JP2806090B2 - Operation control device for refrigeration equipment - Google Patents
Operation control device for refrigeration equipmentInfo
- Publication number
- JP2806090B2 JP2806090B2 JP3199288A JP19928891A JP2806090B2 JP 2806090 B2 JP2806090 B2 JP 2806090B2 JP 3199288 A JP3199288 A JP 3199288A JP 19928891 A JP19928891 A JP 19928891A JP 2806090 B2 JP2806090 B2 JP 2806090B2
- Authority
- JP
- Japan
- Prior art keywords
- opening
- evaporator
- temperature
- outlet
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はチラ―回路の循環液を蒸
発器で冷却するようにした冷凍装置の運転制御装置に係
り、特に蒸発器出口液温の制御精度向上対策に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control device for a refrigeration system in which a circulating fluid in a chiller circuit is cooled by an evaporator, and more particularly to a measure for improving the control accuracy of the evaporator outlet liquid temperature.
【0002】[0002]
【従来の技術】従来より、例えば実開昭49―4004
7号公報に開示される如く、圧縮機,凝縮器,減圧弁及
び蒸発器を順次接続してなる冷媒回路を備え、蒸発器で
チラ―回路の冷却液を冷却するようにした冷凍装置にお
いて、冷媒回路の吐出ラインと減圧弁−蒸発器間の液管
とをバイパス接続するホットガスバイパス路を備えると
ともに、該ホットガスバイパス路に蒸発器の冷媒との熱
交換を行う熱交換器を介設することにより、ホットガス
バイパス量の調節の容易化を図り、もって、全閉型圧縮
機等の低容量型圧縮機を使用した場合にも容量制御を円
滑に行おうとするものは公知の技術である。2. Description of the Related Art Conventionally, for example, Japanese Utility Model Laid-Open No. 49-4004
As disclosed in Japanese Patent Application Publication No. 7-107, there is provided a refrigeration apparatus comprising a refrigerant circuit in which a compressor, a condenser, a pressure reducing valve and an evaporator are sequentially connected, and the evaporator cools a cooling liquid in a chiller circuit. A hot gas bypass path is provided for bypass-connecting the discharge line of the refrigerant circuit and the liquid pipe between the pressure reducing valve and the evaporator, and a heat exchanger for exchanging heat with the refrigerant of the evaporator is provided in the hot gas bypass path. In this way, it is possible to easily adjust the amount of hot gas bypass, and therefore, even when a low-capacity compressor such as a fully-closed compressor is used, the capacity is controlled smoothly by a known technique. is there.
【0003】[0003]
【発明が解決しようとする課題】ところで、近年ウォ―
タ―チリングユニットは産業用として使用されるにした
がい、その出口水温を高い精度で制御することが求めら
れている。ここで、特に中型ないし大型のユニットで、
複数のアンロ―ドステップを有する圧縮機を搭載したも
のでは、蒸発器出口水温の制御が可能であるが、小型の
全閉型圧縮機を搭載したものでは、アンロ―ドステップ
を増大できないため、出口水温を一定に制御することが
困難であった。[Problems to be solved by the invention] By the way, in recent years,
As the reach unit is used for industrial purposes, it is required to control the outlet water temperature with high accuracy. Here, especially for medium to large units,
Equipped with a compressor having a plurality of unload steps, it is possible to control the evaporator outlet water temperature, but with a small fully-closed compressor, the unload step cannot be increased, It was difficult to keep the outlet water temperature constant.
【0004】かかる場合、圧縮機の容量制御によらずに
冷却液の蒸発器出口水温を調節する手段として、例えば
蒸発器出口に冷却液を加熱するヒ―タを設け、いったん
冷却された冷却液の加熱量を調節することにより、蒸発
器出口水温を一定制御することが考えられる。しかし、
その場合、いったん冷却液を過度に冷却し、さらに、ヒ
―タ電力を使用するので、効率が非常に悪くなる。In such a case, as means for adjusting the coolant temperature at the evaporator outlet of the coolant without controlling the capacity of the compressor, for example, a heater for heating the coolant at the evaporator outlet is provided, and the coolant once cooled is provided. It is conceivable to control the evaporator outlet water temperature constant by adjusting the heating amount of the evaporator. But,
In this case, the cooling liquid is once excessively cooled, and furthermore, the heater power is used, so that the efficiency is very poor.
【0005】そこで、上記従来の公報のもののごとく、
圧縮機の容量の代わりにホットガスバイパスで蒸発器の
能力を調節することが考えられるが、上記公報のもので
は、ホットガスバイパス路における蒸発器の冷媒との熱
交換によりバイパスされる冷媒の過熱度等の冷媒状態を
適正に維持することができても、蒸発器出口の水温を一
定制御するのは困難であるという問題があった。一方、
バイパス路に電動膨張弁を配置するか、あるいはバイパ
ス路との分岐点に三方弁を配置して、冷媒のバイパス量
をPID制御することも考えられるが、コントローラが
高価になる。加えて、チラー回路側の負荷が急激に変動
した場合や、水量が変化した場合などには、PIDの設
定値の変更が必要となるが、自動的にPIDの設定値を
変更させる機能はすぐには対応できないため、温度制御
性が乱れたり、水温が安定しない条件下に陥る虞れがあ
った。Therefore, as in the above-mentioned conventional publication,
Although it is conceivable to adjust the capacity of the evaporator by hot gas bypass instead of the capacity of the compressor, in the above publication, the overheating of the refrigerant bypassed by heat exchange with the refrigerant of the evaporator in the hot gas bypass passage is considered. Even if the refrigerant state such as the temperature can be properly maintained, there is a problem that it is difficult to control the water temperature at the evaporator outlet at a constant level. on the other hand,
It is conceivable to arrange an electric expansion valve in the bypass or a three-way valve at a branch point with the bypass to control the bypass amount of the refrigerant by PID, but the controller becomes expensive. In addition, when the load on the chiller circuit fluctuates suddenly or when the amount of water changes, it is necessary to change the set value of the PID. Therefore, there is a possibility that the temperature controllability may be disturbed or the water temperature may be unstable.
