JP2771433B2 - Tube Magnetostrictive Stress Measurement Method - Google Patents

Tube Magnetostrictive Stress Measurement Method

Info

Publication number
JP2771433B2
JP2771433B2 JP5256068A JP25606893A JP2771433B2 JP 2771433 B2 JP2771433 B2 JP 2771433B2 JP 5256068 A JP5256068 A JP 5256068A JP 25606893 A JP25606893 A JP 25606893A JP 2771433 B2 JP2771433 B2 JP 2771433B2
Authority
JP
Japan
Prior art keywords
stress
tube
pipe
core
magnetostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5256068A
Other languages
Japanese (ja)
Other versions
JPH07110270A (en
Inventor
謙司 清水
安雄 小川
▲隆▼司 黒田
禎明 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP5256068A priority Critical patent/JP2771433B2/en
Publication of JPH07110270A publication Critical patent/JPH07110270A/en
Application granted granted Critical
Publication of JP2771433B2 publication Critical patent/JP2771433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、大口径の管の磁歪応力
を測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the magnetostrictive stress of a large-diameter tube.

【0002】[0002]

【従来の技術】磁歪応力測定法は、強磁性材料に荷重が
作用すると透磁率に異方性が生じ、荷重方向の透磁率が
大きくなり、反対に荷重方向と直角方向の透磁率が小さ
くなるので、両透磁率の差を磁歪センサによって検出す
ることによって、主応力の方向および大きさを測定する
手法である。先行技術では、磁歪センサを管の周方向に
移動しつつ、管に作用している応力を測定している。こ
のような測定値は、管が小口径であり、したがって通
常、曲げ変形が卓越し、管の周方向の応力は零またはご
く小さい値であり、したがって磁歪センサの出力は、管
軸方向の応力に対応している。しかしながら管が大口径
のとき、たとえば外径が400mmφ以上であるとき、
管の周方向の応力を無視することができない。このこと
はまた管が小口径であっても、その管が偏平に変形して
いるときにも同様である。かかる場合に、従来の磁歪応
力測定手法では、管軸方向と管周方向の二軸の応力差し
か得られないため、各軸の応力を独立して求めることは
できない。また、管のように応力既知の箇所がない場合
には、二軸応力をそれぞれ求める手法として従来から知
られている剪断応力差分積分法も適用できない。この方
法は、自由端など応力が既知の地点から順次積分を繰返
し、応力を測定したい地点における二軸応力をそれぞれ
求める方法だからである。
2. Description of the Related Art In a magnetostrictive stress measurement method, when a load acts on a ferromagnetic material, anisotropy occurs in the magnetic permeability, and the magnetic permeability in the load direction increases, and conversely, the magnetic permeability in a direction perpendicular to the load direction decreases. Therefore, this method measures the direction and magnitude of the main stress by detecting the difference between the two magnetic permeability with a magnetostrictive sensor. In the prior art, the stress acting on the tube is measured while moving the magnetostrictive sensor in the circumferential direction of the tube. Such measurements indicate that the pipe is of small diameter, and therefore usually has a predominant bending deformation, the circumferential stress of the pipe is zero or negligible, so the output of the magnetostrictive sensor is the axial stress of the pipe. It corresponds to. However, when the pipe has a large diameter, for example, when the outer diameter is 400 mmφ or more,
The stress in the circumferential direction of the pipe cannot be neglected. This is also the case when the tube has a small diameter but the tube is deformed flat. In such a case, the conventional magnetostrictive stress measurement method can only obtain the stress of two axes in the tube axis direction and the tube circumferential direction, so that the stress of each axis cannot be obtained independently. In addition, when there is no location where the stress is known as in the case of a pipe, a conventionally known shear stress difference integration method cannot be applied as a technique for obtaining the biaxial stress. This is because this method is a method in which integration is sequentially repeated from a point where the stress is known, such as a free end, and a biaxial stress at a point where the stress is to be measured is obtained.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、管周
方向および管軸方向の各応力を正確に測定することがで
きるようにした管の磁歪応力測定方法を提供することで
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for measuring magnetostrictive stress in a pipe, which can accurately measure each stress in the circumferential direction and in the axial direction of the pipe.

