JP2688309B2 - Vacuum decarburization treatment method for molten steel - Google Patents
Vacuum decarburization treatment method for molten steelInfo
- Publication number
- JP2688309B2 JP2688309B2 JP4227342A JP22734292A JP2688309B2 JP 2688309 B2 JP2688309 B2 JP 2688309B2 JP 4227342 A JP4227342 A JP 4227342A JP 22734292 A JP22734292 A JP 22734292A JP 2688309 B2 JP2688309 B2 JP 2688309B2
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- vacuum
- gas
- oxygen
- vacuum chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、炭素含有量が0.00
10重量%以下の超低炭素溶鋼を生産するのに適した溶
鋼の脱炭処理法に関する。TECHNICAL FIELD The present invention has a carbon content of 0.00.
The present invention relates to a decarburizing treatment method for molten steel suitable for producing ultra-low carbon molten steel at 10% by weight or less.
【0002】[0002]
【従来の技術】真空槽内の溶鋼に酸素を供給する脱炭処
理方法は広く知られている。しかし超低炭素鋼は脱炭が
進行し難いために脱炭に時間を要し溶鋼の温度低下が大
きいという問題点がある。また脱炭を促進するために溶
鋼中に酸素等を吹き込むと、激しいスプラッシュが発生
し真空槽の内壁に多量の地金が付着し、真空槽の地金の
除去を頻繁に行う事が必要となる。2. Description of the Related Art A decarburizing method for supplying oxygen to molten steel in a vacuum chamber is widely known. However, since ultra-low carbon steel is difficult to decarburize, it takes a long time to decarburize, and there is a problem that the temperature of molten steel is greatly lowered. When oxygen etc. is blown into the molten steel to promote decarburization, a violent splash occurs and a large amount of metal adheres to the inner wall of the vacuum chamber, which necessitates frequent removal of the metal in the vacuum chamber. Become.
【0003】RH真空槽内に電気抵抗発熱体を配する例
はあるが、しかし従来の電気抵抗発熱体は前記の溶鋼の
温度低下の防止や地金の付着防止には不十分であり、ま
た電気抵抗発熱体は設備コストが高くまた電極費や電力
費が高いという問題点がある。Although there is an example in which an electric resistance heating element is arranged in the RH vacuum chamber, the conventional electric resistance heating element is insufficient for preventing the temperature decrease of the molten steel and the adhesion of the metal, and The electric resistance heating element has a problem that the facility cost is high and the electrode cost and the power cost are high.
【0004】特開昭53−81416号公報には、溶鋼
にAl,Si等を添加し、真空槽内の溶鋼に酸素を吹き
つけて溶鋼を脱炭し加熱する方法が記載されている。し
かしこの方法は高価なAlやSi等を使用する方法であ
り、またこの方法では真空槽内に多量の地金が付着する
という問題点がある。Japanese Unexamined Patent Publication No. 53-81416 describes a method of adding Al, Si or the like to molten steel and blowing oxygen to the molten steel in a vacuum chamber to decarburize and heat the molten steel. However, this method uses expensive Al, Si, etc., and there is a problem with this method in that a large amount of metal is deposited in the vacuum chamber.
【0005】特開平2−77518号には、酸素を真空
槽内の溶鋼表面に吹付け、この酸素によって真空槽内の
溶鋼が放出するCOガスを燃焼させる方法が記載されて
いる。しかし溶鋼が放出するCOガスのみを熱源とする
この方法は、熱源が小さいために溶鋼の温度降下の防止
には不十分であり、また熱源が小さいために真空槽の内
壁の加熱も不十分で地金の付着を有効に防止する事は難
しい。Japanese Unexamined Patent Publication (Kokai) No. 2-77518 describes a method in which oxygen is sprayed onto the surface of molten steel in a vacuum chamber, and the CO gas released by the molten steel in the vacuum chamber is burned by this oxygen. However, this method of using only CO gas released from the molten steel as a heat source is insufficient to prevent the temperature drop of the molten steel due to the small heat source, and the heating of the inner wall of the vacuum chamber is also insufficient due to the small heat source. It is difficult to effectively prevent the adhesion of metal.
【0006】特開昭64−217号には、真空槽内の溶
鋼中に可燃性ガスを吹込むと同時に、真空槽内の溶鋼浴
面の上方から酸素を供給し、溶鋼を加熱昇温する方法が
記載されている。しかしこの方法は可燃ガスを溶鋼中に
吹き込むために、溶鋼中のCやHが上昇するという問題
点がある。In Japanese Patent Laid-Open No. 64-217, a combustible gas is blown into the molten steel in the vacuum chamber, and at the same time, oxygen is supplied from above the molten steel bath surface in the vacuum chamber to heat and raise the temperature of the molten steel. The method is described. However, this method has a problem that C and H in the molten steel rise because the combustible gas is blown into the molten steel.
【0007】[0007]
【発明が解決しようとする課題】本発明は、大規模な電
気抵抗加熱装置を用いないで、またAlやSi等の高価
な合金鉄を用いないで、超低炭素鋼の製造に際して、溶
鋼の温度低下を防止する事ができ、かつ真空槽の内壁へ
の地金付着を防止することができる、溶鋼の真空脱炭処
理方法の提供を課題としている。SUMMARY OF THE INVENTION The present invention does not use a large-scale electric resistance heating device and does not use expensive ferroalloys such as Al and Si. An object of the present invention is to provide a vacuum decarburization treatment method for molten steel, which can prevent the temperature from decreasing and can prevent the adhesion of metal to the inner wall of the vacuum chamber.
【0008】[0008]
【課題を解決するための手段および作用】本発明は、
(1)RH真空処理に際して、真空槽内に垂下せしめた
加熱バーナーを炉頂に配し、真空槽内の溶鋼浴面下にガ
スを吹込む吹込ノズルを配し、加熱バーナーで真空槽内
の溶鋼を加熱しながら吹込ノズルから酸素またはアルゴ
ン等の不活性ガスまたは酸素とアルゴン等の不活性ガス
の混合ガスを吹込むことを特徴とする、溶鋼の真空脱炭
処理法であり、また(2)真空槽内の溶鋼の炭素含有量
が0.01重量%以下における吹込ノズルからの吹込ガ
スが、アルゴン等の不活性ガスである、前記(1)に記載
の溶鋼の真空脱炭処理法である。SUMMARY OF THE INVENTION The present invention provides:
(1) At the time of RH vacuum treatment, a heating burner hung in a vacuum tank is placed on the furnace top, and a blowing nozzle for blowing gas is placed below the surface of the molten steel bath in the vacuum tank. A method for vacuum decarburization treatment of molten steel, characterized in that an inert gas such as oxygen or argon or a mixed gas of oxygen and an inert gas such as argon is blown from a blowing nozzle while heating the molten steel. ) In the method for vacuum decarburizing molten steel according to (1), the gas blown from the blowing nozzle when the carbon content of the molten steel in the vacuum tank is 0.01% by weight or less is an inert gas such as argon. is there.
【0009】図1は本発明で使用する装置の全体の説明
図である。図中1はRH真空槽、2は取鍋、3は溶鋼、
4は環流用ガスノズル、5は真空ポンプに連結されけた
排気管である。本発明では真空槽1内に垂下せしめた加
熱バーナー6を炉頂に配し、また真空槽内の溶鋼浴面下
にガスを吹込む吹込ノズル13を配する。FIG. 1 is an explanatory view of the whole apparatus used in the present invention. In the figure, 1 is a RH vacuum tank, 2 is a ladle, 3 is molten steel,
Reference numeral 4 is a gas nozzle for circulation, and 5 is an exhaust pipe connected to a vacuum pump. In the present invention, the heating burner 6 suspended in the vacuum tank 1 is arranged at the furnace top, and the blowing nozzle 13 for blowing gas is arranged below the molten steel bath surface in the vacuum tank.
【0010】図2は本発明で使用する加熱バーナー6の
例の吹出端部近傍の説明図である。本発明者等は、軸芯
に設けたスロート部7とスロート部の下方に連接した末
広がり部8と、該末広がり部8の末広がり面に軸芯に対
称に複数個設けた燃料ガス供給孔9とを有する加熱バー
ナーを用いLNGガスを燃料として真空槽内の溶鋼を加
熱した。FIG. 2 is an explanatory view of the vicinity of the blow-out end of an example of the heating burner 6 used in the present invention. The present inventors have found that a throat portion 7 provided on the shaft core, a divergent end portion 8 connected to the lower part of the throat portion, and a plurality of fuel gas supply holes 9 symmetrically provided on the divergent surface of the divergent end portion 8 with the axial center. The molten steel in the vacuum tank was heated using LNG gas as a fuel using a heating burner having a.
【0011】本発明者等は末広がり部の傾斜角度θ、末
広がり部の下端の直径D1と上端の直径D2との比(D1
/D2)等を検討したが、θが5〜10°、D1/D2が
3〜5で燃料供給孔9が末広がり部の略中央部に配され
ている加熱バーナーを用いると、減圧した真空槽内にお
いてもまた後で述べる大気圧の真空槽内においても、加
熱バーナーの燃焼は安定である事を知得した。尚図中1
0は酸素で、11は燃料、12は水冷部である。The present inventors have found that the inclination angle θ of the diverging portion and the ratio of the lower end diameter D 1 of the diverging portion to the upper end diameter D 2 (D 1
/ D 2 ) etc. were examined, but when using a heating burner in which θ is 5 to 10 °, D 1 / D 2 is 3 to 5 and the fuel supply hole 9 is arranged in the substantially central portion of the end spread portion, decompression is performed. It was found that the combustion of the heating burner is stable both in the vacuum chamber and in the vacuum chamber at atmospheric pressure described later. 1 in the figure
Reference numeral 0 is oxygen, 11 is a fuel, and 12 is a water cooling section.
【0012】図1の吹込ノズル13は、真空槽内の溶湯
3の浴面下に配する。吹込ノズルからは、酸素またはア
ルゴンまたは酸素とアルゴンとの混合ガスを吹込む。こ
の吹込ノズルとしては、酸素吹込量とアルゴン吹込量を
それぞれ独立に制御することができる公知の吹込ノズル
を用いることができる。The blowing nozzle 13 shown in FIG. 1 is arranged below the bath surface of the molten metal 3 in the vacuum chamber. From the blow nozzle, oxygen or argon or a mixed gas of oxygen and argon is blown. As this blowing nozzle, a known blowing nozzle capable of independently controlling the oxygen blowing amount and the argon blowing amount can be used.
【0013】本発明者等は、100トンの取鍋内溶鋼と
RH真空槽を用いて、RHの溶鋼循環係数を34トン/
分として溶鋼を脱炭した。図3はその結果の例である。
図3で△は溶鋼の浴面に上吹きの酸素を吹きつけて脱炭
を行った例であるが、取鍋溶鋼の[C]が100ppm
以下になると、溶鋼の[C]の低下は緩やかとなって脱
炭率効率が低下する。The inventors of the present invention used a molten steel in a ladle of 100 tons and an RH vacuum chamber to obtain a molten steel circulation coefficient of RH of 34 tons /
The molten steel was decarburized as a minute. FIG. 3 is an example of the result.
In Fig. 3, △ is an example of decarburization by blowing top-blown oxygen onto the bath surface of the molten steel, but the ladle molten steel [C] is 100 ppm.
When it becomes the following, the decrease of [C] of the molten steel becomes gradual, and the decarburization rate efficiency decreases.
【0014】◎は△と同量のアルゴンを湯面下約100
mmに吹込んだ例であるが、[C]が100ppm以下
でも溶鋼の[C]の低下はスムースで、取鍋溶鋼の
[C]を10ppm以下に容易に低減することができ
た。◎ indicates that the same amount of argon as △ is about 100 below the surface of the molten metal.
In this example, the molten steel [C] was smoothly reduced even when [C] was 100 ppm or less, and the ladle molten steel [C] could be easily reduced to 10 ppm or less.
【0015】格別の工夫を行わないで、真空槽内の溶鋼
浴面下に設けた吹込ノズルから酸素やアルゴンや混合ガ
スを吹込むと、激しいスプラッシュが発生し、真空槽の
内壁には多量の地金が付着しその除去を頻繁に行うこと
が余儀なくされる。本発明では燃料と酸素を供給して燃
焼させる加熱バーナーを用いるが、加熱バーナーは供給
した燃料と酸素の混合を促進する事により高温のフレー
ムを形成し、このため溶鋼を加熱すると同時に、強い輻
射熱等で真空槽の内壁は高温に加熱される。この高温加
熱によって真空槽の内壁に付着したスプラッシュは滴下
流下して、地金として付着することがない。If oxygen, argon, or a mixed gas is blown from a blowing nozzle provided below the surface of the molten steel bath in the vacuum chamber without making any special measures, a violent splash occurs, and a large amount of the inner wall of the vacuum chamber is generated. The metal adheres and it is unavoidable to remove it frequently. In the present invention, fuel and oxygen are supplied to burn
Use a heating burner to burn, but supply the heating burner
By promoting the mixing of the fuel and oxygen
Forming a beam, the order and at the same time heating the molten steel, the inner wall of the vacuum chamber with strong radiation heat is heated to a high temperature. The splash adhered to the inner wall of the vacuum chamber due to this high-temperature heating drops down and does not adhere as metal.
【0016】本発明者等の知見によると図2で述べた加
熱バーナーを大気圧下で燃焼させると、加熱バーナーの
下端から一旦吹き出した酸素と燃料ガスは末広がり部に
押し戻されて、末広がり部での酸素と燃料ガスの混合を
促進する。この結果、図2の加熱バーナーは大気圧の下
では短くかつ極めて高温のフレームを形成する。According to the knowledge of the present inventors, when the heating burner described in FIG. 2 is burned under the atmospheric pressure, oxygen and fuel gas once blown from the lower end of the heating burner are pushed back to the end-spreading part, and at the end-spreading part. Promotes the mixing of oxygen and fuel gas. As a result, the heating burner of Figure 2 forms a short and extremely hot flame under atmospheric pressure.
【0017】真空槽が次回の溶鋼を処理するために待機
している際は、加熱バーナーを用いて大気圧下で真空槽
の内壁を加熱する。この際短くかつ高温のフレームによ
って真空槽の内壁は高温に予熱される。真空槽の内壁の
この予熱を十分に行っておくと、次の溶鋼の処理に際し
て、真空槽の内壁の地金の付着は更に防止される。加熱
バーナーは電気抵抗加熱装置よりも発熱容量を増加させ
る事が容易であり、また設備費用および操業費用が安価
である。When the vacuum chamber is waiting to process the next molten steel, the inner wall of the vacuum chamber is heated under atmospheric pressure using a heating burner. At this time, the inner wall of the vacuum chamber is preheated to a high temperature by the short and high temperature frame. If this preheating of the inner wall of the vacuum chamber is sufficiently performed, the adhesion of the metal to the inner wall of the vacuum chamber can be further prevented in the subsequent treatment of molten steel. The heating burner is easier to increase the heat generation capacity than the electric resistance heating device, and the facility cost and the operating cost are lower.
【0018】[0018]
【表1】 [Table 1]
【0019】[0019]
【実施例】100トン転炉で溶製した溶鋼を図1に示す
100トンRH真空脱ガス装置を用いて表1に示す条件
で脱炭処理した。表1の実験番号1〜5は本発明の実施
例で、脱炭処理後の炭素濃度は低く、温度降下量も小さ
く、地金の付着もなく良好である。表1でNo6は比較
例で加熱バーナーを用いなかった例であるが、脱炭処理
後の温度がNo1〜No5に比べて顕著に低く、また真
空槽内の地金付着も多い。No7は比較例で、加熱バー
ナーからのLNGガスと吹込ノズルを用いないで、酸素
のみを上吹きした例である。この際も温度降下量が30
℃で本発明例に比べて大きく、また脱炭後の炭素濃度は
高く、かつ地金付着も観察される。No8は比較例で、
加熱バーナーのみを用いた例である。この場合も脱炭後
の炭素濃度は本発明例に比べて高い。No9は比較例
で、加熱バーナーもガス吹込も行わない例であるが炭素
濃度の低下は不十分で、温度降下が大きく、地金の付着
量も多い。EXAMPLES Molten steel produced by melting in a 100-ton converter was decarburized under the conditions shown in Table 1 using a 100-ton RH vacuum degassing apparatus shown in FIG. Experiment Nos. 1 to 5 in Table 1 are examples of the present invention, and the carbon concentration after decarburization is low, the amount of temperature drop is small, and there is no metal adhesion, which is good. No. 6 in Table 1 is a comparative example in which a heating burner is not used, but the temperature after decarburizing treatment is significantly lower than that of No. 1 to No. 5 and there is much metal adhesion in the vacuum chamber. No. 7 is a comparative example, in which LNG gas from the heating burner and the blowing nozzle are not used, and only oxygen is blown upward. At this time, the temperature drop is 30
It was larger at 0 ° C than in the examples of the present invention, the carbon concentration after decarburization was high, and metal adhesion was also observed. No8 is a comparative example,
This is an example using only a heating burner. Also in this case, the carbon concentration after decarburization is higher than that of the examples of the present invention. No. 9 is a comparative example, which is an example in which neither a heating burner nor a gas blower is performed, but the carbon concentration is not sufficiently lowered, the temperature drop is large, and the amount of metal adhered is large.
【0020】[0020]
【発明の効果】本発明を実施することにより、大規模な
電気抵抗加熱装置を用いないで、またAlやSi等の高
価な合金鉄を用いないで、溶鋼の温度低下を防止しかつ
真空槽の内壁への地金付着を防止して、炭素濃度が十分
に低い超低炭素鋼を製造することができる。By implementing the present invention, the temperature drop of molten steel can be prevented and the vacuum chamber can be prevented without using a large-scale electric resistance heating device and without using expensive alloy iron such as Al or Si. It is possible to prevent the adhesion of metal to the inner wall of the steel, and to manufacture an ultra-low carbon steel having a sufficiently low carbon concentration.
【図面の簡単な説明】 図1は本発明で使用する装置の説明図、図2は本発明で
使用する加熱バーナーの説明図、図3は超低炭素領域に
おける脱炭の説明図、である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of an apparatus used in the present invention, FIG. 2 is an explanatory view of a heating burner used in the present invention, and FIG. 3 is an explanatory view of decarburization in an ultra-low carbon region. .
1:RH真空槽、 2:取鍋、 3:溶鋼、 4:環流
用ガスノズル、 5:排気管、 6:加熱バーナー、
7:スロート部、 8:末広がり部、 9:燃料供給
孔、 10:酸素、 11:燃料ガス、 12:水冷
部。1: RH vacuum tank, 2: ladle, 3: molten steel, 4: gas nozzle for reflux, 5: exhaust pipe, 6: heating burner,
7: throat part, 8: divergent part, 9: fuel supply hole, 10: oxygen, 11: fuel gas, 12: water cooling part.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 永浜 洋 兵庫県姫路市広畑区富士町1番地 新日 本製鐵株式会社広畑製鐵所内 (72)発明者 亀井 浩一 兵庫県姫路市広畑区富士町1番地 新日 本製鐵株式会社広畑製鐵所内 (72)発明者 磯野 貴宏 兵庫県姫路市広畑区富士町1番地 新日 本製鐵株式会社広畑製鐵所内 (56)参考文献 特開 平2−217412(JP,A) 特開 昭64−217(JP,A) 特開 昭59−110717(JP,A) 特公 昭56−49968(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Nagahama 1 Fuji-machi, Hirohata-ku, Himeji-shi, Hyogo Nippon Steel Corporation Hirohata Works (72) Inventor Koichi Kamei Fuji-cho, Himeji-shi, Hyogo-ken No. 1 Nippon Steel Works Hirohata Works (72) Inventor Takahiro Isono No. 1 Fuji-machi, Hirohata-ku, Himeji City, Hyogo Prefecture Nippon Steel Works Hirohata Works (56) References Japanese Patent Laid-Open No. 2 -217412 (JP, A) JP 64-217 (JP, A) JP 59-110717 (JP, A) JP 56-49968 (JP, B2)
Claims (4)
しめた燃料と酸素を供給して燃焼させるランス状の加熱
バーナーを頂部に配し、真空槽内の溶鋼浴面下にガスを
吹き込む吹き込みノズルを配し、加熱バーナーで真空槽
内に付着した地金を溶融すると共に真空槽内の溶鋼を加
熱しながら、吹込ノズルから酸素またはアルゴン等の不
活性ガスまたは酸素とアルゴン等の不活性ガスとの混合
ガスを吹込むことを特徴とする、溶鋼の真空脱炭処理方
法。1. At the time of RH vacuum treatment, a lance-shaped heating burner for supplying and burning fuel and oxygen hung in a vacuum chamber is arranged at the top, and gas is blown into the vacuum chamber below the surface of the molten steel bath. A nozzle is installed and the metal burnt in the vacuum tank is melted by a heating burner and the molten steel in the vacuum tank is heated, while an inert gas such as oxygen or argon or an inert gas such as oxygen and argon is blown from the blowing nozzle. A method for vacuum decarburizing molten steel, which comprises blowing a mixed gas of
量%以下における吹込ノズルからの吹込ガスが、アルゴ
ン等の不活性ガスであることを特徴とする、請求項1に
記載の溶鋼の真空脱炭処理方法。2. The blow gas from the blow nozzle when the carbon content of the molten steel in the vacuum chamber is 0.01% by weight or less is an inert gas such as argon, and the blow gas is an inert gas. Vacuum decarburization treatment method for molten steel.
ーが、軸芯の酸素の流路に設けたスロート部(7)とスThe throat part (7) provided in the oxygen flow path of the shaft core
ロート部の下方に連接した末広がり部(8)と、この末The end widening part (8) connected below the funnel and this end
広がり部(8)の末広がり面に軸芯に対象に複数個設けProviding a plurality of symmetrically on the axial center on the flared surface of the flared portion (8)
た燃料ガス供給孔(9)とを有する加熱バーナーであるWith a fuel gas supply hole (9)
ことを特徴とする溶鋼の真空脱炭処理方法。A method for vacuum decarburization treatment of molten steel, which is characterized in that
広がり部の傾斜角度が5〜10°、末広がり部の下端のThe inclination angle of the spread part is 5 to 10 °,
直径D1と上端の直径D2との比D1/D2が3〜5でThe ratio D1 / D2 of the diameter D1 and the diameter D2 at the upper end is 3 to 5
燃料供給孔が末広がり部の中央部近傍に配されている加The fuel supply hole is located near the center of the flared end.
熱バーナーであることを特徴とする溶鋼の真空脱炭処理Vacuum decarburization of molten steel characterized by being a thermal burner
方法。Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4227342A JP2688309B2 (en) | 1992-08-26 | 1992-08-26 | Vacuum decarburization treatment method for molten steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4227342A JP2688309B2 (en) | 1992-08-26 | 1992-08-26 | Vacuum decarburization treatment method for molten steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0673432A JPH0673432A (en) | 1994-03-15 |
JP2688309B2 true JP2688309B2 (en) | 1997-12-10 |
Family
ID=16859305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4227342A Expired - Lifetime JP2688309B2 (en) | 1992-08-26 | 1992-08-26 | Vacuum decarburization treatment method for molten steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2688309B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0785284B1 (en) * | 1995-08-01 | 2002-11-13 | Nippon Steel Corporation | Process for vacuum refining of molten steel |
US6638475B1 (en) | 2000-11-08 | 2003-10-28 | The Regents Of The University Of California | Method for inhibiting pathogenic and spoilage activity in products |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5649968A (en) * | 1979-07-20 | 1981-05-06 | Furuno Electric Co Ltd | Underwater detection device applicable in multidirection |
JPS59110717A (en) * | 1982-12-14 | 1984-06-26 | Nippon Steel Corp | Vacuum circulation degassing apparatus |
JPS64217A (en) * | 1987-02-06 | 1989-01-05 | Kawasaki Steel Corp | Vacuum refining method for molten steel |
JP2773883B2 (en) * | 1989-02-16 | 1998-07-09 | 川崎製鉄株式会社 | Melting method of ultra low carbon steel by vacuum degassing |
-
1992
- 1992-08-26 JP JP4227342A patent/JP2688309B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0673432A (en) | 1994-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2261922C2 (en) | Method of production of metals and metal alloys | |
CN1044821C (en) | Method and apparatus for vacuum degasifying liquid steel | |
JP2003172584A (en) | Fine particle blowing device and refining method | |
JP2688309B2 (en) | Vacuum decarburization treatment method for molten steel | |
JP2593175B2 (en) | Method for producing ultra-low carbon steel by vacuum degassing | |
JP2688310B2 (en) | Vacuum degasser | |
JPH0673436A (en) | Treatment of molten steel by vacuum-decarburization | |
JP3090542B2 (en) | Operation method of vacuum processing equipment | |
JPH01217A (en) | Vacuum refining method for molten steel | |
KR100334945B1 (en) | Simple ladle refining method | |
JP3098102B2 (en) | Heating method of vacuum degassing tank | |
JP2759021B2 (en) | Vacuum degassing method for molten steel | |
JPS61235506A (en) | Heating up method for molten steel in ladle | |
JP3225747B2 (en) | Vacuum degassing of molten steel | |
JPH0673435A (en) | Treatment of molten steel by vacuum-decarburization | |
EP4303327A1 (en) | Electric furnace and steelmaking method | |
JP3088558B2 (en) | Vacuum degassing tank heating device | |
JP3272372B2 (en) | Tank heating method and apparatus for vacuum degassing tank | |
JPH0987733A (en) | Method for vacuum-degassing molten steel | |
JPH08225823A (en) | Refining of molten metal | |
JPS637315A (en) | Secondary combustion method for gaseous co in oxygen bottom blowing converter | |
JP2889901B2 (en) | Liquid steel bath reheating method | |
JP3754154B2 (en) | Blowing acid decarburization refining method of stainless steel under vacuum | |
JP2003268434A (en) | Top-blown lance and process for refining molten iron using this | |
JP2003253322A (en) | Method for melting stainless steel in electric furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970722 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080822 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090822 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090822 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100822 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100822 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130822 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130822 Year of fee payment: 16 |