【0006】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、蒸発器出口水温を指標としてホット
ガスバイパス量を微細に調節する手段を講ずることによ
り、コストの低減を図りつつ、蒸発器出口の水温を高い
精度でかつ高い安定性でもって一定制御することにあ
る。[0006] The present invention has been made in view of the above point, and an object of the present invention is to reduce the cost while taking measures to finely adjust the hot gas bypass amount using the evaporator outlet water temperature as an index. Another object of the present invention is to constantly control the water temperature at the evaporator outlet with high accuracy and high stability.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
本発明の講じた手段は、図1に示すように、全閉型圧縮
機(1)、凝縮器(2)、減圧機構(3)及び蒸発器
(4)を順次接続してなる冷媒回路(6)を備え、上記
蒸発器(4)でチラ―回路(10)の循環液を冷却する
ようにした冷凍装置を前提とする。[MEANS FOR SOLVING THE PROBLEMS] To achieve the above object
As shown in FIG. 1, the means adopted by the present invention is a refrigerant circuit (FIG. 1) that connects a fully-closed compressor (1), a condenser (2), a pressure reducing mechanism (3), and an evaporator (4) in order. It is assumed that the refrigerating apparatus is provided with 6) and the circulating liquid in the chiller circuit (10) is cooled by the evaporator (4).
【0008】そして、上記冷媒回路(6)の吐出ライン
と減圧機構(3)−蒸発器(4)間の液管とをバイパス
接続するホットガスバイパス路(7)と、該ホットガス
バイパス路(7)に介設され、ホットガスバイパス路
(7)の冷媒バイパス量を調節する流量制御弁(8)と
を設けるものとする。A hot gas bypass path (7) for bypass-connecting the discharge line of the refrigerant circuit (6) and a liquid pipe between the pressure reducing mechanism (3) and the evaporator (4); And a flow control valve (8) for adjusting the refrigerant bypass amount of the hot gas bypass passage (7).
【0009】さらに、冷凍装置の運転制御装置として、
上記チラ―回路(10)の蒸発器(4)出口の液温を検
出する出口温度検出手段(Thw)と、該出口温度検出手
段(Thw)の出力を受け、蒸発器(4)出口の液温をそ
の設定温度と比較して、一定の待機時間毎に、上記流量
制御弁(8)の開度を蒸発器(4)出口の液温が設定温
度よりも低いときには一定開度だけ増大させる一方、蒸
発器(4)の出口液温が設定温度よりも所定温度以上高
いときには一定開度だけ低減するよう制御するととも
に、上記流量制御弁(8)の開度を増大又は低減制御し
た後、上記待機時間よりも短い所定時間内に蒸発器
(4)出口の液温が流量制御弁(8)の開度低減側又は
開度増大側に変化したときには、流量制御弁(8)の開
度を前回の制御で増減した一定開度の半分だけ戻すよう
制御する開度制御手段(20)とを設ける構成としたも
のである。Further, as an operation control device of the refrigeration system,
An outlet temperature detecting means (Thw) for detecting a liquid temperature at the outlet of the evaporator (4) of the chiller circuit (10), and an output of the outlet temperature detecting means (Thw) is supplied to the liquid at the outlet of the evaporator (4). The temperature is compared with the set temperature, and the opening degree of the flow control valve (8) is increased by a certain opening degree every predetermined standby time when the liquid temperature at the outlet of the evaporator (4) is lower than the set temperature. On the other hand, when the outlet liquid temperature of the evaporator (4) is higher than the set temperature by a predetermined temperature or more, control is performed such that the opening degree is reduced by a certain degree.
, After increased or decreased controlling the opening of the flow control valve (8), the opening degree decrease of the evaporator within a short predetermined time than the waiting time (4) outlet of the liquid temperature flow control valve (8) Opening control means (20) for controlling the opening of the flow control valve (8) to return by half of the constant opening which has been increased or decreased in the previous control when the opening changes to the side or the opening increasing side. Things.
【0010】[0010]
【作用】以上の構成により、本発明では、蒸発器(4)
出口の液温が下降して設定温度よりも低くなると、開度
制御手段(20)により、流量制御弁(8)の開度が一
定開度だけ増大するように制御されるので、吐出冷媒の
ホットガスバイパス路(7)側へのバイパス量が増大
し、その結果、圧縮機(1)のロ―ドダウンと同様の効
果により蒸発器(4)の冷却能力が低減する。その後、
蒸発器(4)出口の液温が上昇して、出口水温が設定温
度よりも所定温度以上高くなると、流量制御弁(8)の
開度が一定開度だけ低減するように制御される結果、蒸
発器(4)の冷却能力が増大し、液温が低下して、設定
温度に近づくように制御される。このようにホットガス
バイパス路(7)への冷媒バイパス量を調節すること
で、一定容量型の圧縮機(1)を使用したときにも蒸発
器(4)の能力が調節され、蒸発器(4)出口の液温が
設定温度付近に維持される。According to the present invention, in the present invention, the evaporator (4)
When the liquid temperature at the outlet falls and becomes lower than the set temperature, the opening control means (20) controls the opening of the flow control valve (8) to increase by a constant opening, so that the discharge refrigerant is discharged. The amount of bypass to the hot gas bypass passage (7) increases, and as a result, the cooling capacity of the evaporator (4) decreases due to the same effect as the load down of the compressor (1). afterwards,
When the liquid temperature at the outlet of the evaporator (4) rises and the outlet water temperature becomes higher than the set temperature by a predetermined temperature or more, the opening of the flow rate control valve (8) is controlled to be reduced by a fixed opening. Control is performed so that the cooling capacity of the evaporator (4) increases, the liquid temperature decreases, and approaches the set temperature. By adjusting the refrigerant bypass amount to the hot gas bypass passage (7) in this way, even when the fixed capacity compressor (1) is used, the capacity of the evaporator (4) is adjusted and the evaporator (4) is adjusted. 4) The liquid temperature at the outlet is maintained near the set temperature.
【0011】その場合、全閉型の安価な小型圧縮機で済
むに加えて圧力センサを配置する必要がなく、また、P
ID制御するときのように、チラー回路(10)側の負
荷の急激な変動に対しても高価な設定値変更機能を設け
ることなく対応することが可能になり、コストが低減す
るとともに制御が安定することになる。In this case, it is not necessary to provide a pressure sensor in addition to the need for an inexpensive fully-closed compact compressor.
As in the case of ID control, it is possible to cope with a sudden change in the load on the chiller circuit (10) side without providing an expensive set value changing function, thereby reducing the cost and stabilizing the control. Will do.
【0012】しかも、流量制御弁(8)の開度が増減変
更された後、一定時間よりも短い所定時間内に液温が逆
方向に変化した場合には、前回の制御で増減変更した一
定開度の半分だけ戻すように制御されるので、急激な負
荷の変動等に起因する液温の急激な変化が抑制され、安
定した制御状態が維持される。In addition, when the liquid temperature changes in the reverse direction within a predetermined time shorter than the predetermined time after the opening degree of the flow control valve (8) is changed, the constant is changed by the previous control. Since the control is performed so as to return the opening by half of the opening, a sudden change in the liquid temperature caused by a sudden change in load or the like is suppressed, and a stable control state is maintained.
【0013】[0013]
【実施例】以下、本発明の実施例について、図面に基づ
き説明する。図1は本発明の実施例に係る液体冷却装置
の冷媒配管系統を示し、該液体冷却装置は、工作機械等
を冷却するためのチリングユニット(B)と、該チリン
グユニット(B)の循環液を冷却するための冷凍装置
(A)とからなる。上記冷凍装置(A)は、全閉型の圧
縮機(1)と、該圧縮機(1)から吐出された冷媒を凝
縮,液化するための凝縮器(2)と、該凝縮器(2)で
液化された冷媒を減圧する減圧機構としてのキャピラリ
チュ―ブ(3)と、該キャピラリチュ―ブ(3)で減圧
された冷媒を蒸発させる蒸発器(4)とを冷媒配管
(5)で順次接続してなる冷媒回路(6)を備えてい
る。さらに、上記冷媒回路(6)の吐出ラインとキャピ
ラリチュ―ブ(3)−蒸発器(4)間の液管との間をバ
イパス接続するホットガスバイパス路(7)が設けられ
ており、このホットガスバイパス路(7)にはその流量
を調節する流量制御弁としてのパルス式電動膨張弁
(8)が設けられている。すなわち、該電動膨張弁
(8)は、パルスモ―タでその開度をパルス信号に応じ
て開閉するようになされていて、この開度制御により、
吐出冷媒のホットガスバイパス路(7)側へのバイパス
量を増減調節するようになされている。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a refrigerant piping system of a liquid cooling device according to an embodiment of the present invention. The liquid cooling device includes a chilling unit (B) for cooling a machine tool and the like, and a circulating liquid of the chilling unit (B). And a refrigerating device (A) for cooling the water. The refrigerating apparatus (A) includes a fully-closed compressor (1), a condenser (2) for condensing and liquefying a refrigerant discharged from the compressor (1), and the condenser (2). A capillary tube (3) as a decompression mechanism for decompressing the refrigerant liquefied by the above, and an evaporator (4) for evaporating the refrigerant decompressed by the capillary tube (3) are connected by a refrigerant pipe (5). A refrigerant circuit (6) that is sequentially connected is provided. Further, a hot gas bypass path (7) for bypass-connecting the discharge line of the refrigerant circuit (6) and a liquid pipe between the capillary tube (3) and the evaporator (4) is provided. The hot gas bypass passage (7) is provided with a pulse type electric expansion valve (8) as a flow control valve for adjusting the flow rate. That is, the motor-operated expansion valve (8) is opened and closed by a pulse motor in accordance with a pulse signal.
The bypass amount of the discharged refrigerant to the hot gas bypass path (7) is increased or decreased.
【0014】ここで、上記蒸発器(4)の利用側媒体流
通部には、チリングユニット(B)のチラ―回路(1
0)を循環する冷却液が循環するようになされており、
冷媒回路(6)において凝縮器(2)で付与された冷熱
を蒸発器(4)での熱交換により冷却液に付与し、冷却
液を冷却するようになされている。Here, a chiller circuit (1) of the chilling unit (B) is provided in the use side medium flowing section of the evaporator (4).
0) is circulated through the cooling liquid,
In the refrigerant circuit (6), cold heat given by the condenser (2) is given to the coolant by heat exchange in the evaporator (4) to cool the coolant.
【0015】上記チラ―回路(10)の蒸発器(4)出
口には冷却水の蒸発器(4)出口の水温Twoを検出する
出口水温検出手段としての温度センサ(Thw)が配設さ
れており、この温度センサ(Thw)の信号は冷凍装置
(A)の運転を制御するコントロ―ラ(20)に入力可
能になされている。そして、上記コントロ―ラ(20)
により、温度センサ(Thw)の信号に応じて、ホットガ
スバイパス路(7)の電動膨張弁(8)の開度を制御す
るようになされており、上記コントロ―ラ(20)は請
求項1の発明にいう開度制御手段としての機能を有する
ものである。At the outlet of the evaporator (4) of the chiller circuit (10), a temperature sensor (Thw) as outlet water temperature detecting means for detecting the water temperature Two at the outlet of the cooling water evaporator (4) is provided. The signal from the temperature sensor (Thw) can be input to a controller (20) for controlling the operation of the refrigeration system (A). And the above controller (20)
Thus, the opening degree of the electric expansion valve (8) of the hot gas bypass passage (7) is controlled in accordance with the signal of the temperature sensor (Thw). It has a function as an opening control means according to the invention of the above.
【0016】次に、上記コントロ―ラ(20)の制御内
容について、図2、図3及び図4に基づき説明する。こ
こで、図2はコントローラ(20)の制御内容を示すフ
ロ―チャ―ト、図3(又は図4)の(a)及び(b)は
それぞれ出口水温TWoの変化(ただし、図中破線は入口
水温Tiの変化を示す)及び電動膨張弁(8)の開度変
化を示す。まず、ステップST1で、上記温度センサ
(Thw)で検出される冷却液の出口水温Twoがその設定
温度Ts 以上か否かを判別し、Two≧Ts であれば、ス
テップST2に進んで、以下の手順により圧縮機(1)
のロードアップつまり電動膨張弁(8)の開度低減制御
を行う。Next, the contents of control of the controller (20) will be described with reference to FIGS. Here, FIG. 2 is a flowchart showing the control contents of the controller (20), and (a) and (b) of FIG. 3 (or FIG. 4) show changes in the outlet water temperature TWo, respectively (however, a broken line in the figure indicates 5 shows changes in the inlet water temperature Ti) and changes in the opening of the electric expansion valve (8). First, in step ST1, it is determined whether or not the coolant outlet water temperature Two detected by the temperature sensor (Thw) is equal to or higher than the set temperature Ts. If Two ≧ Ts, the process proceeds to step ST2, and the following process is performed. Compressor by procedure (1)
, Ie, the opening degree reduction control of the electric expansion valve (8).
【0017】まず、ステップST2で、出口水温Twoが
設定温度Ts 以上(n=1)か以下(n=0)かを判別
するためのカウンタnが「1」か否かを判別し、n=1
であればそのままで、n=1でなければステップST3
に進んでカウンタnを「1」にし、ロ―ドアップ用つま
り電動膨張弁(8)の開度低減制御用の第1タイマ(図
示せず)の計時時間t1 をリセットした後、それぞれス
テップST4に進んで、ロ―ドダウン用つまり開度増大
制御用の第2タイマ(図示せず)の計時時間t2 が請求
項1の発明にいう開度増大制御時の所定時間である第3
設定値ΔT3 (ただしΔT3 <ΔT1 )(ΔT1は後述
の第1設定値)に達していないか否かを判別する。First, in step ST2, it is determined whether or not a counter n for determining whether the outlet water temperature Two is equal to or higher than the set temperature Ts (n = 1) or lower (n = 0) is "1". 1
If n = 1, step n3
To reset the counter n to "1", and reset the time t1 of a first timer (not shown) for load-up, that is, for controlling the degree of opening of the electric expansion valve (8), and then go to step ST4. The time t2 of the second timer (not shown) for the load-down, that is, the control for increasing the opening, is the third time which is the predetermined time for the control for increasing the opening according to the first aspect of the present invention.
It is determined whether or not a set value ΔT3 (where ΔT3 <ΔT1) (ΔT1 is a first set value described later) is not reached.
【0018】そして、ステップST4における判別結果
がt2 <ΔT3 でなければ、つまり所定時間ΔT3 を過
ぎていれば、さらにステップST5で、上記第1タイマ
の計時時間t1 が上記請求項1の発明にいう開度低減制
御時の待機時間である第1設定時間ΔT1 以上になるま
で待機した後、第1設定値ΔT1 が経過すると、ステッ
プST6で、第1タイマの計時時間t1 をリセットし
て、ステップST7で、出口水温Twoと設定温度Ts に
一定温度αを加算した値(Ts +α)とを比較し、Two
≧Ts +αになると、ステップST8に進み、電動膨張
弁(8)の開度Pについて、P=P−ΔP1 (ΔP1 は
請求項1の発明にいう開度低減制御時の一定開度であ
る)とし、電動膨張弁(8)の開度を一定開度ΔP1
(例えば100パルス程度の値)だけ低減する(図3の
(a)及び(b)の時刻m3 及びm4 参照)。If the result of the determination in step ST4 is not t2 <ΔT3, that is, if the predetermined time ΔT3 has passed, then in step ST5, the counted time t1 of the first timer is referred to as the invention of claim 1. After waiting until the first set time .DELTA.T1 which is the standby time for the opening degree reduction control becomes equal to or longer than the first set time .DELTA.T1, when the first set value .DELTA.T1 elapses, the timer time t1 of the first timer is reset in step ST6 and the step ST7 is executed. Then, the outlet water temperature Two is compared with a value (Ts + α) obtained by adding the constant temperature α to the set temperature Ts.