【0004】[0004]

【課題を解決するための手段】本発明は、測定すべき管
の管軸方向に90度以外の角度で交差する方向に間隔を
あけて一対の磁極を有する第1コアに、励磁コイルを巻
回して配置し、その励磁コイルを交流電力によって励磁
して、前記第1コアの一対の磁極を結ぶ直線に対して垂
直な方向に間隔をあけて一対の磁極を有する第2コアに
検出コイルを巻回して配置して構成される磁歪センサを
用い、磁歪センサを管の周方向に移動して、検出コイル
からの周方向にわたる応力分布に対応する誘導起電力を
測定し、この誘導起電力測定値を、管軸まわりの角度θ
に対応した第1余弦波形で最小2乗法を用いて近似し
て、次の式の係数A1,B1,C1を求め、 f1(θ)=A1+B1cos(θ+C1) この第1余弦波形と誘導起電力の測定値との偏差を、第
1余弦波形の半分の周期を有する第2余弦波形で近似し
て、次の式の係数A2,B2,C2を求め、 f2(θ)=A2+B2cos(2θ+C2) 係数B1,B2および管材料のポアソン比νを用いて管
軸方向応力σ1、管周方向応力σ2を、
According to the present invention, an exciting coil is wound around a first core having a pair of magnetic poles at intervals in a direction intersecting at an angle other than 90 degrees with a tube axis direction of a tube to be measured. The excitation coil is excited by AC power, and a detection coil is provided on a second core having a pair of magnetic poles at intervals in a direction perpendicular to a straight line connecting the pair of magnetic poles of the first core. Using a magnetostrictive sensor that is wound and arranged, the magnetostrictive sensor is moved in the circumferential direction of the tube, and the induced electromotive force corresponding to the stress distribution from the detection coil in the circumferential direction is measured. Value is the angle θ about the pipe axis.
Is approximated using the least-squares method with the first cosine waveform corresponding to the following equation, and the coefficients A1, B1, and C1 of the following equation are obtained. F1 (θ) = A1 + B1cos (θ + C1) The deviation from the measured value is approximated by a second cosine waveform having a half cycle of the first cosine waveform to obtain coefficients A2, B2, and C2 of the following equation: f2 (θ) = A2 + B2cos (2θ + C2) coefficient B1 , B2 and the pipe material's Poisson's ratio ν to calculate the pipe axial stress σ1 and the pipe circumferential stress σ2

【数1】 としてそれぞれ求めることを特徴とする管の磁歪応力測
定方法である。
(Equation 1) This is a method for measuring the magnetostrictive stress of a pipe, wherein

【0005】[0005]

【作用】本発明に従えば、測定すべき管の管軸方向に9
0度以外の角度、たとえば45度で交差する方向に間隔
をあけて一対の磁極を有する第1コアには、交流電力に
よって励磁される励磁コイルが巻回されている。この第
1コアの一対の磁極を結ぶ直線に対して垂直な方向に間
隔をあけて一対の磁極を有する第2コアが設けられる。
この第2コアには検出コイルが巻回される。したがっ
て、検出コイルからの誘導起電力は、管軸方向の応力と
管周方向の応力との差に対応している。こうして、検出
コイルによって管の周方向にわたる応力分布に対応する
誘導起電力を測定する。この応力測定値のうち、管軸ま
わりの角度θに対応した第1余弦波形cosθで、最小
2乗法を用いて近似させて、近似値と測定値との偏差を
とる。この偏差を、第1余弦波形の半分の周期を有する
管周まわりの角度2θに対応する第2余弦波形cos2
θで近似させる。第1および第2余弦波形それぞれの振
幅値と管材料のポアソン比νとから、予め定める演算に
よって管軸方向および管周方向の応力を求めるようにし
たので、大口径の管および小口径であっても、管が偏平
に変形した状態における管軸方向および管周方向の応力
を正確に求めることが可能になる。
According to the present invention, the direction of the pipe to be measured is 9 mm.
An exciting coil that is excited by AC power is wound around a first core having a pair of magnetic poles spaced apart from each other at an angle other than 0 degrees, for example, 45 degrees. A second core having a pair of magnetic poles is provided at intervals in a direction perpendicular to a straight line connecting the pair of magnetic poles of the first core.
A detection coil is wound around the second core. Therefore, the induced electromotive force from the detection coil corresponds to the difference between the stress in the tube axis direction and the stress in the tube circumferential direction. Thus, the induced electromotive force corresponding to the stress distribution over the circumferential direction of the tube is measured by the detection coil. Among the stress measurement values, the first cosine waveform cos θ corresponding to the angle θ around the tube axis is approximated using the least squares method, and a deviation between the approximate value and the measured value is obtained. This deviation is calculated as a second cosine waveform cos2 corresponding to an angle 2θ around the pipe circumference having a half cycle of the first cosine waveform.
Approximate by θ. Since the stresses in the pipe axis direction and the pipe circumferential direction are determined by a predetermined calculation from the amplitude values of the first and second cosine waveforms and the Poisson's ratio ν of the pipe material, the pipes having a large diameter and a small diameter are used. However, it is possible to accurately determine the stress in the pipe axis direction and the pipe circumferential direction in a state where the pipe is deformed flat.

