | Method for producing polyimide film | |
JP3048703B2 (en) | Polyamic acid copolymer and polyimide film comprising the same | |
JP2809396B2 (en) | Method for producing polyimide copolymer film | |
JP2955724B2 (en) | Method for producing polyimide film | |
JP2766640B2 (en) | New polyimide copolymer and its production method | |
JP2910796B2 (en) | Polyamic acid copolymer, polyimide film comprising the same, and methods for producing them | |
JP2603927B2 (en) | Manufacturing method of new polyimide resin | |
JP2831867B2 (en) | Polyamic acid copolymer, polyimide copolymer comprising the same, polyimide film, and methods for producing them | |
JP3989650B2 (en) | Polyimide film | |
JP2603928B2 (en) | Novel polyamic acid composition | |
JP3022625B2 (en) | Polyamic acid copolymer, polyimide copolymer comprising the same, polyimide film, and methods for producing them | |
JPH1149857A (en) | Production of polyimide excellent in thermal dimensional stability | |
JP3048702B2 (en) | Polyamic acid copolymer, polyimide copolymer, polyimide film and methods for producing them | |
JP3299777B2 (en) | Polyimide film and method for producing the same | |
JPH04161437A (en) | Polyimide film | |
JP3375346B2 (en) | Polyamic acid and polyimide film and their production method | |
JP2724424B2 (en) | New polyimide polymer film | |
JP4017034B2 (en) | New polyimide film | |
JP2729708B2 (en) | New polyimide polymer film | |
JP2597214B2 (en) | Polyimide siloxane composition and film for coating film formation | |
KR20120073909A (en) | Polyimide film having excellent high temperature stability and substrate for display device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |