JP2803741B2 - Gallium nitride based compound semiconductor electrode forming method - Google Patents

Gallium nitride based compound semiconductor electrode forming method

Info

Publication number
JP2803741B2
JP2803741B2 JP8549293A JP8549293A JP2803741B2 JP 2803741 B2 JP2803741 B2 JP 2803741B2 JP 8549293 A JP8549293 A JP 8549293A JP 8549293 A JP8549293 A JP 8549293A JP 2803741 B2 JP2803741 B2 JP 2803741B2
Authority
JP
Japan
Prior art keywords
gallium nitride
based compound
compound semiconductor
type
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8549293A
Other languages
Japanese (ja)
Other versions
JPH06275868A (en
Inventor
元量 山田
雅之 妹尾
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13860438&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2803741(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP8549293A priority Critical patent/JP2803741B2/en
Publication of JPH06275868A publication Critical patent/JPH06275868A/en
Application granted granted Critical
Publication of JP2803741B2 publication Critical patent/JP2803741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は一般式InXAlYGa
1-X-YN(0≦X<1、0≦Y<1)で表される窒化ガリ
ウム系化合物半導体の電極形成方法に係り、特にn型窒
化ガリウム系化合物半導体、およびp型窒化ガリウム系
化合物半導体とオーミック接触が得られる電極の形成方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the general formula In x Al Y Ga
The present invention relates to a method for forming an electrode of a gallium nitride-based compound semiconductor represented by 1-XYN (0 ≦ X <1, 0 ≦ Y <1), particularly an n-type gallium nitride-based compound semiconductor and a p-type gallium nitride-based compound semiconductor And a method of forming an electrode capable of obtaining ohmic contact with the electrode.

【0002】[0002]

【従来の技術】GaN、GaAlN、InGaN、In
AlGaN等の窒化ガリウム系化合物半導体は{InX
AlYGa1-X-YN(0≦X<1、0≦Y<1)}は直接遷
移を有し、バンドギャップが1.95eV〜6eVまで
変化するため、発光ダイオード、レーザダイオード等、
発光素子の材料として有望視されている。この材料はノ
ンドープの状態、またはSi、Ge等のn型ドーパント
をドープすることによりn型特性を示すことが知られて
いる。一方、p型特性に関しては、最近になってp型ド
ーパントをドープした窒化ガリウム系化合物半導体をp
型とする技術が開発されp型窒化ガリウム系化合物半導
体が実現できるようになってきた。(例えば、特開平2
−257679号公報、特開平3−218325号公
報)
2. Description of the Related Art GaN, GaAlN, InGaN, In
Gallium nitride based compound semiconductor such as AlGaN is {In X
Al Y Ga 1 -XYN (0 ≦ X <1, 0 ≦ Y <1)} has a direct transition and the band gap changes from 1.95 eV to 6 eV.
Promising as a material for light-emitting elements. It is known that this material exhibits n-type characteristics in a non-doped state or by doping with an n-type dopant such as Si or Ge. On the other hand, with regard to p-type characteristics, a gallium nitride-based compound semiconductor doped with a p-type
A technology for forming a mold has been developed, and a p-type gallium nitride-based compound semiconductor has been realized. (See, for example,
-257679, JP-A-3-218325)

【0003】前記したようにp型窒化ガリウム系化合物
半導体が実現可能となると、発光出力の高いp−n接合
型の発光素子が求められる。p−n接合型の発光素子と
した場合、n型窒化ガリウム系化合物半導体、およびp
型窒化ガリウム系化合物半導体に形成される電極が、そ
れらの窒化ガリウム系化合物半導体とオーミック接触し
ていることが必要不可欠である。しかしながら、窒化ガ
リウム系化合物半導体の物性は、未だよく解明されてお
らず、オーミック接触が得ることのできる電極材料は未
だ知られていないのが実状である。
As described above, when a p-type gallium nitride-based compound semiconductor becomes feasible, a pn junction type light emitting device having a high light emission output is required. In the case of a pn junction type light emitting element, an n-type gallium nitride based compound semiconductor and p-type
It is essential that the electrodes formed on the gallium nitride-based compound semiconductors are in ohmic contact with those gallium nitride-based compound semiconductors. However, the physical properties of gallium nitride-based compound semiconductors have not yet been elucidated yet, and in reality, there is no known electrode material capable of obtaining ohmic contact.

【0004】[0004]

【発明が解決しようとする課題】そのため、本発明はこ
のような事情を鑑み成されたものであり、その目的とす
るところは、p−n接合型の窒化ガリウム系化合物半導
体を利用した発光素子の発光出力、発光効率を向上させ
るため、窒化ガリウム系化合物半導体のn型層、および
p型層とオーミック接触が得られる電極の形成方法を提
供することにある。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of such circumstances, and an object thereof is to provide a light emitting device using a pn junction type gallium nitride-based compound semiconductor. In order to improve the luminous output and luminous efficiency of the GaN layer, it is an object of the present invention to provide a method for forming an electrode capable of obtaining ohmic contact with an n-type layer and a p-type layer of a gallium nitride compound semiconductor.

【0005】[0005]

【課題を解決するための手段】本発明の電極形成方法
は、電子キャリア濃度1×1017/cm3以上のn型窒化
ガリウム系化合物半導体、または正孔キャリア濃度1×
1015/cm3以上のp型窒化ガリウム系化合物半導体
に、クロムおよび/またはニッケルを含む合金、または
該金属を付着した後、アニーリングすることを特徴とす
る。
According to the electrode forming method of the present invention, an n-type gallium nitride-based compound semiconductor having an electron carrier concentration of 1 × 10 17 / cm 3 or more, or a hole carrier concentration of 1 × 10 17 / cm 3 is used.
An alloy containing chromium and / or nickel or the metal is deposited on a p-type gallium nitride-based compound semiconductor of 10 15 / cm 3 or more, and then annealed.

【0006】本発明の電極形成方法において、特に重要
なことは、電極を形成するn型窒化ガリウム系化合物半
導体の電子キャリア濃度は1×1017/cm3以上必要と
することである。その濃度が1×1017/cm3より少な
いと、n型層と良好なオーミック接触が得られない。ま
た同じく、電極を形成するp型窒化ガリウム系化合物半
導体の正孔キャリア濃度は1×1015/cm3以上必要と
する。1×1015/cm3よりも少ないと同じくp型層と
良好なオーミック接触が得られない。
In the electrode forming method of the present invention, what is particularly important is that the electron carrier concentration of the n-type gallium nitride compound semiconductor forming the electrode needs to be 1 × 10 17 / cm 3 or more. If the concentration is less than 1 × 10 17 / cm 3 , good ohmic contact with the n-type layer cannot be obtained. Similarly, the hole carrier concentration of the p-type gallium nitride-based compound semiconductor forming the electrode needs to be 1 × 10 15 / cm 3 or more. If it is less than 1 × 10 15 / cm 3 , good ohmic contact with the p-type layer cannot be obtained.

【0007】次に、n型窒化ガリウム系化合物半導体、
およびp型窒化ガリウム系化合物半導体に付着する電極
材料は、クロムおよび/またはニッケルを含む合金、ま
たはその金属にする必要がある。具体的な金属としては
Cr、Niそれぞれ単独、合金としてはAu、Pt、M
o、Ti、In、Gaより選択された少なくとも一種の
金属と、Crとの合金、またはNiとの合金、あるいは
Cr−Ni合金を使用することができ、特にCr、Ni
単独、またはCr−Ni合金、Cr−Au合金、Ni−
Au合金が好ましい。合金のCr、Niの含有率は特に
限定しないが、Cr、Niが多いほど好ましい。
Next, an n-type gallium nitride compound semiconductor,
The electrode material attached to the p-type gallium nitride-based compound semiconductor needs to be an alloy containing chromium and / or nickel or its metal. Specific metals are Cr and Ni alone, and alloys are Au, Pt, M
An alloy of at least one metal selected from o, Ti, In, and Ga with Cr, an alloy of Ni, or a Cr—Ni alloy can be used.
Single or Cr-Ni alloy, Cr-Au alloy, Ni-
Au alloys are preferred. The Cr and Ni contents of the alloy are not particularly limited, but the more Cr and Ni, the better.

【0008】上記電極材料を窒化ガリウム系化合物半導
体に付着させるには、蒸着法を好ましく用いることがで
き、予め合金化しておいた金属、金属単体を蒸着材料と
して付着させることができる。
In order to attach the above-mentioned electrode material to the gallium nitride-based compound semiconductor, an evaporation method can be preferably used, and a metal or a simple metal which has been alloyed in advance can be attached as an evaporation material.

【0009】アニーリングは電極材料と窒化ガリウム系
化合物半導体とをなじませるために行い、好ましく40
0℃以上の温度で行うことにより、上記電極材料をオー
ミック接触させることができる。またアニーリングは好
ましく窒素雰囲気中で行うことにより、窒化ガリウム系
化合物半導体中の窒素が分解して出て行くのを防ぐこと
ができ、結晶性を保つことができる。アニーリング温度
の上限は特に限定しないが、通常1100℃以下で行う
ことが好ましい。1100℃を超えると前記のように窒
化ガリウム系化合物半導体が分解しやすい傾向にあるか
らである。また、p型窒化ガリウム系化合物半導体は、
幅20μm以下で電極材料を付着した後、400℃以上
でアニーリングを行うことにより、p型窒化ガリウム系
化合物半導体の抵抗率が下がり、より好ましいp型を得
ることができる。
Annealing is performed to make the electrode material compatible with the gallium nitride-based compound semiconductor.
By performing the treatment at a temperature of 0 ° C. or higher, the electrode material can be brought into ohmic contact. Further, by performing annealing in a nitrogen atmosphere, nitrogen in the gallium nitride-based compound semiconductor can be prevented from decomposing and leaving, and crystallinity can be maintained. Although the upper limit of the annealing temperature is not particularly limited, it is usually preferable to perform the annealing at 1100 ° C. or lower. If the temperature exceeds 1100 ° C., the gallium nitride-based compound semiconductor tends to be easily decomposed as described above. Further, the p-type gallium nitride based compound semiconductor,
After depositing the electrode material with a width of 20 μm or less, by performing annealing at 400 ° C. or more, the resistivity of the p-type gallium nitride-based compound semiconductor decreases, and a more preferable p-type can be obtained.

【0010】[0010]

【作用】図1は、それぞれ電子キャリア濃度の異なるS
iドープn型GaN層にCr−Ni合金よりなる電極を
付着して、500℃で15分間アニーリングした後、そ
れぞれのCr−Ni電極間の電流電圧特性を測定して、
n型GaN層と電極とのオーミック接触を調べた結果を
比較して示す図である。Aは2×1019/cm3、Bは1
×1018/cm3、Cは1×1017/cm3、Dは6×1016
/cm3の電子キャリア濃度を有するn型GaN層であ
る。A〜Dを比較してもわかるように、電子キャリア濃
度が高いn型GaN層では容易にオーミック接触が得ら
れ、1×1017/cm3ではまだオーミック接触が得られ
ているが、6×1016/cm3では完全に電圧と電流とが
直線関係になく、オーミック接触していないことがわか
る。
FIG. 1 is a schematic diagram showing S carriers having different electron carrier concentrations.
After attaching an electrode made of a Cr-Ni alloy to the i-doped n-type GaN layer and annealing at 500 ° C. for 15 minutes, current-voltage characteristics between the respective Cr-Ni electrodes were measured.
FIG. 6 is a diagram showing a comparison of the results of an examination of ohmic contact between an n-type GaN layer and an electrode. A is 2 × 10 19 / cm 3 , B is 1
× 10 18 / cm 3 , C 1 × 10 17 / cm 3 , D 6 × 10 16
4 is an n-type GaN layer having an electron carrier concentration of / cm 3 . As can be seen by comparing A to D, ohmic contact is easily obtained in the n-type GaN layer having a high electron carrier concentration, and ohmic contact is still obtained at 1 × 10 17 / cm 3 , but 6 × At 10 16 / cm 3 , the voltage and the current were not completely in a linear relationship, indicating that there was no ohmic contact.

【0011】また、図2は、それぞれ正孔キャリア濃度
の異なるMgドープp型GaN層にCr−Ni合金より
なる電極を付着して、同じく500℃で15分間アニー
リングした後、それぞれのCr−Ni電極間の電流電圧
特性を測定して、p型GaN層と電極とのオーミック接
触を調べた結果を比較して示す図である。Eは1×10
17/cm3、Fは1×1016/cm3、Gは1×1015/c
m3、Hは5×1014/cm3の正孔キャリア濃度を有する
p型GaN層である。この図も同様に正孔キャリア濃度
1×1015/cm3付近にオーミック接触の限界値があ
り、それを下回るとオーミック接触を得ることが困難で
あることを示している。
FIG. 2 shows that an electrode made of a Cr—Ni alloy is adhered to Mg-doped p-type GaN layers having different hole carrier concentrations, and annealed at 500 ° C. for 15 minutes. It is a figure which shows the current-voltage characteristic between electrodes, and compares and shows the result of having investigated the ohmic contact of a p-type GaN layer and an electrode. E is 1 × 10
17 / cm 3 , F is 1 × 10 16 / cm 3 , G is 1 × 10 15 / c
m 3 and H are p-type GaN layers having a hole carrier concentration of 5 × 10 14 / cm 3 . This figure also shows that there is a limit value of ohmic contact near the hole carrier concentration of 1 × 10 15 / cm 3 , and it is difficult to obtain ohmic contact below the limit value.

【0012】さらに図3は、正孔キャリア濃度4×10
16/cm3のMgドープp型GaN層にNi−Cr合金を
付着した後、温度を変えて15分間アニーリングした場
合に、そのアニーリング温度によるp型GaN層と、電
極との電流電圧特性の関係をそれぞれ比較して示す図で
ある。Iはアニーリング前、Jは200℃、Kは300
℃、Lは400℃のアニーリング温度を示している。I
〜Lはアニーリング温度とp型GaN層とのオーミック
接触を示す図であるが、アニーリング温度によりp型G
aN層と電極との接触抵抗が減少し傾きが大きくなり、
また電圧に比例して電流値が増加しオーミック接触が得
られていることがわかる。従って、好ましいアニーリン
グ温度は400℃以上である。
FIG. 3 shows a hole carrier concentration of 4 × 10
When a Ni-Cr alloy is deposited on a 16 / cm 3 Mg-doped p-type GaN layer and then annealed at a different temperature for 15 minutes, the relationship between the current-voltage characteristics of the p-type GaN layer and the electrode depending on the annealing temperature FIG. I is before annealing, J is 200 ° C, K is 300
C and L indicate an annealing temperature of 400C. I
L show ohmic contact between the annealing temperature and the p-type GaN layer.
The contact resistance between the aN layer and the electrode decreases and the slope increases,
Also, it can be seen that the current value increases in proportion to the voltage and ohmic contact is obtained. Therefore, the preferred annealing temperature is 400 ° C. or higher.

【0013】[0013]

【実施例】[実施例1]MOCVD法を用い、サファイ
ア基板の上にGaNよりなるバッファ層を約200オン
グストロームと、その上にノンドープのGaN層を2μ
mの膜厚で成長させ、そのGaN層の上にMgをドープ
したGa0.9Al0.1N層を0.2μm成長させる。Mg
ドープGa0.9Al0.1N層成長後、基板をアニーリング
装置に入れ、窒素雰囲気中700℃で10分間アニーリ
ングし、MgドープGa0.9Al0.1N層をさらに低抵抗
化してp型とする。ホール測定の結果、このMgドープ
p型Ga0.9Al0.1N層の正孔キャリア濃度は1×10
17/cm3であった。
[Example 1] Using a MOCVD method, a buffer layer made of GaN was formed on a sapphire substrate by about 200 angstroms, and a non-doped GaN layer was formed thereon by 2 μm.
Then, a Ga0.9Al0.1N layer doped with Mg is grown to a thickness of 0.2 μm on the GaN layer. Mg
After the growth of the doped Ga0.9Al0.1N layer, the substrate is placed in an annealing apparatus and annealed in a nitrogen atmosphere at 700 ° C. for 10 minutes to further reduce the resistance of the Mg-doped Ga0.9Al0.1N layer to a p-type. As a result of the hole measurement, the hole carrier concentration of the Mg-doped p-type Ga0.9Al0.1N layer was 1 × 10
17 / cm 3 .

【0014】次に前記p型Ga0.9Al0.1N層表面にN
i−Au合金を蒸着した後、基板を同じくアニーリング
装置に入れ、窒素雰囲気中、500℃で10分間アニー
リングを行う。アニーリング終了後、電極間の電流電圧
特性を測定して、p型Ga0.9Al0.1N層と電極とのオ
ーミック接触を調べると、図2、Eと同一の直線が得ら
れ、オーミック接触が得られていることが確認された。
Next, N is added to the surface of the p-type Ga0.9Al0.1N layer.
After depositing the i-Au alloy, the substrate is similarly placed in an annealing apparatus and annealed at 500 ° C. for 10 minutes in a nitrogen atmosphere. After the end of the annealing, the current-voltage characteristics between the electrodes were measured, and the ohmic contact between the p-type Ga0.9Al0.1N layer and the electrode was examined. The same straight line as in FIGS. 2 and E was obtained, and the ohmic contact was obtained. It was confirmed that.

【0015】[実施例2]実施例1において、p型Ga
0.9Al0.1N層に蒸着する電極材料をCr−Au合金と
する他は同様にして電極を形成し、電流電圧特性を測定
したところ、同じく、図2、Eと同一の直線が得られ、
オーミック接触が確認された。
[Embodiment 2] In Embodiment 1, p-type Ga
An electrode was formed in the same manner except that the electrode material to be deposited on the 0.9Al0.1N layer was a Cr-Au alloy, and the current-voltage characteristics were measured. Similarly, the same straight line as in FIGS. 2 and E was obtained.
Ohmic contact was confirmed.

【0016】[実施例3]実施例1のノンドープGaN
層の上に、Siをドープしたn型In0.1Ga0.9N層を
0.2μm成長させた後、その上にNiの合金を蒸着し
て電極を付着する。なおこのSiドープIn0.1Ga0.9
N層の電子キャリア濃度は2×1019/cm3であった。
後は実施例1と同様にアニーリングした後、電極間の電
流電圧特性を測定して、Siドープn型In0.1Ga0.9
N層と電極とのオーミック接触を調べたところ、図1、
Aと同一の直線が得られ、オーミック接触が確認され
た。
Embodiment 3 Non-doped GaN of Embodiment 1
After growing a Si-doped n-type In0.1Ga0.9N layer to a thickness of 0.2 μm on the layer, an electrode of Ni is deposited thereon by vapor deposition of a Ni alloy. The Si-doped In0.1Ga0.9
The electron carrier concentration of the N layer was 2 × 10 19 / cm 3 .
Thereafter, after annealing as in Example 1, the current-voltage characteristics between the electrodes were measured, and the Si-doped n-type In0.1Ga0.9
When the ohmic contact between the N layer and the electrode was examined, FIG.
The same straight line as in A was obtained, and ohmic contact was confirmed.

【0017】[実施例4]実施例3において、Siドー
プn型In0.1Ga0.9N層中のSiドープ量を変え、そ
の電子キャリア濃度を1×1018/cm3とする他は同様
にしてNi電極を形成し、電流電圧特性を測定したとこ
ろ図1、Bと同一の直線が得られ、オーミック接触が確
認された。
Example 4 The procedure of Example 3 was repeated, except that the amount of Si doped in the Si-doped n-type In0.1Ga0.9N layer was changed and the electron carrier concentration was 1 × 10 18 / cm 3. When a Ni electrode was formed and current-voltage characteristics were measured, the same straight line as in FIGS. 1 and B was obtained, and ohmic contact was confirmed.

【0018】[0018]

【発明の効果】以上説明したように本発明の方法による
と、n型及びp型の窒化ガリウム系化合物半導体と電極
とのオーミック接触が得られるため、窒化ガリウム系化
合物半導体を積層してp−n接合の発光ダイオード、レ
ーザーダイオード等の発光素子を作成する際、その発光
素子の順方向電圧を下げ、発光効率を向上させることが
でき、産業上の利用価値は多大である。
As described above, according to the method of the present invention, an ohmic contact between the n-type and p-type gallium nitride-based compound semiconductors and the electrodes can be obtained. When a light-emitting element such as an n-junction light-emitting diode or a laser diode is manufactured, the forward voltage of the light-emitting element can be reduced and the luminous efficiency can be improved, which is of great industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 電子キャリア濃度が異なるn型GaN層と電
極との電流電圧特性の関係を比較して示す図。
FIG. 1 is a diagram showing a comparison of current-voltage characteristics between an n-type GaN layer having different electron carrier concentrations and an electrode.

【図2】 正孔キャリア濃度が異なるMgドープp型G
aN層と電極との電流電圧特性の関係を比較して示す
図。
FIG. 2 shows Mg-doped p-type G having different hole carrier concentrations.
FIG. 7 is a diagram showing a comparison of current-voltage characteristics between an aN layer and an electrode.

【図3】 アニーリング温度によるp型GaN層と電極
との電流電圧特性の関係を比較して示す図。
FIG. 3 is a graph showing a comparison of a current-voltage characteristic between a p-type GaN layer and an electrode depending on an annealing temperature.

フロントページの続き (56)参考文献 特開 昭49−29771(JP,A) 特開 平4−213878(JP,A) 特開 平4−68579(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 33/00 H01S 3/18 JICSTファイル(JOIS)Continuation of the front page (56) References JP-A-49-29771 (JP, A) JP-A-4-213878 (JP, A) JP-A-4-68579 (JP, A) (58) Fields investigated (Int .Cl. 6 , DB name) H01L 33/00 H01S 3/18 JICST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ノンドープGaN層の上に成長された、
電子キャリア濃度1×1017/cm3以上のn型窒化ガリ
ウム系化合物半導体に、クロムおよび/またはニッケル
を含む合金またはその金属を付着した後、アニーリング
することにより、その電極とオーミック接触させること
を特徴とする窒化ガリウム系化合物半導体の電極形成方
法。
Claims 1. A method comprising: growing on a non-doped GaN layer;
After attaching an alloy containing chromium and / or nickel or its metal to an n-type gallium nitride-based compound semiconductor having an electron carrier concentration of 1 × 10 17 / cm 3 or more, annealing is performed to bring the electrode into ohmic contact. A method for forming an electrode of a gallium nitride-based compound semiconductor.
【請求項2】 正孔キャリア濃度1×1015/cm3以上
のMgをドープしたp型GaNに、クロムおよび/また
はニッケルを含む合金またはその金属を付着した後、ア
ニーリングすることにより、そのp型GaNの抵抗率を
低下させ、その電極とオーミック接触させることを特徴
とする窒化ガリウム系化合物半導体の電極形成方法。
2. An alloy containing chromium and / or nickel or its metal is attached to p-type GaN doped with Mg having a hole carrier concentration of 1 × 10 15 / cm 3 or more, and then annealed. Forming a gallium nitride-based compound semiconductor electrode by reducing the resistivity of the GaN type GaN and making an ohmic contact with the electrode.
【請求項3】 前記アニーリング温度は400℃以上で
あることを特徴とする請求項1または2に記載の窒化ガ
リウム系化合物半導体の電極形成方法。
3. The method for forming an electrode of a gallium nitride-based compound semiconductor according to claim 1, wherein the annealing temperature is 400 ° C. or higher.
JP8549293A 1993-03-19 1993-03-19 Gallium nitride based compound semiconductor electrode forming method Expired - Lifetime JP2803741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8549293A JP2803741B2 (en) 1993-03-19 1993-03-19 Gallium nitride based compound semiconductor electrode forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8549293A JP2803741B2 (en) 1993-03-19 1993-03-19 Gallium nitride based compound semiconductor electrode forming method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10099585A Division JPH10270757A (en) 1998-04-10 1998-04-10 Electrode for gallium nitride compound semiconductor

Publications (2)

Publication Number Publication Date
JPH06275868A JPH06275868A (en) 1994-09-30
JP2803741B2 true JP2803741B2 (en) 1998-09-24

Family

ID=13860438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8549293A Expired - Lifetime JP2803741B2 (en) 1993-03-19 1993-03-19 Gallium nitride based compound semiconductor electrode forming method

Country Status (1)

Country Link
JP (1) JP2803741B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9617656B2 (en) 2011-07-25 2017-04-11 Toshiba Corporation Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622858B2 (en) * 1993-04-28 2004-09-29 Nichia Corporation Gallium nitride-based III-V group compound semiconductor device and method of producing the same
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP3292044B2 (en) 1996-05-31 2002-06-17 豊田合成株式会社 P-conductivity group III nitride semiconductor electrode pad, device having the same, and device manufacturing method
JP3587224B2 (en) * 1996-07-24 2004-11-10 ソニー株式会社 Ohmic electrode
JP3298436B2 (en) * 1996-12-26 2002-07-02 松下電器産業株式会社 Semiconductor device
JP3794876B2 (en) * 1998-09-09 2006-07-12 松下電器産業株式会社 Manufacturing method of semiconductor device
JP2002353570A (en) * 2001-05-29 2002-12-06 Sharp Corp Iii nitride-based compound semiconductor device and manufacturing method therefor
JP4956928B2 (en) 2004-09-28 2012-06-20 日亜化学工業株式会社 Semiconductor device
JP5180802B2 (en) * 2008-12-18 2013-04-10 株式会社豊田中央研究所 Stacked electrode forming method and semiconductor device including the stacked electrode
JP5488602B2 (en) * 2009-07-22 2014-05-14 独立行政法人産業技術総合研究所 Ohmic electrodes for semiconductor diamond devices
JP6515842B2 (en) * 2016-03-10 2019-05-22 豊田合成株式会社 Semiconductor device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871539B2 (en) 2009-06-10 2014-10-28 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US9142742B2 (en) 2009-06-10 2015-09-22 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US9012953B2 (en) 2009-11-25 2015-04-21 Kabushiki Kaisha Toshiba LED with improved injection efficiency
US8684749B2 (en) 2009-11-25 2014-04-01 Toshiba Techno Center Inc. LED with improved injection efficiency
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US10174439B2 (en) 2011-07-25 2019-01-08 Samsung Electronics Co., Ltd. Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US9617656B2 (en) 2011-07-25 2017-04-11 Toshiba Corporation Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US9070833B2 (en) 2011-08-04 2015-06-30 Kabushiki Kaisha Toshiba Distributed current blocking structures for light emitting diodes
US8981410B1 (en) 2011-09-01 2015-03-17 Kabushiki Kaisha Toshiba Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9299881B2 (en) 2011-09-29 2016-03-29 Kabishiki Kaisha Toshiba Light emitting devices having light coupling layers
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9490392B2 (en) 2011-09-29 2016-11-08 Toshiba Corporation P-type doping layers for use with light emitting devices
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US9123853B2 (en) 2011-11-09 2015-09-01 Manutius Ip, Inc. Series connected segmented LED
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US9391234B2 (en) 2011-11-09 2016-07-12 Toshiba Corporation Series connected segmented LED

Also Published As

Publication number Publication date
JPH06275868A (en) 1994-09-30

Similar Documents

Publication Publication Date Title
JP2803741B2 (en) Gallium nitride based compound semiconductor electrode forming method
KR100879414B1 (en) Group nitride semiconductor with low-impedance ohmic contact
EP1523047B1 (en) Nitride-based semiconductor light emitting device and method of manufacturing the same
JP3739951B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2783349B2 (en) Electrode of n-type gallium nitride-based compound semiconductor layer and method of forming the same
JPH05291621A (en) Electrode material of gallium nitride compound semiconductor
JP4023121B2 (en) N-type electrode, group III nitride compound semiconductor device, method for manufacturing n-type electrode, and method for manufacturing group III nitride compound semiconductor device
WO2003107442A2 (en) Electrode for p-type gallium nitride-based semiconductors
US6734091B2 (en) Electrode for p-type gallium nitride-based semiconductors
JP2005340860A (en) Semiconductor light-emitting element
JP3289617B2 (en) Manufacturing method of GaN-based semiconductor device
JP4494567B2 (en) Method of forming electrode on n-type gallium nitride compound semiconductor layer
JPH10308534A (en) Light transmitting electrode for light emitting semiconductor element and its manufacture
US7005681B2 (en) Radiation-emitting semiconductor component and method for making same
US7122841B2 (en) Bonding pad for gallium nitride-based light-emitting devices
JP3812366B2 (en) Method for producing group III nitride compound semiconductor device
US20050179046A1 (en) P-type electrodes in gallium nitride-based light-emitting devices
KR100308921B1 (en) Epi Structure for Low Ohmic Contact Resistance in p-type GaN-based Semicondutors and Growing Method of Epi Structure for Low Ohmic Contact Resistance Formation
JP2001119065A (en) P-type nitride semiconductor and producing method thereof
US7190076B2 (en) Electrode for p-type Group III nitride compound semiconductor layer and method for producing the same
JP3495544B2 (en) GaN-based semiconductor device and manufacturing method thereof
JPH10270757A (en) Electrode for gallium nitride compound semiconductor
JP3464629B2 (en) P-type contact electrode device and light emitting device
JP3271657B2 (en) Electrode of n-type gallium nitride-based compound semiconductor and method of forming the same
KR20000001665A (en) Blue light emitting element and the manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100717

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100717

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110717

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110717

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 15

EXPY Cancellation because of completion of term