If ≧ Ts + α, the process proceeds to step ST8, where P = P−ΔP1 (ΔP1 is a constant opening during the opening reduction control according to the first aspect of the present invention) with respect to the opening P of the electric expansion valve (8). And the opening of the electric expansion valve (8) is set to a constant opening ΔP1
(For example, a value of about 100 pulses) (see times m3 and m4 in FIGS. 3A and 3B).
【0019】また、上記ステップST4の判別結果がt
2 <ΔT3 であれば、つまり前回電動膨張弁(8)の開
度を増大制御してから一定時間ΔT3 が経過していなけ
れば、ステップST9に移行して、上記ステップST7
と同様にTwo≧Ts +αか否かを判別し、Two≧Ts +
αになるまでは上記ステップST5に移行する。そし
て、Two≧Ts +αになると、負荷の急激な変化のため
このままでは過制御になる虞れがあると判断して、ステ
ップST10に進んで、P=P−(ΔP2 /2)とし
て、つまり上記開度増大側の一定開度ΔP2 (本実施例
ではやはり100パルス程度の値である)の半分(した
がって、50パルス程度の値)だけ低減する(図4の
(a)及び(b)の時刻m5 及びm6 参照)。The result of the determination in step ST4 is t
If 2 <ΔT3, that is, if the predetermined time ΔT3 has not elapsed since the previous opening control of the electric expansion valve (8) was increased, the process proceeds to step ST9 and proceeds to step ST7.
In the same manner as above, it is determined whether Two ≧ Ts + α, and Two ≧ Ts +
The process proceeds to step ST5 until α is reached. When Two ≧ Ts + α, it is determined that there is a risk of overcontrol due to a sudden change in load, and the process proceeds to step ST10, where P = P− (ΔP2 / 2), that is, It is reduced by a half (and therefore a value of about 50 pulses) of the constant opening .DELTA.P2 (which is also a value of about 100 pulses in the present embodiment) on the side of increasing the opening (the time shown in FIGS. 4A and 4B). m5 and m6).
【0020】また、上記ステップST1の判別で、Two
≧Ts でないときには、ステップST11に進んで、カ
ウンタnが水温Twoが設定温度TS 以下であることを示
す「0」か否かを判別し、n=0であれば、圧縮機
(1)のロードダウンつまり開度増大制御を行うべく、
ステップST12に進み、第2タイマの計時時間t2 が
開度増大制御時の一定時間ΔT2 以上になるまで待っ
て、t2 ≧ΔT2 になると、ステップST13に進んで
第2タイマの計時時間t2 をリセットした後、ステップ
ST14で、P=P+ΔP2 (ΔP2 は請求項1の発明
にいう開度増大制御時の一定開度である)とし、電動膨
張弁(8)の開度を一定開度ΔP2 だけ増大する(図3
の(a)及び(b)の時刻m1 及びm2 参照)。In the determination in step ST1, Two is determined.
If not ≧ Ts, the process proceeds to step ST11, where the counter n determines whether or not the water temperature Two is “0” indicating that the water temperature Two is equal to or lower than the set temperature TS. If n = 0, the load of the compressor (1) is determined. In order to perform the down, that is, the opening increase control,
The process proceeds to step ST12, and waits until the measured time t2 of the second timer becomes equal to or longer than the predetermined time ΔT2 during the opening degree increase control. Thereafter, in step ST14, P = P + .DELTA.P2 (.DELTA.P2 is a constant opening during the opening increasing control according to the first aspect of the present invention), and the opening of the electric expansion valve (8) is increased by the constant opening .DELTA.P2. (FIG. 3
(See times m1 and m2 in (a) and (b)).
【0021】また、上記ステップST11の判別結果が
n=0でないNOのときには、ステップST15に移行
して、カウンタnを「0」にするとともに第2タイマの
計時時間t2 をリセットし、ステップST16で、第1
タイマの計時時間t1 が請求項1の発明にいう開度増大
側の所定時間である第4設定時間ΔT4 (ただし、ΔT
4 <ΔT2 )に達していないか否かを判別し、t1 <Δ
T4 でなければ上記ステップST12の制御に移行する
一方、t1 <ΔT4 であれば、過制御になる虞れがある
と判断して、ステップST17で、P=P+(ΔP1 /
2) として、電動膨張弁(8)の開度を上記一定開度Δ
P1 の半分だけ開くよう制御する(図4の時刻m7 及び
m8 参照)。If the result of the determination in step ST11 is NO, that is, n = 0, the process proceeds to step ST15, where the counter n is set to "0" and the time t2 of the second timer is reset. , First
The fourth set time count time t1 of the timer is a predetermined time opening increasing side referred to in the invention of claim 1 .DELTA.T4 (However, [Delta] T
4 <ΔT2), it is determined whether or not t1 <ΔT2.
If it is not T4, the process shifts to the control in step ST12. On the other hand, if t1 <ΔT4, it is determined that there is a risk of overcontrol, and in step ST17, P = P + (ΔP1 //
2) Assuming that the opening of the electric expansion valve (8) is the constant opening Δ
Control is performed to open only half of P1 (see times m7 and m8 in FIG. 4).
【0022】したがって、上記実施例では、例えば図3
の(a)及び(b)に示すように、出口水温Twoが下降
して設定温度Ts よりも所定温度α(例えば2(℃)程
度の温度)だけ高い温度(Ts +α)以下に低下して、
さらに設定温度Ts よりも低くなると、開度制御手段と
してのコントロ−ラ(20)により、電動膨張弁(8)
の開度が一定開度ΔP2 だけ増大するように制御される
(図3の時刻m1 及びm2 参照)ので、吐出冷媒のホッ
トガスバイパス路(7)側へのバイパス量が増大し、そ
の結果、圧縮機(1)のロ―ドダウンと同様の効果によ
り蒸発器(4)の冷却能力が低減する。その後、出口水
温Twoが上昇して、出口水温Twoが設定温度Ts よりも
所定温度α以上高くなると、電動膨張弁(8)の開度が
一定開度ΔP1 だけ低減するように制御される(図3の
時刻m3 及びm4 参照)結果、蒸発器(4)の冷却能力
が増大し、水温TWOが低下して、設定温度Ts に近づく
ように制御される。Therefore, in the above embodiment, for example, FIG.
As shown in (a) and (b), the outlet water temperature Two falls and drops below the temperature (Ts + α) higher than the set temperature Ts by a predetermined temperature α (for example, a temperature of about 2 ° C.). ,
Further becomes lower than the set temperature Ts, the in <br/> the opening control unit controller - by La (20), the electric expansion valve (8)
(See times m1 and m2 in FIG. 3), the amount of refrigerant discharged to the hot gas bypass passage (7) increases, and as a result, The cooling capacity of the evaporator (4) is reduced by the same effect as the load down of the compressor (1). Thereafter, when the outlet water temperature Two rises and the outlet water temperature Two becomes higher than the set temperature Ts by a predetermined temperature α or more, the opening of the electric expansion valve (8) is controlled to be reduced by the constant opening ΔP1 (FIG. As a result, the cooling capacity of the evaporator (4) is increased, the water temperature TWO is reduced, and the temperature is controlled so as to approach the set temperature Ts.
【0023】すなわち、このようにホットガスバイパス
路(7)への冷媒バイパス量を調節することで、全閉型
のつまり一定容量型の圧縮機(1)を使用しながらも蒸
発器(4)の能力を調節して、出口水温TWOを設定温度
Ts 付近に維持することが可能になる。That is, by adjusting the bypass amount of the refrigerant to the hot gas bypass path (7) in this way, the evaporator (4) can be used while using a fully closed type, that is, a fixed capacity type compressor (1). , The outlet water temperature TWO can be maintained near the set temperature Ts.
【0024】その場合、圧縮機(1)の容量を例えば多
段のアンロードステップを有するもので制御するものに
比べ、全閉型の安価な小型圧縮機で済むに加えて、圧力
センサを配置する必要がないのでコストの低減を図るこ
とができる。また、電動膨張弁や三方制御弁をPID制
御する場合に比べて、チラー回路(10)側の負荷の急
激な変動に対しても高価な設定値変更機能を設けること
なく対応することができ、よって、コストの低減を図り
つつ制御の安定化を図ることができる。In this case, in addition to a compressor that controls the capacity of the compressor (1) by, for example, one having multiple unloading steps, a fully-closed, inexpensive small-sized compressor is used, and a pressure sensor is arranged. Since there is no need, cost can be reduced. Also, compared to the case where the electric expansion valve or the three-way control valve is controlled by PID, it is possible to cope with a sudden change in the load on the chiller circuit (10) side without providing an expensive set value changing function, Therefore, the control can be stabilized while reducing the cost.
【0025】特に、電動膨張弁(8)の開度を増減変更
後、一定時間(ΔT1 又はΔT2 )よりも短い所定時間
(ΔT3 またはΔT4 )が経過する前に出口水温Twoが
逆方向に変化した場合には、上記一定開度(ΔT3 又は
ΔT4 )の半分だけ前回の制御とは逆向きに変化させる
ことにより、特に、急激な負荷の変動等に起因する出口
水温Twoの急激な変化が抑制され、安定した制御状態が
維持される。よって、著効を発揮することができる。In particular, after the opening degree of the electric expansion valve (8) is increased or decreased, the outlet water temperature Two changes in the opposite direction before a predetermined time (ΔT3 or ΔT4) shorter than a certain time (ΔT1 or ΔT2) elapses. In this case, a sudden change in the outlet water temperature Two caused by a sudden change in load or the like is particularly suppressed by changing the fixed opening (.DELTA.T3 or .DELTA.T4) in a direction opposite to the previous control by half. , A stable control state is maintained. Therefore, a remarkable effect can be exhibited.
【0026】なお、上記実施例では開度増大側と開度低
減側の一定開度ΔT1 及びΔT2 の値をいずれも100
パルス程度と等しい値にしたが、両者は等しくなくても
よいことはいうまでもない。In the above embodiment, the values of the constant openings ΔT1 and ΔT2 on the opening increasing side and the opening decreasing side are all 100.
Although the value is set to be approximately equal to the pulse, it is needless to say that both values need not be equal.
【0027】[0027]
【発明の効果】以上説明したように、本発明によれば、
冷媒回路の蒸発器でチラー回路の循環液を冷却するよう
にした冷凍装置の運転制御装置として、吐出ラインと減
圧機構−蒸発器間の液管とをホットガスバイパス路で接
続し、このホットガスバイパス路の流量制御弁を介設し
ておき、蒸発器出口の液温と設定温度とを比較して、一
定の待機時間ごとに出口液温が設定温度よりも低いとき
には流量制御弁の開度を一定開度だけ増大させて蒸発器
能力を低減させ、出口液温が設定温度よりも所定温度以
上高いときには流量制御弁の開度を一定開度だけ低減さ
せて蒸発器能力を増大させるようにしたので、安価な全
閉型圧縮機を使用することができるとともに、PID制
御のようなコストの増大や、負荷の変動による制御の不
安定を招くことなく蒸発器出口の液温を一定制御するこ
とができ、よって、コストの低減と制御の安定化とを図
ることができる。しかも、流量制御弁の開度を一定開度
だけ増大又は低減させた後、一定の待機時間よりも短い
所定時間内に蒸発器出口の液温が開度低減側又は開度増
大側に変化したときには前回の制御で増大又は低減した
一定開度の半分だけ戻すようにしたので、急激な負荷等
の変化に起因する液温の急激な変化を抑制することがで
きるという著効を発揮することができる。As described above, according to the present invention,
As an operation control device of a refrigerating apparatus in which a circulating liquid in a chiller circuit is cooled by an evaporator in a refrigerant circuit, a discharge gas is connected to a liquid pipe between a decompression mechanism and an evaporator by a hot gas bypass path. A flow control valve in the bypass passage is interposed, and the liquid temperature at the outlet of the evaporator is compared with the set temperature. When the outlet liquid temperature is lower than the set temperature for every predetermined standby time, the opening of the flow control valve is set. The evaporator capacity is reduced by increasing the evaporator capacity by a fixed opening, and when the outlet liquid temperature is higher than the set temperature by a predetermined temperature or more, the opening of the flow control valve is reduced by a certain opening to increase the evaporator capacity. Therefore, an inexpensive fully-closed compressor can be used, and the liquid temperature at the evaporator outlet is controlled to be constant without increasing costs such as PID control and causing control instability due to load fluctuations. Can, so It can be achieved and stability of the reduction and control of costs. Moreover, after increasing or decreasing the opening of the flow control valve by a fixed opening, the liquid temperature at the evaporator outlet changes to the opening decreasing side or the opening increasing side within a predetermined time shorter than the predetermined standby time. sometimes because then returned only half of the predetermined opening degree increased or decreased in the last control, remarkable that that-out <br/> in is possible to suppress the liquid rapid change in temperature due to changes such as a sudden load The effect can be exhibited.
【図1】実施例に係る冷凍装置の冷媒配管系統図であ
る。FIG. 1 is a refrigerant piping system diagram of a refrigeration apparatus according to an embodiment.
【図2】コントロ−ラの制御内容を示すフロ―チャ―ト
図である。FIG. 2 is a flowchart showing control contents of a controller.
【図3】通常条件下における蒸発器出口の水温及び電動
膨張弁開度の変化を示す図である。FIG. 3 is a diagram showing changes in the water temperature at the evaporator outlet and the degree of opening of the electric expansion valve under normal conditions.
【図4】急激な条件変化時における蒸発器出口の水温及
び電動膨張弁開度の変化を示す図である。FIG. 4 is a diagram showing changes in the water temperature at the evaporator outlet and the degree of opening of the electric expansion valve when the conditions change rapidly.
1 圧縮機 2 凝縮器 3 キャピラリチュ―ブ(減圧機構) 4 蒸発器 6 冷媒回路 7 ホットガスバイパス路 8 電動膨張弁(流量制御弁) 10 チラー回路 20 コントロ−ラ(開度制御手段)A 冷凍装置 B チリングユニット DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Capillary tube (decompression mechanism) 4 Evaporator 6 Refrigerant circuit 7 Hot gas bypass 8 Electric expansion valve (flow control valve) 10 Chiller circuit 20 Controller (opening degree control means) A Refrigeration Device B Chilling unit
Claims (1)
圧機構(3)及び蒸発器(4)を順次接続してなる冷媒
回路(6)を備え、上記蒸発器(4)でチラ―回路(1
0)の循環液を冷却するようにした冷凍装置において、 上記冷媒回路(6)の吐出ラインと減圧機構(3)−蒸
発器(4)間の液管とをバイパス接続するホットガスバ
イパス路(7)と、該ホットガスバイパス路(7)に介
設され、ホットガスバイパス路(7)の冷媒バイパス量
を調節する流量制御弁(8)とを備えるとともに、 上記チラ―回路(10)の蒸発器(4)出口の液温を検
出する出口温度検出手段(Thw)と、 該出口温度検出手段(Thw)の出力を受け、蒸発器
(4)出口の液温をその設定温度と比較して、一定の待
機時間毎に、上記流量制御弁(8)の開度を蒸発器
(4)出口の液温が設定温度よりも低いときには一定開
度だけ増大させる一方、蒸発器(4)出口の液温が設定
温度よりも所定温度以上高いときには一定開度だけ低減
するよう制御するとともに、上記流量制御弁(8)の開
度を増大又は低減制御した後、上記待機時間よりも短い
所定時間内に蒸発器(4)出口の液温が流量制御弁
(8)の開度低減側又は開度増大側に変化したときに
は、流量制御弁(8)の開度を前回の制御で増減した一
定開度の半分だけ戻すよう制御する開度制御手段(2
0)とを備えていることを特徴とする冷凍装置の運転制
御装置。1. A refrigerant circuit (6) comprising a fully-closed compressor (1), a condenser (2), a pressure reducing mechanism (3), and an evaporator (4) sequentially connected. ) And the chiller circuit (1)
0) In the refrigeration apparatus for cooling the circulating liquid, the hot gas bypass path (bypass connection) between the discharge line of the refrigerant circuit (6) and the liquid pipe between the pressure reducing mechanism (3) and the evaporator (4). 7) and a flow control valve (8) interposed in the hot gas bypass passage (7) for adjusting a refrigerant bypass amount of the hot gas bypass passage (7). An outlet temperature detecting means (Thw) for detecting the liquid temperature at the outlet of the evaporator (4); receiving the output of the outlet temperature detecting means (Thw), comparing the liquid temperature at the outlet of the evaporator (4) with the set temperature. The opening degree of the flow rate control valve (8) is increased by a constant opening degree at every predetermined standby time when the liquid temperature at the outlet of the evaporator (4) is lower than the set temperature, while the opening degree of the evaporator (4) is increased. The opening is constant when the liquid temperature of the Only controls to reduce, after increased or decreased controlling the opening of the flow control valve (8), an evaporator within a short predetermined time than the waiting time (4) outlet of the liquid temperature flow control valve ( When the opening is changed to the opening decreasing side or the opening increasing side in 8), the opening control means (2) for controlling the opening of the flow control valve (8) to return by half of the constant opening increased or decreased in the previous control.
0). An operation control device for a refrigeration system, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3199288A JP2806090B2 (en) | 1991-08-08 | 1991-08-08 | Operation control device for refrigeration equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3199288A JP2806090B2 (en) | 1991-08-08 | 1991-08-08 | Operation control device for refrigeration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0545027A JPH0545027A (en) | 1993-02-23 |
JP2806090B2 true JP2806090B2 (en) | 1998-09-30 |
Family
ID=16405309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3199288A Expired - Fee Related JP2806090B2 (en) | 1991-08-08 | 1991-08-08 | Operation control device for refrigeration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2806090B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008224189A (en) * | 2007-03-15 | 2008-09-25 | Aisin Seiki Co Ltd | Refrigerating cycle device |
JP5175063B2 (en) * | 2007-05-17 | 2013-04-03 | 株式会社不二工機 | Valve control device |
WO2017098669A1 (en) * | 2015-12-11 | 2017-06-15 | 三菱電機株式会社 | Refrigeration cycle device |
CN113611898A (en) * | 2021-08-09 | 2021-11-05 | 潍柴动力股份有限公司 | Fuel cell engine coolant temperature control method and fuel cell engine |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6176853A (en) * | 1984-09-19 | 1986-04-19 | 富士電機株式会社 | Control system of operation of refrigerator |
JPH01114667A (en) * | 1987-10-27 | 1989-05-08 | Asahi Kogyosha Co Ltd | Cooling-power fine adjustment type cooling unit by hot gas bypass |
JPH0633310Y2 (en) * | 1987-12-04 | 1994-08-31 | 三菱重工業株式会社 | Refrigeration equipment |
-
1991
- 1991-08-08 JP JP3199288A patent/JP2806090B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0545027A (en) | 1993-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4566052B2 (en) | Constant temperature maintenance device. | |
US8875528B2 (en) | Test chamber with temperature and humidity control | |
JP4411870B2 (en) | Refrigeration equipment | |
WO2006075592A1 (en) | Refrigerating device | |
CN109631376A (en) | Screw type water chilling unit and control method and system thereof | |
JPH02275275A (en) | Fluid temperature control system and computer system using the same | |
EP1329677B1 (en) | Transcritical vapor compression system | |
JP2001091087A (en) | Method for controlling refrigerator of absorption heater chiller | |
JP2806090B2 (en) | Operation control device for refrigeration equipment | |
JP2001311567A (en) | Freezer device and environmental test device using the same | |
CN209085106U (en) | Refrigerating system | |
JP2003130428A (en) | Connection type cold/hot water device | |
JP2001012787A (en) | Multi-chamber type air conditioner, having not less than two pieces of bypass line, and bypassing amount control method thereof | |
JPH1137623A (en) | Coolant cooler | |
JP3360362B2 (en) | Refrigeration equipment | |
JPH0914802A (en) | Air conditioner | |
JP4023002B2 (en) | Aircraft cooling system | |
JP3651370B2 (en) | Refrigeration equipment | |
JP2000146357A (en) | Cooling system | |
JP6835116B2 (en) | Refrigeration equipment | |
JP3588144B2 (en) | Operating number control of absorption chillers installed in parallel | |
JPS5919257B2 (en) | How to control the flow rate of a water cooler/heater pump | |
CN116465111A (en) | Refrigerating and circulating flow regulating method for low-temperature system | |
JPH03236580A (en) | Control mechanism for refrigerating machine | |
JP2000310452A (en) | Turbo refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980623 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080724 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090724 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |