JP2739980B2 - Hydrocracking catalyst and method for producing the same - Google Patents

Hydrocracking catalyst and method for producing the same

Info

Publication number
JP2739980B2
JP2739980B2 JP1014120A JP1412089A JP2739980B2 JP 2739980 B2 JP2739980 B2 JP 2739980B2 JP 1014120 A JP1014120 A JP 1014120A JP 1412089 A JP1412089 A JP 1412089A JP 2739980 B2 JP2739980 B2 JP 2739980B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
hydrocracking
titanium nitride
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1014120A
Other languages
Japanese (ja)
Other versions
JPH02194841A (en
Inventor
尚登 金原
征明 御手洗
昭生 西嶋
利夫 佐藤
信行 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP1014120A priority Critical patent/JP2739980B2/en
Publication of JPH02194841A publication Critical patent/JPH02194841A/en
Application granted granted Critical
Publication of JP2739980B2 publication Critical patent/JP2739980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機化合物、特に炭化水素の水素化分解に適
した触媒およびその製造方法に関する。さらに詳しく
は、窒化チタンからなる担体に、周期律表VI a族および
VIII族の金属から選ばれた少くとも1種の金属を担持し
た水素化分解触媒並に窒化チタンからなる担体に前記金
属の水溶性化合物の水性溶液を含浸させ不活性雰囲気中
で乾燥しそして焼成することからなる前記触媒の製造方
法に関する。
Description: TECHNICAL FIELD The present invention relates to a catalyst suitable for hydrocracking organic compounds, particularly hydrocarbons, and a method for producing the same. More specifically, a support made of titanium nitride includes a group VIa of the periodic table and
A hydrocracking catalyst supporting at least one metal selected from Group VIII metals and a support comprising titanium nitride are impregnated with an aqueous solution of a water-soluble compound of the metal, dried in an inert atmosphere, and calcined. And a method for producing the catalyst.

〔従来技術〕(Prior art)

従来、石油留分等の炭化水素の変性、改質にはアルミ
ナ担体やシリカ−アルミナ担体に周期律表VI a、V aあ
るいはVIII族の金属を担持した触媒が使用されている。
Conventionally, a catalyst in which a metal of Group VIa, Va or VIII of the periodic table is supported on an alumina carrier or a silica-alumina carrier has been used for modifying and reforming hydrocarbons such as petroleum fractions.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、このような従来一般的に使用されてい
る触媒を用いて炭化水素等を水素化処理すると、水素化
反応の他に水素化分解反応、脱アルキル化反応、不均化
反応および脱窒素化反応等が殆んど同時に進行し目的と
する水素化分解反応を選択的に行わせることが極めて困
難であった。
However, when a hydrocarbon or the like is hydrotreated using such a conventionally commonly used catalyst, in addition to the hydrogenation reaction, a hydrocracking reaction, a dealkylation reaction, a disproportionation reaction, and a denitrification reaction are performed. The reaction and the like proceed almost simultaneously, and it is extremely difficult to selectively carry out the desired hydrocracking reaction.

〔課題を解決するための手段〕[Means for solving the problem]

ところが、ある種の石油留分や石油乾留分の処理ある
いは石油液化反応等においては水素化分解反応を選択的
に行わせることが望まれることがある。
However, in the treatment of certain types of petroleum fractions and petroleum dry fractions, petroleum liquefaction, and the like, it is sometimes desired to selectively perform hydrocracking reactions.

そこで本発明において有機化合物、特に炭化水素類を
水素添加処理するにあたり、水素化分解反応を選択的に
行うことができる新規な触媒およびその製造方法を提供
することに成功した。
Thus, the present invention succeeded in providing a novel catalyst capable of selectively performing a hydrocracking reaction and a method for producing the same in the hydrogenation treatment of organic compounds, particularly hydrocarbons.

すなわち、本発明においては触媒担体として窒化チタ
ンを使用する。触媒担体は触媒の支持体あるいは希釈物
となるものであり、一般に触媒の有効表面積を増大させ
活性を大きくすること、触媒の微細構造を安定化させる
こと、あるいは被毒作用に対する抵抗性を付与するなど
の目的で使用される。また場合によっては触媒担体は反
応の選択性をあげたり助触媒的作用をも呈することもあ
る。したがって触媒を担持させる担体の選択は極めて重
要であり、本発明において周期律表VI a族およびVIII族
の少なくとも1種からなる触媒成分を担持させる担体と
して、従来触媒の担当として殆んど注目されていなかっ
た窒化チタンを用いることにより水素化分解反応を選択
的に行うことができたことは驚くべきことである。
That is, in the present invention, titanium nitride is used as a catalyst carrier. The catalyst carrier is a support or diluent for the catalyst, generally increasing the effective surface area of the catalyst to increase its activity, stabilizing the microstructure of the catalyst, or imparting resistance to poisoning. Used for such purposes. In some cases, the catalyst carrier may increase the selectivity of the reaction or exhibit a cocatalytic action. Therefore, the selection of a carrier for supporting the catalyst is extremely important, and in the present invention, the carrier for supporting a catalyst component comprising at least one of Group VIa and Group VIII of the periodic table has been almost attracted attention as a charge of a conventional catalyst. It is surprising that the hydrocracking reaction could be selectively performed by using titanium nitride which had not been used.

〔発明の構成〕[Configuration of the invention]

本発明において担体として用いる窒化チタンは主とし
てTi3N4の組成を持ち、固体状のものであればいかなる
ものでもよい。しかし通常は微粉状のものが用いられ、
BET法で測定した比表面積が20〜300m2/g、好ましくは30
〜250m2/gの超微粉のものが好適である。触媒担体の比
表面積は触媒活性に影響があり、担持させる金属の種類
にも関係するが一般に比表面積が20m2/g未満のもの、ま
た300m2/gを超えるものは活性が低い。
Titanium nitride used as a carrier in the present invention has a composition of mainly Ti 3 N 4 and may be any solid material. However, usually fine powder is used,
Specific surface area measured by the BET method is 20 to 300 m 2 / g, preferably 30
Ultrafine powders of up to 250 m 2 / g are preferred. The specific surface area of the catalyst carrier affects the catalytic activity and depends on the type of metal to be supported. Generally, those having a specific surface area of less than 20 m 2 / g and those having a specific surface area of more than 300 m 2 / g have low activity.

本発明の触媒は前述した窒化チタンからなる担体に周
期律表VI a族およびVIII族の金属から選ばれた少なくと
も1主の金属を触媒活性成分として、担持させる。触媒
活性成分としての金属は従来のアルミナ担体やシリカ−
アルミナ担体を用いた水素化触媒に用いられる金属と同
種のものでよく、モリブデン、タングステン、ニツケル
あるいはコバルトが好ましい。触媒活性成分は金属の重
量で表わして1.5〜15重量%、好ましくは3〜15重量%
となるように担持させる。触媒活性成分の担持にあたっ
ては該金属の水溶性化合物を水または希酸性またはアル
カリ性とした水性媒体に溶解し、その溶液中に窒化チタ
ン担体を分散し、充分撹拌する。得られた触媒活性成分
が含浸された担体を不活性雰囲気、好ましくは窒素雰囲
気中で80〜130℃、好ましくは90〜120℃の温度で約1〜
20時間乾燥し、次いで200〜550℃、好ましくは200〜400
℃の温度で約0.5〜8時間焼成する。この乾燥および焼
成工程は担体の酸化を防ぐために必ず不活性雰囲気中で
行わなければならない。また使用できる金属の水溶性化
合物は主として水溶性塩であって、水または希酸性もし
くは希アルカリ性の水性媒体に溶解するものであればい
かなるものでもよく、硝酸ニツケル、炭酸ニツケル、硫
酸ニツケル、三酸化モリブデン、モリブデン酸アンモニ
ウム、タングステン酸等がある。このようにして得られ
た触媒は使用に先立って硫化剤例えば硫化水素−水素混
合ガス中で300〜400℃に加熱して予備硫化することが好
ましい。予備硫化は一般には精油所等の反応塔内で行わ
れ、反応初期から活性を高めるために行われる。また使
用にあたっては常法により柱形その他の形に成形するこ
ともできる。
In the catalyst of the present invention, at least one main metal selected from metals of Groups VIa and VIII of the periodic table is supported as a catalytically active component on the support made of titanium nitride. The metal as the catalytically active component is a conventional alumina carrier or silica.
The same kind of metal as that used for the hydrogenation catalyst using the alumina carrier may be used, and molybdenum, tungsten, nickel or cobalt is preferable. The catalytically active component is 1.5 to 15% by weight, preferably 3 to 15% by weight, expressed as the weight of the metal.
It is carried so that it becomes. In carrying the catalytically active component, the water-soluble compound of the metal is dissolved in water or a dilute acidic or alkaline aqueous medium, and the titanium nitride carrier is dispersed in the solution and stirred sufficiently. The obtained carrier impregnated with the catalytically active component is placed in an inert atmosphere, preferably a nitrogen atmosphere, at a temperature of 80 to 130 ° C., preferably 90 to 120 ° C. for about 1 to 1 hour.
Dry for 20 hours, then 200-550 ° C, preferably 200-400
Firing at a temperature of about 0.5 to 8 hours. The drying and firing steps must be performed in an inert atmosphere to prevent oxidation of the support. The water-soluble compound of the metal that can be used is mainly a water-soluble salt, and any compound may be used as long as it is soluble in water or a dilute acidic or dilute alkaline aqueous medium. There are molybdenum, ammonium molybdate, tungstic acid and the like. The catalyst thus obtained is preferably pre-sulfurized by heating it to 300 to 400 ° C. in a sulfurizing agent, for example, a hydrogen sulfide-hydrogen mixed gas, before use. Preliminary sulfurization is generally performed in a reaction tower such as an oil refinery, and is performed from the beginning of the reaction to increase the activity. In use, it can be formed into a column shape or another shape by a conventional method.

本発明の触媒において周期律表VI a族の金属とVIII族
の金属とのいずれかの一方の族に属する金属のみを担持
させると水素化反応を伴なわない水素化分解反応のみが
選択的に行われやすい。ところがVI a族の金属とVIII族
の金属との各族に属する金属を各1種以上選択して担持
させると水素化分解反応とともに水素化反応が起るよう
になる。したがって、担持させる金属の選択および組合
せにより水素化分解反応と水素化反応との割合を調節で
きる利点がある。この趣旨で本発明にいう水素化分解触
媒とは水素化分解反応のみを起させる触媒と、水素化分
解反応に伴って水素化反応を生起させる触媒とを含めた
意味でもある。
In the catalyst of the present invention, when only a metal belonging to any one of the group VIa group metal and the group VIII group metal is supported, only the hydrocracking reaction without hydrogenation reaction is selectively performed. Easy to do. However, when one or more metals belonging to each group of the group VIa metal and the group VIII metal are selected and supported, a hydrogenation reaction occurs together with the hydrogenolysis reaction. Therefore, there is an advantage that the ratio between the hydrogenolysis reaction and the hydrogenation reaction can be adjusted by selecting and combining the metals to be supported. To this effect, the term "hydrocracking catalyst" as used in the present invention also means a catalyst that causes only a hydrocracking reaction and a catalyst that causes a hydrogenation reaction accompanying the hydrocracking reaction.

次に本発明を実施例によりさらに詳しく説明する。 Next, the present invention will be described in more detail with reference to examples.

(触媒の製造) 触媒A 熱プラズマ法によって得られた比表面積280m2/
gの窒化チタン超微粉100gに硝酸ニツケル(酸化ニツケ
ルとして24.4重量%含有)45.6g及び水から調製した含
浸液170mlを含浸し、窒素雰囲気中100℃で乾燥した後、
窒素雰囲気中で300℃で2時間焼成して酸化ニツケル10
重量%、残部が窒化チタンである触媒Aを得た。
(Production of catalyst) Catalyst A Specific surface area 280 m 2 /
g of titanium nitride ultrafine powder 100 g is impregnated with 45.6 g of nickel nitrate (containing 24.4% by weight as nickel oxide) and 170 ml of impregnation liquid prepared from water, and dried at 100 ° C. in a nitrogen atmosphere.
Bake at 300 ° C for 2 hours in a nitrogen atmosphere.
The catalyst A was obtained in which the weight% and the balance were titanium nitride.

触媒B 触媒Aに用いたと同じ窒化チタン超微粉100gに
パラモリブデン酸アンモニウム(酸化モリブデンとして
83.3重量%含有)13.2g及び水から調製した含浸液170ml
を含浸し、そして触媒Aと同じ条件で乾燥焼成して酸化
モリブデン10重量%を含有する触媒Bを得た。
Catalyst B Ammonium paramolybdate (as molybdenum oxide) was added to 100 g of the same ultrafine titanium nitride powder as used for catalyst A.
170 ml of impregnating liquid prepared from 13.2 g of water containing 83.3% by weight)
And dried and calcined under the same conditions as for Catalyst A to obtain Catalyst B containing 10% by weight of molybdenum oxide.

触媒C 触媒Aに用いたと同じ窒化チタン超微粒100gに
炭酸ニツケル(酸化ニツケルとして54.9重量%含有)4.
0gとパラモリブデン酸アンモニウム(酸化モリブデン8
3.3重量%含有)9.2g及び水から調製した含浸液170mlを
含浸し、触4媒Aと同じ条件で乾燥、焼成して酸化ニツ
ケル2重量%、酸化モリブデン7重量%を含む触媒Cを
得た。
Catalyst C Nickel carbonate (containing 54.9% by weight as nickel oxide) was added to 100 g of the same titanium nitride ultrafine particles as used in Catalyst A.
0g and ammonium paramolybdate (molybdenum oxide 8
(Impregnated with 3.3% by weight) and 9.2 g of impregnating liquid prepared from water and 170 ml of impregnating solution, dried and calcined under the same conditions as catalyst A to obtain catalyst C containing 2% by weight of nickel oxide and 7% by weight of molybdenum oxide. .

触媒D γ−アルミナ(比表面積286m2/g、気孔量0.52c
c/g)の円筒型押出成形体(径0.9mm)100gに触媒Aに用
いたと同じ硝酸ニツケル45.6g及び水から調製した含浸
液84mlを含浸し空気中で100℃で16時間乾燥した後、500
℃で2時間焼成して酸化ニツケル10重量%を含有する触
媒Dを得た。
Catalyst D γ-alumina (specific surface area 286 m 2 / g, porosity 0.52c
c / g) of 100 g of a cylindrical extruded product (diameter 0.9 mm) was impregnated with 45.6 g of nickel nitrate used as the catalyst A and 84 ml of an impregnation liquid prepared from water, and dried in air at 100 ° C. for 16 hours. 500
Calcination at 2 ° C. for 2 hours gave Catalyst D containing 10% by weight of nickel oxide.

触媒E 硝酸ニツケル45.6gの代りに触媒Bに用いたと
同じパラモリブデン酸アンモニウム13.2gを用いた他は
触媒Dの製造と同様にして酸化モリブデン10重量%、残
部がアルミナである触媒Eを得た。
Catalyst E Catalyst E was obtained in the same manner as in the preparation of catalyst D except that 13.2 g of ammonium paramolybdate used in catalyst B was used instead of 45.6 g of nickel nitrate, and catalyst E was 10% by weight of molybdenum oxide and the balance was alumina. .

(予備硫化) 上記触媒A、B、C、D及びEの活性評価に先立ち、
次の条件で各触媒を予備硫化した。
(Preliminary sulfurization) Prior to the activity evaluation of the catalysts A, B, C, D and E,
Each catalyst was presulfurized under the following conditions.

触媒量 1.5g 圧 力 大気圧 硫化剤 H2S/H2混合ガス H2S濃度 5容量% 混合ガス流量 100ml/min 温 度 400℃ 時 間 2時間 (活性評価) 予備硫化を施した上記の触媒A、B、C、D及びEの
水素化活性及び水素化分解活性を1−メチルナフタレン
とジフエニルメタンとを用いて測定した。
Catalytic amount 1.5g pressure atmospheric pressure sulfiding agent H 2 S / H 2 gas mixture the concentration of H 2 S 5 volume% mixed gas flow rate of 100 ml / min Temperature 400 ° C. during between 2 hours above which has been subjected to (activity evaluation) presulfiding The hydrogenation activity and hydrocracking activity of catalysts A, B, C, D and E were measured using 1-methylnaphthalene and diphenylmethane.

実験 1 (反応条件) 炭化水素 1−メチルナフタレン10ml 触媒量 0.5g(予備硫化済) 水素初圧 70kg/cm2 反応温度 350℃ 反応時間 1時間 反応器 内容積50mlマイクロオートクレーブ 上記反応の後、オートクレーブ内容物をガスクロマト
グラフイーで分析すると1−メチルテトラリン及び5−
メチルテトラリンが生成しており残部はほぼ全て原料で
あった。1−メチルナフタレンの転化率から水素化活性
および水素化分解活性を求めると次のとおりである。
Experiment 1 (Reaction conditions) Hydrocarbon 1-methylnaphthalene 10 ml Catalyst amount 0.5 g (presulfurized) Hydrogen initial pressure 70 kg / cm 2 Reaction temperature 350 ° C Reaction time 1 hour Reactor inner volume 50 ml Micro autoclave After the above reaction, autoclave The contents were analyzed by gas chromatography to find that 1-methyltetralin and 5-
Methyltetralin was produced, and the remainder was almost all the raw material. The hydrogenation activity and hydrogenolysis activity are determined from the conversion of 1-methylnaphthalene as follows.

触 媒 水素化活性(%) 水素化分解活性(%) A 0.9 0 B 2.8 0 C 38.0 0 D 1.8 0 E 14.9 0 実験 2 (反応条件) 炭化水素 ジフエニルメタン10ml 触媒量 0.5g(予備硫化済) 水素初圧 70kg/cm2 反応温度 400℃ 反応時間 1時間 反応器 内容積50mlマイクロオートクレーブ 上記反応の生成物をガスクロマトグラフイーで分析す
ると水素化生成物たるベンゼン、トルエンとC、Dおよ
びEの触媒を用いた場合にはジフエニルメタンの水素化
物(主としてジシクロヘキシルメタン、ベンジルシクロ
ヘキサン)とが認められた。実験1と同様にジフエニル
メタンの転化率から、活性を求めると次のとおりであ
る。
Catalyst hydrogenation activity (%) Hydrocracking activity (%) A 0.90 B 2.80 C 38.0 0 D 1.80 E 14.9 0 Experiment 2 (reaction conditions) Hydrocarbon diphenylmethane 10 ml Catalyst amount 0.5 g (pre-sulfided) Hydrogen Initial pressure 70 kg / cm 2 Reaction temperature 400 ° C Reaction time 1 hour Reactor Internal volume 50ml Micro autoclave Analysis of the product of the above reaction by gas chromatography revealed that hydrogenation products benzene, toluene and C, D and E catalysts When used, it was found to be a hydride of diphenylmethane (mainly dicyclohexylmethane, benzylcyclohexane). The activity was determined from the conversion of diphenylmethane in the same manner as in Experiment 1, and the activity was as follows.

触 媒 水素化活性(%) 水素化分解活性(%) A 0 8.5 B 0 47.2 C 20.6 7.2 D 0.5 2.0 E 2.1 4.7 この実験結果から触媒活性金属を1種担持させた本発
明の触媒AおよびBは水素化分解反応を選択的に生起さ
せ、VI a族およびVIII族の金属の各1種を担持させた本
発明の触媒Cは水素化分解反応の他に水素化反応をも生
起させることが理解できる。したがって、本発明の触媒
はVI a族とVIII族との金属の割合を調節して水素化分解
反応のみあるいは水素化分解反応と水素化反応との両者
を優先的に行わせることが可能になる。
Catalyst hydrogenation activity (%) Hydrocracking activity (%) A 0 8.5 B 0 47.2 C 20.6 7.2 D 0.5 2.0 E 2.1 4.7 From the results of this experiment, catalysts A and B of the present invention supporting one type of catalytically active metal Selectively causes a hydrocracking reaction, and the catalyst C of the present invention, which supports one of each of the VIa group and VIII group metals, can also cause a hydrogenation reaction in addition to the hydrocracking reaction. It can be understood. Therefore, the catalyst of the present invention makes it possible to adjust the ratio of the metal of Group VIa and Group VIII to preferentially perform only the hydrocracking reaction or both the hydrocracking reaction and the hydrogenation reaction. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 利夫 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 松林 信行 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 審査官 野田 直人 (56)参考文献 特表 昭61−500600(JP,A) ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Toshio Sato 1-1-1, Higashi, Tsukuba, Ibaraki Pref., National Institute of Advanced Industrial Science and Technology (72) Inventor Nobuyuki Matsubayashi 1-1-1, Higashi, Tsukuba, Ibaraki Pref. Naoto Noda, Examiner in the Technical Research Institute (56) References Special Table Sho 61-500600 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】比表面積が20〜300m2/gの窒化チタンから
なる担体に、周期律表VI a族およびVIII族の金属から選
ばれた少くとも1種の金属を担持した水素化分解触媒。
1. A hydrocracking catalyst comprising at least one metal selected from metals of groups VIa and VIII of the periodic table supported on a support made of titanium nitride having a specific surface area of 20 to 300 m 2 / g. .
【請求項2】比表面積が20〜300m2/gの窒化チタンから
なる担体に、周期律表VI a族およびVIII族の金属から選
ばれた少くとも1種の金属の水素性化合物水性溶液を含
浸させ、不活性雰囲気中で乾燥、焼成することからなる
水溶化分解触媒の製造方法。
2. An aqueous solution of a hydrogen compound of at least one metal selected from metals of groups VIa and VIII of the periodic table is provided on a support made of titanium nitride having a specific surface area of 20 to 300 m 2 / g. A method for producing a water-solubilized decomposition catalyst, comprising impregnating, drying and calcining in an inert atmosphere.
JP1014120A 1989-01-25 1989-01-25 Hydrocracking catalyst and method for producing the same Expired - Lifetime JP2739980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1014120A JP2739980B2 (en) 1989-01-25 1989-01-25 Hydrocracking catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1014120A JP2739980B2 (en) 1989-01-25 1989-01-25 Hydrocracking catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02194841A JPH02194841A (en) 1990-08-01
JP2739980B2 true JP2739980B2 (en) 1998-04-15

Family

ID=11852263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1014120A Expired - Lifetime JP2739980B2 (en) 1989-01-25 1989-01-25 Hydrocracking catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP2739980B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104888837A (en) * 2015-06-10 2015-09-09 浙江理工大学 Synthetic method and application of visible-light responding carbon nitride/iron sesquioxide nano composite

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3344343A1 (en) * 1983-12-08 1985-06-13 Battelle-Institut E.V., 6000 Frankfurt METHOD FOR PRODUCING SHELL CATALYSTS

Also Published As

Publication number Publication date
JPH02194841A (en) 1990-08-01

Similar Documents

Publication Publication Date Title
JP4210336B2 (en) Method for preparing highly active catalyst and catalyst and method for using the same
EP0092878B1 (en) Nickel upon transition alumina catalysts
JP4210338B2 (en) Method for preparing highly active catalyst and catalyst and use thereof
US3928238A (en) Exhaust gas purifying catalyst and process of making and using same
US3966833A (en) Process for hydrodealkylating alkylaromatic hydrocarbons
JP2000061306A (en) Supported catalyst usable in conversion reaction of organic compound
AU2004249705B2 (en) A process and catalyst for the selective hydrogenation of diolefins contained in an olefin containing stream and for the removal of arsenic therefrom and a method of making such catalyst
JPH0238256B2 (en)
US4251394A (en) Coprecipitated copper-nickel-silica catalysts, preparation and use thereof
JPH05192573A (en) Boron containing catalyst
US4251672A (en) Process for hydrogenating organic compounds with coprecipitated copper-nickel-silica catalysts
US4263225A (en) Hydrogenation process using supported nickel-cobalt-silica coprecipitated catalyst
US4263173A (en) Supported nickel-cobalt-silica coprecipitated hydrogenation catalyst
JPH0431737B2 (en)
US3963601A (en) Hydrocracking of hydrocarbons with a catalyst comprising an alumina-silica support, a group VIII metallic component, a group VI-B metallic component and a fluoride
US4588705A (en) Method for preparing dual colloid compositions
US4034060A (en) Exhaust gas purifying catalyst and process of making and using same
JP2739980B2 (en) Hydrocracking catalyst and method for producing the same
JP2567260B2 (en) Method for producing hydrotreating catalyst from hydrogel
JPH02107333A (en) Catalyst for hydrogenation of circulating solvent for coal liquefaction
US4740490A (en) Dual colloid catalyst compositions
EP0131465A2 (en) Iron on titania catalyst and its use for hydrocarbon synthesis
US3789025A (en) Catalyst impregnation technique
US2865844A (en) Hydroforming process using high activity catalysts containing silica and chromia
CA1295964C (en) Process for the catalytic conversion of hydrocarbon oils

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term