【0006】[0006]

【実施例】図1は、本発明の測定方法が適用される管1
が撓んだときの状態の軸直角断面を簡略化して示す図で
ある。管1に応力が作用せず、撓んでいない状態では、
その管1は直円筒状であり、その円環の中心線2は真円
である。管1に外力が作用して管1が撓んだとき、中心
線2は、図1の参照符3で示されるように偏平となる。
この中心線3の対称線6は、もう1つの対称線7と垂直
であり、管1の水平な軸線4を通る鉛直線5に関して角
度θ方向に、角度C、ずれている。中心線3まわりに、
管1に作用する周方向の応力σ2は、対称軸6に関して
対称な一対の直線31,32と交わる位置33〜35で
零となる。
FIG. 1 shows a tube 1 to which the measuring method of the present invention is applied.
FIG. 4 is a diagram schematically illustrating a cross section perpendicular to the axis when the shaft is bent. In a state where no stress acts on the pipe 1 and the pipe 1 is not bent,
The tube 1 has a right cylindrical shape, and the center line 2 of the ring is a perfect circle. When an external force acts on the tube 1 to cause the tube 1 to bend, the center line 2 becomes flat as indicated by reference numeral 3 in FIG.
The line of symmetry 6 of this center line 3 is perpendicular to another line of symmetry 7 and is offset by an angle C in the direction of angle θ with respect to a vertical line 5 passing through the horizontal axis 4 of the tube 1. Around center line 3,
The circumferential stress σ2 acting on the tube 1 becomes zero at positions 33 to 35 where the pair of straight lines 31 and 32 symmetrical with respect to the symmetry axis 6 intersect.

【0007】図2は、管1の応力σを測定するための装
置の全体の斜視図である。鉄鋼など強磁性体の管1の外
周には環状のレール10が装着され、モータなどを含む
駆動手段11によって磁歪センサ8はレール10に沿っ
て管1の外周面に沿って、移動する。レール10と駆動
手段11とは、磁歪センサ8を管1の外周面に沿って移
動する移動手段を構成する。
FIG. 2 is an overall perspective view of an apparatus for measuring the stress σ of the tube 1. An annular rail 10 is attached to the outer periphery of the tube 1 made of a ferromagnetic material such as steel, and the magnetostrictive sensor 8 is moved along the outer surface of the tube 1 along the rail 10 by driving means 11 including a motor and the like. The rail 10 and the driving unit 11 constitute a moving unit that moves the magnetostrictive sensor 8 along the outer peripheral surface of the tube 1.

【0008】図3は磁歪センサ8の斜視図であり、図4
はその磁歪センサ8の簡略化した平面図である。磁歪セ
ンサ8は逆U字状の第1コア13を有し、この第1コア
13には、励磁コイル14が巻回される。第1コア13
の一対の磁極15,16は管軸4方向に90度以外の角
度α(この実施例ではα=45度)で交差する直線17
の方向に間隔をあけて設けられる。励磁コイル14に
は、たとえば50Hzまたは60Hz、100Vの交流
電源18が接続されて、励磁コイル14が励磁される。
さらにまた第2コア19が設けられ、この第2コア19
は、逆U字状に形成される。この第2コア19には検出
コイル20が巻回される。第2コア19の一対の磁極2
1,22は、第1コア13の一対の磁極15,16を結
ぶ直線17に対して垂直な直線23上に間隔をあけて設
けられる。各磁極15,16;21,22の各図心は、
仮想上の正方形の各頂点位置にあり、直線17,23
は、その仮想上の正方形の対角線に一致する。励磁コイ
ル14を交流電源18によって励磁し、検出コイル20
の誘導起電力Vは電圧計などの電圧測定手段24によっ
て検出される。測定すべき管の材料がポアソン比νを有
するとすれば、弾性変形の範囲内で、見かけ上の応力と
して、 管の長手方向の曲げによって (1)管軸方向の応力は、B1cosθ (2)そのポアソン比ν対応分の管周方向応力は、νB
1cosθ 管の断面が偏平となることによって (3)管周方向の応力は、B2cos2θ (4)そのポアソン比ν対応分の管軸方向応力は、νB
2cos2θ と表され、これらの応力が合成された形で発生している
と考えられる。
FIG. 3 is a perspective view of the magnetostrictive sensor 8, and FIG.
FIG. 2 is a simplified plan view of the magnetostrictive sensor 8. The magnetostrictive sensor 8 has an inverted U-shaped first core 13, and an exciting coil 14 is wound around the first core 13. First core 13
Of the pair of magnetic poles 15 and 16 intersect with each other at an angle α (α = 45 degrees in this embodiment) other than 90 degrees in the direction of the tube axis 4.
Are provided at intervals. For example, a 50 Hz or 60 Hz, 100 V AC power supply 18 is connected to the excitation coil 14 to excite the excitation coil 14.
Further, a second core 19 is provided.
Are formed in an inverted U-shape. A detection coil 20 is wound around the second core 19. A pair of magnetic poles 2 of the second core 19
The reference numerals 1 and 22 are provided at intervals on a straight line 23 perpendicular to a straight line 17 connecting the pair of magnetic poles 15 and 16 of the first core 13. Each centroid of each magnetic pole 15, 16;
Lines 17 and 23 at the vertices of the virtual square
Matches the diagonal of the virtual square. The exciting coil 14 is excited by an AC power supply 18 and the detecting coil 20 is excited.
Is detected by voltage measuring means 24 such as a voltmeter. Assuming that the material of the pipe to be measured has a Poisson's ratio ν, within the range of elastic deformation, as an apparent stress, by bending the pipe in the longitudinal direction, (1) the stress in the pipe axis direction is B1 cos θ (2) The tube circumferential stress corresponding to the Poisson's ratio ν is νB
(3) The stress in the circumferential direction of the tube is B2cos2θ (4) The stress in the tube axial direction corresponding to the Poisson's ratio ν is νB
It is considered that these stresses are generated in a synthesized form.

【0009】磁歪センサ8では、第1コア13の磁極1
5,16は、第2コア19の磁極21と等距離にあり、
したがって管1の管軸4方向に磁歪応力σ1、および管
周方向に磁歪応力σ2が発生していない状態では、その
管1の管軸方向および管周方向の透磁率μは等しく、し
たがって励磁コイル14が交流電源18によって励磁さ
れているとき、磁極15から磁極21に入る磁束と、こ
の磁極21から磁極17に出ていく磁束とは等しく、同
様なことは磁極22に関しても成立し、したがって検出
コイル20に接続されている電圧測定手段24によって
検出される誘導起電力Vは零またはごく小さい値であ
る。管1に管軸方向の磁歪応力σ1および/または管周
方向の磁歪応力σ2が作用すると、管1の管軸方向と管
周方向との各透磁率は異なり、したがって検出コイル2
0の誘導起電力Vは、磁歪応力σ1,σ2に対応した値
となる。ここで、管軸方向の応力σ1と管周方向の応力
σ2とを総括的に、応力σということがある。
In the magnetostrictive sensor 8, the magnetic pole 1 of the first core 13 is
5 and 16 are equidistant from the magnetic pole 21 of the second core 19,
Therefore, when magnetostrictive stress .sigma.1 is not generated in the pipe axis 4 direction of the pipe 1 and magnetostrictive stress .sigma.2 is not generated in the pipe circumferential direction, the magnetic permeability .mu. When the AC power supply 14 is excited, the magnetic flux entering the magnetic pole 21 from the magnetic pole 15 is equal to the magnetic flux exiting from the magnetic pole 21 to the magnetic pole 17, and the same holds true for the magnetic pole 22. The induced electromotive force V detected by the voltage measuring means 24 connected to the coil 20 is zero or a very small value. When the magnetostrictive stress σ1 in the pipe axis direction and / or the magnetostrictive stress σ2 in the pipe circumferential direction acts on the pipe 1, the respective magnetic permeability in the pipe axis direction and the pipe circumferential direction of the pipe 1 are different, so
The induced electromotive force V of 0 is a value corresponding to the magnetostrictive stresses σ1 and σ2. Here, the stress σ1 in the pipe axis direction and the stress σ2 in the pipe circumferential direction may be collectively referred to as stress σ.

【0010】図5は、図1〜図4に示される磁歪センサ
8の電気的構成を示すブロック図である。電圧測定手段
24の出力は、マイクロコンピュータなどによって実現
される処理回路25に与えられる。処理回路25は駆動
手段11を制御し、また電圧測定手段24によって、管
軸4まわりに、鉛直線5からの角度θをたとえば5゜毎
に変化させたときの各測定結果をストアするメモリ27
に接続される。メモリ27のストア内容は、陰極線管ま
たは液晶などの目視表示手段28によって表示すること
ができる。上述のように、測定の便宜上、通常θは角度
5゜毎に測定されるので測定点nは72個である。
FIG. 5 is a block diagram showing an electrical configuration of the magnetostrictive sensor 8 shown in FIGS. The output of the voltage measuring means 24 is provided to a processing circuit 25 realized by a microcomputer or the like. The processing circuit 25 controls the driving means 11 and stores the respective measurement results when the angle θ from the vertical line 5 is changed around the tube axis 4 by, for example, every 5 ° by the voltage measuring means 24.
Connected to. The stored contents of the memory 27 can be displayed by a visual display means 28 such as a cathode ray tube or a liquid crystal. As described above, for convenience of measurement, θ is usually measured at each angle of 5 °, so that there are 72 measurement points n.

【0011】図6は、本発明の測定方法である処理回路
25の動作を説明するためのフローチャートである。ス
テップn1からステップn2に移り、移動手段12によ
って磁歪センサ8を管1の周方向に回転しつつ、その一
定角度の角変位毎に、検出コイル20の誘導起電力Vを
測定し、ステップn3においてメモリ27にストアす
る。こうして、磁歪センサ8は管1を全周にわたって移
動する。このようなメモリ27にストアされた検出コイ
ル20の誘導起電力V、したがってそれに対応する応力
σは、ステップn4へ表示手段28によって表示するこ
とができる。
FIG. 6 is a flowchart for explaining the operation of the processing circuit 25 which is the measuring method of the present invention. From step n1 to step n2, the induced electromotive force V of the detection coil 20 is measured for each angular displacement of the fixed angle while rotating the magnetostrictive sensor 8 in the circumferential direction of the tube 1 by the moving means 12, and in step n3 Store in the memory 27. Thus, the magnetostrictive sensor 8 moves around the entire circumference of the tube 1. The induced electromotive force V of the detection coil 20 stored in the memory 27, and thus the corresponding stress σ, can be displayed by the display means 28 to step n4.

【0012】表示手段28によって表示される角度θを
5゜毎に変化させたときの各誘導起電力Vの値は、本件
発明者の実験結果によれば、誘導起電力Vの測定値F1
i(i=1,2…72)を用いて図7に示される分布波
形のようになる。
According to the experimental results of the present inventor, the value of each induced electromotive force V when the angle θ displayed by the display means 28 is changed every 5 ° is the measured value F1 of the induced electromotive force V.
Using i (i = 1, 2,..., 72), a distribution waveform shown in FIG. 7 is obtained.

【0013】一方、他の測定方法を用いて測定した結果
によれば管軸方向応力σ1および管周方向応力σ2は、
それぞれ式(1)、式(2)で表示される。
On the other hand, according to the result of measurement using other measurement methods, the pipe axial stress σ1 and the pipe circumferential stress σ2 are
These are represented by equations (1) and (2), respectively.

【0014】[0014]

【数1】 (Equation 1)

【0015】磁歪応力測定装置によって測定されたσ1
とσ2の差に対応する分布波形から、式(1)、式
(2)を用いて管軸方向応力σ1と管周方向応力σ2を
それぞれ求める。このため、ステップn5では、測定値
F1iに対して数式(3)で表される第1余弦関数で最
小2乗法近似を行い、式(3)の係数A1,B1,C1
を決定する。
Σ1 measured by a magnetostrictive stress measuring device
From the distribution waveform corresponding to the difference between σ1 and σ2, the pipe axial stress σ1 and the pipe circumferential stress σ2 are obtained using equations (1) and (2), respectively. For this reason, in step n5, the least squares approximation is performed on the measured value F1i using the first cosine function represented by Expression (3), and the coefficients A1, B1, and C1 of Expression (3) are obtained.
To determine.

【0016】 f1(θ)=A1+B1cos(θ+C1) …(3) A1,B1,C1が決定された(3)式をグラフに表す
と図7の分布波形のようになる。
F1 (θ) = A1 + B1cos (θ + C1) (3) When the expression (3) in which A1, B1, and C1 are determined is represented in a graph, the distribution waveform is as shown in FIG.

【0017】ステップn6で、測定値F1iと、f1
(θ)で最小2乗法近似した近似値との偏差F2i(i
=1,2…72)を求める。
In step n6, the measured values F1i and f1
The deviation F2i (i
= 1, 2, ... 72).

【0018】ステップn7では、偏差F2iに対して第
2余弦関数式(4)で最小2乗法近似を行い、式(3)
の係数A2,B2,C2を決定する。
In step n7, the least square method approximation is performed on the deviation F2i using the second cosine function equation (4), and the equation (3) is obtained.
Are determined.

【0019】 f2(θ)=A2+B2cos(2θ+C2) …(4) F2iおよびA2,B2,C2が決定された(4)式を
グラフに表すと、図8の分布波形のようになる。
F2 (θ) = A2 + B2cos (2θ + C2) (4) When the expression (4) in which F2i and A2, B2, C2 are determined is represented in a graph, the distribution waveform shown in FIG. 8 is obtained.

【0020】ステップn8では、数式(3)で求められ
たcosθの振幅値B1と、数式(4)で求められたc
os2θの振幅値B2から、式(1),(2)を用いて
管軸方向応力および管周方向応力がそれぞれ求まる。そ
の後、ステップn9で動作を終了する。
In step n8, the amplitude value B1 of cos θ obtained by the equation (3) and the amplitude c1 obtained by the equation (4)
From the amplitude value B2 of os2θ, the axial stress in the pipe and the stress in the circumferential direction of the pipe are obtained using the equations (1) and (2). Thereafter, the operation is ended in step n9.

【0021】なお、測定値F1i、偏差F2i、式f1
(θ),f2(θ)は誘導起電力Vの単位で表示され、
σ1,σ2は応力の単位を有するが、誘導起電力Vと応
力σとは比例関係にあるため、誘導起電力を応力に換算
することができる。
The measured value F1i, the deviation F2i, and the equation f1
(Θ) and f2 (θ) are displayed in units of the induced electromotive force V,
Although σ1 and σ2 have a unit of stress, the induced electromotive force V and the stress σ are proportional to each other, so that the induced electromotive force can be converted into stress.

【0022】[0022]

【発明の効果】以上のように本発明によれば、磁歪セン
サを用いて、管軸方向と管周方向との磁歪応力の分布に
起因した検出コイルからの測定値について、管軸まわり
の角度θに対応する第1余弦波形cosθで最小2乗法
を用いて近似し、この近似値と測定値との偏差を、第1
余弦波形の半分の周期を有する第2余弦波形cos2θ
で近似し、第1および第2余弦波形それぞれの振幅から
予め定める演算式に従って応力を求めるようにしたの
で、管軸方向および管周方向の各応力を、速やかに、容
易かつ正確に求めることが可能になる。こうして、管が
大口径であるとき、および小口径であっても管が偏平に
変形しているときなどにおいて、本発明が有利に実施さ
れる。
As described above, according to the present invention, using the magnetostrictive sensor, the measured value from the detection coil caused by the distribution of the magnetostrictive stress in the tube axis direction and the tube circumferential direction is used to determine the angle around the tube axis. The first cosine waveform cos θ corresponding to θ is approximated using the least squares method, and the deviation between this approximated value and the measured value is calculated by the first
A second cosine waveform cos2θ having a half cycle of the cosine waveform
, And the stress is obtained from the respective amplitudes of the first and second cosine waveforms in accordance with a predetermined arithmetic expression. Therefore, it is possible to quickly, easily and accurately obtain each stress in the pipe axis direction and the pipe circumferential direction. Will be possible. In this way, the present invention is advantageously implemented when the pipe has a large diameter, and when the pipe is deformed flat even with a small diameter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の測定方法が適用される管1が変形する
ときの状態を説明するための図である。
FIG. 1 is a view for explaining a state when a pipe 1 to which a measuring method of the present invention is applied is deformed.

【図2】磁歪センサ8を用いて管1の周方向に移動しつ
つ応力を測定するときの状態を示す斜視図である。
FIG. 2 is a perspective view showing a state in which a stress is measured while moving in the circumferential direction of the tube 1 using a magnetostrictive sensor 8;

【図3】磁歪センサ8の構成を示す斜視図である。FIG. 3 is a perspective view showing a configuration of a magnetostrictive sensor 8;

【図4】磁歪センサ8の構成を簡略化して示す平面図で
ある。
FIG. 4 is a simplified plan view showing the configuration of the magnetostrictive sensor 8;

【図5】図1〜図4に示される磁歪センサ8の電気的構
成を示すブロック図である。
FIG. 5 is a block diagram showing an electrical configuration of the magnetostrictive sensor 8 shown in FIGS.

【図6】本発明の測定方法である処理回路25の動作を
説明するためのフローチャートである。
FIG. 6 is a flowchart for explaining the operation of the processing circuit 25 that is the measurement method of the present invention.

【図7】磁歪センサ8の検出コイル20から得られる誘
導起電力Vの本件発明者の測定結果F1iおよび測定結
果F1iをf1(θ)で最小2乗法近似した分布波形
を示す図である。
FIG. 7 is a diagram showing a measurement result F1i of the present inventor of the induced electromotive force V obtained from the detection coil 20 of the magnetostrictive sensor 8, and a distribution waveform obtained by approximating the measurement result F1i by f1 (θ) by the least square method.

【図8】図7の測定値F1iと近似値との偏差F2
i、およびf2(θ)で最小2乗法近似した分布波形を
示すグラフである。
8 is a deviation F2 between the measured value F1i and the approximate value in FIG.
It is a graph which shows the distribution waveform which carried out the least squares approximation by i and f2 ((theta)).

【符号の説明】[Explanation of symbols]

1 管 4 管軸 8 磁歪センサ 10 レール 11 駆動手段 12 移動手段 13 第1コア 14 励磁コイル 15,16,21,22 磁極 19 第2コア 20 検出コイル 24 電圧測定手段 25 処理回路 27 メモリ 28 表示手段 Reference Signs List 1 tube 4 tube shaft 8 magnetostrictive sensor 10 rail 11 driving means 12 moving means 13 first core 14 excitation coil 15, 16, 21, 22 magnetic pole 19 second core 20 detection coil 24 voltage measuring means 25 processing circuit 27 memory 28 display means

フロントページの続き (72)発明者 黒田 ▲隆▼司 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 境 禎明 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平3−176627(JP,A) 実開 平4−29848(JP,U) (58)調査した分野(Int.Cl.6,DB名) G01L 1/00 G01N 27/80Continuation of the front page (72) Inventor Kuroda ▲ Takashi Tsukasa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Inside Nippon Kokan Co., Ltd. (72) Inventor Yoshiaki Sakai 1-1-2, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan (56) References JP-A-3-176627 (JP, A) JP-A-4-29848 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) G01L 1/00 G01N 27/80

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定すべき管の管軸方向に90度以外の
角度で交差する方向に間隔をあけて一対の磁極を有する
第1コアに、励磁コイルを巻回して配置し、その励磁コ
イルを交流電力によって励磁して、前記第1コアの一対
の磁極を結ぶ直線に対して垂直な方向に間隔をあけて一
対の磁極を有する第2コアに検出コイルを巻回して配置
して構成される磁歪センサを用い、 磁歪センサを管の周方向に移動して、検出コイルからの
周方向にわたる応力分布に対応する誘導起電力を測定
し、 この誘導起電力測定値を、管軸まわりの角度θに対応し
た第1余弦波形で最小2乗法を用いて近似して、次の式
の係数A1,B1,C1を求め、 f1(θ)=A1+B1cos(θ+C1) この第1余弦波形と誘導起電力の測定値との偏差を、第
1余弦波形の半分の周期を有する第2余弦波形で近似し
て、次の式の係数A2,B2,C2を求め、 f2(θ)=A2+B2cos(2θ+C2) 係数B1,B2および管材料のポアソン比νを用いて管
軸方向応力σ1、管周方向応力σ2を、 【数1】 としてそれぞれ求めることを特徴とする管の磁歪応力測
定方法。
An exciting coil is wound around a first core having a pair of magnetic poles at intervals in a direction intersecting at an angle other than 90 degrees with a tube axis direction of a tube to be measured. Is excited by AC power, and a detection coil is wound around a second core having a pair of magnetic poles at intervals in a direction perpendicular to a straight line connecting the pair of magnetic poles of the first core. The magnetostrictive sensor is moved in the circumferential direction of the tube, and the induced electromotive force corresponding to the stress distribution from the detection coil in the circumferential direction is measured. The first cosine waveform corresponding to θ is approximated using the least squares method to obtain coefficients A1, B1, and C1 of the following equation. f1 (θ) = A1 + B1cos (θ + C1) The first cosine waveform and the induced electromotive force Of the first cosine waveform Approximate by a second cosine waveform having a period of one minute, the coefficients A2, B2, C2 of the following equation are obtained. F2 (θ) = A2 + B2cos (2θ + C2) The pipe axial stress σ1 and the pipe circumferential stress σ2 are expressed as follows: A method for measuring the magnetostrictive stress of a pipe, wherein
JP5256068A 1993-10-13 1993-10-13 Tube Magnetostrictive Stress Measurement Method Expired - Fee Related JP2771433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5256068A JP2771433B2 (en) 1993-10-13 1993-10-13 Tube Magnetostrictive Stress Measurement Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5256068A JP2771433B2 (en) 1993-10-13 1993-10-13 Tube Magnetostrictive Stress Measurement Method

Publications (2)

Publication Number Publication Date
JPH07110270A JPH07110270A (en) 1995-04-25
JP2771433B2 true JP2771433B2 (en) 1998-07-02

Family

ID=17287460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5256068A Expired - Fee Related JP2771433B2 (en) 1993-10-13 1993-10-13 Tube Magnetostrictive Stress Measurement Method

Country Status (1)

Country Link
JP (1) JP2771433B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8036338B2 (en) 2005-03-28 2011-10-11 Tokyo Gakugei University Method and device for simultaneous measurement of magnetostriction and magnetization

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3689294B2 (en) 1999-12-13 2005-08-31 ペンタックス株式会社 Endoscopic flexible tube and method for manufacturing endoscope flexible tube
JP4360849B2 (en) 2003-06-30 2009-11-11 Hoya株式会社 Endoscope flexible tube and endoscope
JP4360848B2 (en) 2003-06-30 2009-11-11 Hoya株式会社 Endoscope flexible tube and endoscope
CN114034415B (en) * 2021-10-26 2022-09-20 成都飞机工业(集团)有限责任公司 Stress detection method
CN115950558B (en) * 2022-12-22 2024-07-26 国家石油天然气管网集团有限公司 Pipeline axial stress detection method, device and equipment based on orthogonal alternating electromagnetic
CN116735700B (en) * 2023-08-08 2023-12-08 沈阳仪表科学研究院有限公司 Pipeline defect stress composite detection sensor and detection method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769226B2 (en) * 1989-12-05 1995-07-26 大阪瓦斯株式会社 Tube flat stress estimation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8036338B2 (en) 2005-03-28 2011-10-11 Tokyo Gakugei University Method and device for simultaneous measurement of magnetostriction and magnetization

Also Published As

Publication number Publication date
JPH07110270A (en) 1995-04-25

Similar Documents

Publication Publication Date Title
JP2771433B2 (en) Tube Magnetostrictive Stress Measurement Method
JP2002513147A (en) Magnetic device for torque / force sensor
JP3170382B2 (en) Tube Magnetostrictive Stress Measurement Method and Apparatus
JP3157946B2 (en) Magnetostrictive stress measurement method and apparatus in planar biaxial stress field
JP3130115B2 (en) Tube Magnetostrictive Stress Measurement Method and Apparatus
JP3329444B2 (en) Method and apparatus for adjusting balance of vehicle wheel including pneumatic tire and disk wheel
JPS6053828A (en) Method for measuring tightening state of bolt shaft
EP0379509B1 (en) Device for non-contact measuring of stresses in a bar-shaped body
CN112945427A (en) Method for measuring two-dimensional stress at welding seam by utilizing Barkhausen effect and detection instrument
US6128964A (en) Torque sensor with circularly polarized magnetic ring
JP3130116B2 (en) Method and apparatus for measuring magnetostrictive stress of welded pipe
JPH06288842A (en) Method and device for measuring magnetostriction stress
JP2000241391A (en) Method for diagnosing stress of steel pipe
CN107727733A (en) A kind of conductivity meter based on impulse eddy current
JP3067437B2 (en) Magnetostrictive stress sensor
JP3159132B2 (en) Method for measuring stress in steel pipes
JP3500966B2 (en) Stress measurement method and method for specifying approximate function
JP3130111B2 (en) Measuring method of magnetostriction sensitivity
JPH07253365A (en) Method and jig for measuring magnetostrictive stress of pipe
JP2733009B2 (en) Tube demagnetization method
JPH0356834A (en) Pig for measuring magnetostrictive stress of cylindrical material
JPH08122170A (en) Method for continuously measuring bending stress in longitudinal direction of pipe
JPH06307948A (en) Magnetostrictive stress measuring method for corrosion-proof pipe
JP2001336998A (en) Magnetostrictive stress detector
JPS59147253A (en) On-line hardness measurement of steel plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees