JP2680370B2 - Corrosion resistant material - Google Patents

Corrosion resistant material

Info

Publication number
JP2680370B2
JP2680370B2 JP63226113A JP22611388A JP2680370B2 JP 2680370 B2 JP2680370 B2 JP 2680370B2 JP 63226113 A JP63226113 A JP 63226113A JP 22611388 A JP22611388 A JP 22611388A JP 2680370 B2 JP2680370 B2 JP 2680370B2
Authority
JP
Japan
Prior art keywords
corrosion
resistant material
corrosion resistant
material according
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63226113A
Other languages
Japanese (ja)
Other versions
JPH0273944A (en
Inventor
裕 石渡
義康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63226113A priority Critical patent/JP2680370B2/en
Publication of JPH0273944A publication Critical patent/JPH0273944A/en
Application granted granted Critical
Publication of JP2680370B2 publication Critical patent/JP2680370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は耐食性材料に係り、特に、耐熱衝撃特性およ
び耐溶融金属腐食特性の双方にすぐれた耐食性材料なら
びにその製造方法に関する。
The present invention relates to a corrosion-resistant material, and more particularly to a corrosion-resistant material excellent in both thermal shock resistance and molten metal corrosion resistance, and a method for producing the same. .

(従来の技術) チタニウム、ジルコニウム、ウランのような金属は比
較的融点が高く、かつ、化学的に活性なため、これらの
溶融金属と接触する各種部材用材料としては、耐熱性、
耐熱衝撃性及び耐溶融金属腐食性が要求される。
(Prior Art) Metals such as titanium, zirconium, and uranium have relatively high melting points and are chemically active. Therefore, as materials for various members that come into contact with these molten metals, heat resistance,
Thermal shock resistance and molten metal corrosion resistance are required.

従来、このように活性な溶融金属と接する部材として
は、耐溶融金属腐食性にすぐれたZrO2、Y2O3、ThO2等の
金属酸化物やZrC、TiC、HfC等の金属炭化物及びZrN、Ti
N、TaN等の金属窒化物からなるセラミックス材料が使用
されている。
Conventionally, such members that come into contact with an active molten metal include ZrO 2 , Y 2 O 3 , which have excellent molten metal corrosion resistance, metal oxides such as ThO 2 and metal carbides such as ZrC, TiC and HfC, and ZrN. , Ti
Ceramic materials made of metal nitrides such as N and TaN are used.

(発明が解決しようとする課題) しかし、上述した従来のセラミックス材料は、一般に
靭性が低く、溶融金属の付着等の熱衝撃や熱応力により
き裂が発生し、容易に破壊にまで至ることが多々あっ
た。
(Problems to be Solved by the Invention) However, the above-mentioned conventional ceramic materials generally have low toughness, and cracks may occur due to thermal shock or thermal stress such as adhesion of molten metal, which may easily lead to fracture. There were many.

一方、タングステン、タンタル、レニウム等の高融点
金属の靭性はセラミックスに比べ著しく高く、したがっ
て耐熱性、耐熱衝撃性にはすぐれている。しかしなが
ら、これらの材料は使用中において再結晶化温度以上の
高温下長時間保持されるので結晶粒の粗大化が起こり脆
化という問題がある。また、これらの金属は、溶融チタ
ン、ジルコニウムあるいはウランに対して良く濡れるの
で、長時間の使用に際しては溶融金属と反応し、減肉す
る。
On the other hand, the toughness of refractory metals such as tungsten, tantalum, and rhenium is remarkably higher than that of ceramics, and therefore they are excellent in heat resistance and thermal shock resistance. However, since these materials are kept for a long time at a temperature higher than the recrystallization temperature during use, coarsening of crystal grains occurs and embrittlement occurs. In addition, since these metals are well wetted with molten titanium, zirconium or uranium, they react with the molten metal during use for a long time to reduce the thickness.

近年、このようなセラミックスと金属の双方の欠点を
改善する方法として、靭性の高い金属基材表面に耐食性
にすぐれたセラミックスを溶射等のの方法によりコーテ
ィングする技術が試みられているが、この場合において
も得られるコーティング皮膜の密着性、密度、耐食性、
あるいは均一性等に問題が有り、その信頼性は必ずしも
十分満足のいくものではない。
In recent years, as a method for improving the defects of both ceramics and metals, a technique of coating ceramics with excellent corrosion resistance on the surface of a metal substrate having high toughness by a method such as thermal spraying has been attempted. Adhesion, density, corrosion resistance of coating film obtained in
Alternatively, there is a problem in uniformity and the reliability is not always satisfactory.

したがって、このような溶融チタニウム、ジルコニウ
ム、ウランに対し、高温、高真空下で長時間使用できる
信頼性の高い材料は無いのが現状である。
Therefore, at present, there is no highly reliable material that can be used for a long time at high temperature and high vacuum against such molten titanium, zirconium and uranium.

本発明は上述した従来技術の問題点に鑑みてなされた
ものであり、溶融金属に対する耐食性と耐熱衝撃特性の
双方にすぐれた材料を提供することを目的としている。
The present invention has been made in view of the above-mentioned problems of the conventional techniques, and an object thereof is to provide a material having both excellent corrosion resistance to molten metal and excellent thermal shock resistance.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段および作用) 本発明に係る耐食性材料は、高融点金属をマトリクス
とする耐食性材料であって、該耐食性材料の少なくとも
表面層の結晶粒界に、耐食性ないし粒界結合力にすぐれ
た物質粒子が配されてなることを特徴としている。
(Means and Actions for Solving the Problems) A corrosion resistant material according to the present invention is a corrosion resistant material having a refractory metal as a matrix, and the corrosion resistance or grain boundary bonding is present in at least the crystal grain boundaries of the surface layer of the corrosion resistant material. The feature is that material particles with excellent strength are arranged.

本発明においては、後述するように、タングステン、
タンタル等の高融点金属の結晶粒界に耐溶融金属腐食性
にすぐれたセラミックス粒子ないし粒界結合力を高める
高融点金属粒子を配置することにより、耐熱衝撃性及び
耐溶融金属腐食性を向上させ、かつ、長時間の使用に対
しても経年的にその特性が変化しないような耐食性材料
を提供することがでいるのである。
In the present invention, as will be described later, tungsten,
The thermal shock resistance and molten metal corrosion resistance are improved by arranging ceramic particles with excellent melting metal corrosion resistance or high melting point metal particles that enhance the grain boundary bonding force at the crystal grain boundaries of refractory metals such as tantalum. Moreover, it is possible to provide a corrosion-resistant material whose characteristics do not change over time even when used for a long time.

本発明者らは、各種セラミックス、高融点金属の溶融
金属中における腐食挙動を調査した結果、タングステ
ン、タンタルなどの高融点金属の腐食は、溶融金属の著
しく速い粒界拡散により、まず結晶粒界が浸食され、こ
れにより結晶粒が脱落しその結果減肉することを見出し
た。すなわち、第5図(a)〜(c)に示すように、ま
ず結晶粒界4に溶融金属3が拡散、浸透し結晶粒界を腐
食する(同図(a))。結晶粒界は更に徐々に浸食さ
れ、生じた間隙に溶融金属3が浸透する(同図
(b))。さらに、浸食が進行すると、結晶粒の周囲が
全て溶融金属3で囲まれ、結晶粒1の脱落が生じる(同
図(c))。これは、タングステン、タンタルなどの結
晶粒界(すなわち、結晶粒子の界面)の耐食性が結晶粒
内部に比べ著しく低いためである。脱落した結晶粒自体
は溶融金属中に長時間放置してもほとんど浸食されなか
った。
As a result of investigating the corrosion behavior of various ceramics and refractory metals in the molten metal, the inventors found that the corrosion of refractory metals such as tungsten and tantalum is caused by the extremely fast grain boundary diffusion of the molten metal, and the It has been found that the erosion of the alloy causes the crystal grains to fall off, resulting in a reduction in the wall thickness. That is, as shown in FIGS. 5A to 5C, first, the molten metal 3 diffuses and penetrates into the crystal grain boundaries 4 to corrode the crystal grain boundaries (FIG. 5A). The crystal grain boundaries are further gradually eroded, and the molten metal 3 permeates into the resulting gaps (FIG. 2 (b)). Further, as the erosion progresses, the entire periphery of the crystal grain is surrounded by the molten metal 3, and the crystal grain 1 is dropped (FIG. 2 (c)). This is because the corrosion resistance of the crystal grain boundaries of tungsten, tantalum, etc. (that is, the interface of the crystal grains) is significantly lower than that inside the crystal grains. The dropped crystal grains themselves were hardly eroded even when left in the molten metal for a long time.

以上の結果から、タングステン、タンタルなどの高融
点金属の場合、結晶粒界の耐溶融金属腐食性を改善し、
かつ、使用環境(高温)での結晶粒の粗大化を防止する
ことにより、溶融チタン、ジルコニウム、ウラン等の活
性溶融金属に対する耐腐食性にすぐれ、しかも熱衝撃特
性にすぐれた材料を得ることができることが判明した。
From the above results, in the case of refractory metals such as tungsten and tantalum, the molten metal corrosion resistance of grain boundaries is improved,
In addition, by preventing the crystal grains from coarsening in the operating environment (high temperature), it is possible to obtain a material that has excellent corrosion resistance to active molten metals such as molten titanium, zirconium, and uranium, and that has excellent thermal shock characteristics. It turned out to be possible.

本発明は、上述した知見に基いてなされたものであ
る。第1図は本発明の耐食性材料を溶融金属と接触させ
た状態を模式的に示す断面図である。本図に示すよう
に、本発明の耐食性材料は、高融点金属の結晶粒子1の
粒界(すなわち結晶粒子の界面部分)に、耐食性ないし
粒界結合力にすぐれた物質粒子2が配されてなることを
特徴としている。
The present invention has been made based on the above findings. FIG. 1 is a sectional view schematically showing a state in which the corrosion resistant material of the present invention is brought into contact with a molten metal. As shown in the figure, in the corrosion resistant material of the present invention, substance particles 2 having excellent corrosion resistance or grain boundary bonding force are arranged at the grain boundaries of the refractory metal crystal grains 1 (that is, the interface portion of the crystal grains). It is characterized by becoming.

第1図に示すように、高融点金属の結晶粒1の粒界に
配置された均質粒子(耐食性セラミックス粒子2)のた
め、溶融金属3と接する結晶粒界は、マクロ的に直接溶
融金属と接することは無い(部分A)。また、結晶粒自
体は、かなり耐溶融金属腐食性にすぐれているため、結
晶粒内が溶融金属3と接している部分(部分B)におい
ても腐食は極軽微である。なお、表面に耐食性セラミッ
クス粒子1が露出していない粒界(部分C)において
も、若干粒界が腐食されるが、耐食性セラミックス粒子
に達した時点で腐食は止まる傾向にあり、腐食により結
晶粒が脱落することはない。
As shown in FIG. 1, because of the homogeneous particles (corrosion-resistant ceramic particles 2) arranged at the grain boundaries of the crystal grains 1 of the refractory metal, the crystal grain boundaries in contact with the molten metal 3 are macroscopically directly connected to the molten metal. There is no contact (part A). Further, since the crystal grains themselves have excellent resistance to molten metal corrosion, the corrosion is extremely slight even in the portion where the inside of the crystal grains is in contact with the molten metal 3 (portion B). Even at the grain boundaries (part C) where the corrosion-resistant ceramic particles 1 are not exposed on the surface, the grain boundaries are slightly corroded, but the corrosion tends to stop when the corrosion-resistant ceramic particles are reached. Will never fall out.

また、ほとんどの粒界は高融点金属の結晶粒どうしが
結合しているため、セラミクスのように靭性が低いこと
は無く、耐熱衝撃特性も比較的良好なものとなる。しか
も、粒界に分布したセラミックス粒子は、金属の再結晶
による結晶の成長に対してもバリヤーとなるので、長時
間の使用により結晶粒が粗大化し脆化することは無い。
Further, since most of the grain boundaries are bonded to each other by the crystal grains of the refractory metal, the toughness is not as low as that of ceramics and the thermal shock resistance is relatively good. Moreover, since the ceramic particles distributed at the grain boundaries act as a barrier against crystal growth due to recrystallization of metal, the crystal grains do not become coarse and become brittle when used for a long time.

また、Re、Taのように、タングステン、タンタル、レ
ニウム等の高融点金属と反応し、または固溶する元素は
粒界結合力にすぐれているので、これらの金属粒子を粒
界に優先的に配することにより、粒界強度すなわち粒界
の化学的安定性を向上させ、耐溶融金属腐食性の改善に
著しく寄与する。
In addition, since elements such as Re and Ta that react with or have a solid solution with refractory metals such as tungsten, tantalum, and rhenium have excellent grain boundary bonding strength, these metal particles are preferentially bound to grain boundaries. By arranging them, the grain boundary strength, that is, the chemical stability of the grain boundaries is improved, and it contributes significantly to the improvement of the molten metal corrosion resistance.

(実施例) 以下、本発明に係る耐熱衝撃性にすぐれた耐食性材料
の好ましい実施例について、その製造方法も含めて、図
面を参照しながら説明する。
(Examples) Hereinafter, preferred examples of the corrosion resistant material having excellent thermal shock resistance according to the present invention will be described with reference to the drawings, including a manufacturing method thereof.

第2図は、本材料の製造工程の一例を示したもので、
まず純タングステン粉末21と耐食性セラミック粉末22を
混合機23を用い所定の割合で十分混合する(同図
(a))。この時のタングステン粉末とセラミック粉末
の割合は任意で良いが、セラミック粉末があまり多くな
ると焼結が困難となり靭性が低下するので、0.5〜10重
量の範囲が好ましい。
Figure 2 shows an example of the manufacturing process of this material.
First, the pure tungsten powder 21 and the corrosion-resistant ceramic powder 22 are sufficiently mixed at a predetermined ratio by using the mixer 23 (FIG. 9A). At this time, the ratio of the tungsten powder to the ceramic powder may be arbitrary, but if the ceramic powder is too much, the sintering becomes difficult and the toughness decreases, so the range of 0.5 to 10 weight is preferable.

十分に混合した後、加圧成形することにより予備焼結
体24を得る(同図(b))。その後、焼結炉25の中で18
00〜2300℃で5〜20時間焼結(同図(c))することに
より、素材ビレット26を得る(同図(d))。加熱、加
圧手段としては、熱間静水圧加圧法やホットプレス法を
とることもできる。
After sufficiently mixing, pressure molding is performed to obtain a pre-sintered body 24 ((b) of the same figure). Then, in the sintering furnace 25,
The material billet 26 is obtained by sintering at 00 to 2300 ° C. for 5 to 20 hours (see FIG. 10C). As the heating / pressurizing means, a hot isostatic pressing method or a hot pressing method can be used.

このようにして得られた素材ビレット26の組織は、前
述した第1図のように、比較的大きなタングステン結晶
粒の粒界に微細な耐食性セラミック粒子を配した構造と
なる。
The structure of the material billet 26 thus obtained has a structure in which fine corrosion-resistant ceramic particles are arranged at the grain boundaries of relatively large tungsten crystal grains, as shown in FIG.

本発明において、耐食性材料のマトリクスを構成する
高融点金属は、少なくとも結晶粒内は耐溶融金属腐食性
にすぐれていることが必要であり、この観点からタング
ステン、タンタル、レニウムが特に望ましい。また、粒
界に配する物質粒子としての耐食性セラミック粒子とし
ては、耐濡れ性の点でY2O3、ZrO2、ThO2、UO2、HfO2、B
eO等の酸化物が特に好ましいが、Zr、Hp、Ti、Ta等の炭
化物または窒化物でもかなり良好な耐食性を示す。
In the present invention, the refractory metal forming the matrix of the corrosion resistant material needs to have excellent molten metal corrosion resistance at least in the crystal grains, and from this viewpoint, tungsten, tantalum, and rhenium are particularly desirable. Further, as the corrosion-resistant ceramic particles as the material particles to be arranged at the grain boundaries, Y 2 O 3 , ZrO 2 , ThO 2 , UO 2 , HfO 2 , B in terms of wettability.
Oxides such as eO are particularly preferable, but carbides or nitrides such as Zr, Hp, Ti and Ta also show considerably good corrosion resistance.

また、上述した方法で本発明の耐食性材料を製造する
場合、高融点金属の平均粒径は、0.1〜10μmの範囲が
好ましい。一方、この高融点金属粉末と混合する耐食性
ないし粒界結合力にすぐれた物質粒子の平均粒径は、0.
01〜20μmの範囲が好ましい。
Further, when the corrosion resistant material of the present invention is manufactured by the method described above, the average particle diameter of the refractory metal is preferably in the range of 0.1 to 10 μm. On the other hand, the average particle size of the substance particles mixed with the high melting point metal powder and having excellent corrosion resistance or grain boundary bonding force is 0.
The range of 01 to 20 μm is preferable.

上記実施例と従来例との比較のため、溶融チタン中で
浸漬試験を行った結果を第3図に示す。同図から純タン
グステンは35%近い腐食減量を示すのに対し、本発明に
よるタングステン−セラミックス複合材料は全て5%未
満の腐食栽量であり、Y2O3単独材にかなり近い腐食特性
を有していることがわかる。また、セラミックス粒子の
添加量が多い程、耐食性は向上した。
FIG. 3 shows the result of an immersion test conducted in molten titanium for comparison between the above-mentioned example and the conventional example. It can be seen from the figure that pure tungsten shows a corrosion weight loss of close to 35%, whereas the tungsten-ceramic composite materials according to the present invention all have a corrosion growth rate of less than 5% and have a corrosion property considerably close to that of the Y 2 O 3 single material. You can see that The corrosion resistance was improved as the amount of ceramic particles added increased.

下記第1表は、熱衝撃特性を評価するため、薄板円盤
状の試験片中央部を電子ビーム(EB)により瞬間的に加
熱した場合の割れ発生の有無を示したものである。電子
ビーム出力が高いものほど大きな熱衝撃を受けている。
この結果から、耐食性が良好なY2O3単体は、EB出力2KW
時で割れを発生するのに対し、本発明の材料は4〜7KW
時で割れが入ることが確認された。電子ビーム出力と熱
応力の間にはほぼ直線関係が成り立つので、本発明によ
るタングステン−セラミックス複合材料の強度はセラミ
ックス単体の数倍であることがわかる。
Table 1 below shows the presence or absence of cracking when the central portion of a thin disk-shaped test piece was instantaneously heated by an electron beam (EB) in order to evaluate thermal shock characteristics. The higher the electron beam output, the greater the thermal shock.
From these results, the Y 2 O 3 simple substance with good corrosion resistance has an EB output of 2 KW.
The material of the present invention has a crack of 4 to 7 KW, while it sometimes cracks.
It was confirmed that cracks would occur at some time. Since a nearly linear relationship is established between the electron beam output and the thermal stress, it can be seen that the strength of the tungsten-ceramics composite material according to the present invention is several times that of the ceramics alone.

また、Y2O3添加量が増加するにつれ耐溶融金属腐食性は
向上するが、逆に熱衝撃特性は低下する傾向が有るの
で、過剰なセラミックス粒子の添加は好ましくない。さ
らに、長時間溶融チタニウム中に浸漬後も明瞭な結晶粒
の粗大化は生ぜず、熱衝撃特性の低下も認められなかっ
た。
Further, although the molten metal corrosion resistance improves as the amount of Y 2 O 3 added increases, conversely the thermal shock properties tend to deteriorate, so addition of excessive ceramic particles is not preferable. Furthermore, no clear coarsening of crystal grains occurred even after immersion in molten titanium for a long time, and no deterioration in thermal shock characteristics was observed.

上記実施例では、焼結により素材ブロックを製作した
ため、その相対密度は93〜98%であった。耐溶融金属の
浸透性は、素材の密度すなわち素材中の空孔量に大きく
依存するため、素材の密度は出来るだけ理論密度に近い
ことが望まれる。
In the above example, since the material block was manufactured by sintering, its relative density was 93 to 98%. Since the penetration resistance of the molten metal greatly depends on the density of the material, that is, the amount of pores in the material, it is desired that the density of the material be as close to the theoretical density as possible.

一般に、より密度を高くする方法としてはより高い温
度で焼結することがあげられるが、焼結温度が高すぎる
と逆に結晶粒の粗大化を招くだけでなく、添加したセラ
ミックス粒子の分解が生じることにもなるため好ましく
ない。したがって上記実施例では、圧力と温度の相乗効
果が得られるHIP熱間等方圧加圧処理により高密度化を
図った。
Generally, as a method of increasing the density, it is possible to sinter at a higher temperature, but if the sintering temperature is too high, not only does the crystal grain become coarser, but also the added ceramic particles are decomposed. It is not preferable because it may occur. Therefore, in the above embodiment, the densification was achieved by the HIP hot isotropic pressurization treatment which can obtain the synergistic effect of pressure and temperature.

HIP処理は上記素材ブロックを金属缶でキャニング
し、2000℃、2000kgf/cm2の条件で実施した。HIP処理を
施すことにより、素材ブロックの相対密度は全て99.5%
以上に向上した。
The HIP treatment was carried out by canning the above material block with a metal can and performing the conditions at 2000 ° C. and 2000 kgf / cm 2 . By applying HIP processing, the relative density of all material blocks is 99.5%
Improved above.

第4図および下記第2表にHIP処理を施したものと施
さないものの腐食減量率と熱衝撃特性を示す。第4図か
らも明らかなように、HIP処理を施し、高密度化するこ
とにより、溶融チタニウム中における腐食減量はHIP処
理を施さないものの1/2〜1/3程度に向上し、しかも第2
表に示すように熱衝撃特性も改善される。
Fig. 4 and Table 2 below show the corrosion weight loss rate and thermal shock characteristics of the sample with and without HIP treatment. As is clear from FIG. 4, by performing HIP treatment and increasing the density, the corrosion weight loss in molten titanium was improved to 1/2 to 1/3 of that without HIP treatment.
As shown in the table, the thermal shock property is also improved.

〔発明の効果〕 本発明によれば活性な溶融金属に対し、腐食特性及び
熱衝撃特性にすぐれ、かつ、長時間の使用に際してもそ
の特性が変化しないようにすぐれた効果を有している。
[Effect of the Invention] According to the present invention, the active molten metal has excellent corrosion characteristics and thermal shock characteristics, and has excellent effects such that the characteristics do not change even after long-term use.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る耐食性材料の組織を模式的に示す
断面図、第2図は本発明に係る耐食性材料の製造工程を
示す説明図、第3図は従来例と本発明の実施例の溶融金
属中における腐食特性を比較した特性グラフ、第4図は
本発明の実施例においてHIP処理を行った場合の特性を
示すグラフ、第5図は高融点金属の溶融金属中における
腐食メカニズムを示す模式図である。 1……結晶粒、2……物質粒子、3……溶融金属。
FIG. 1 is a cross-sectional view schematically showing the structure of the corrosion-resistant material according to the present invention, FIG. 2 is an explanatory view showing a manufacturing process of the corrosion-resistant material according to the present invention, and FIG. 3 is a conventional example and an embodiment of the present invention. 4 is a characteristic graph comparing the corrosion characteristics in molten metal of FIG. 4, FIG. 4 is a graph showing the characteristics when HIP treatment is performed in the embodiment of the present invention, and FIG. 5 is a corrosion mechanism of the high melting point metal in the molten metal. It is a schematic diagram which shows. 1 ... Crystal grain, 2 ... Material grain, 3 ... Molten metal.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 32/00 C22C 32/00 W M Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C22C 32/00 C22C 32/00 W M Z

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】W、Ta、Reおよびこれらを主要成分とする
合金から選ばれる高融点金属をマトリクスとする耐食性
材料であって、該耐食性材料の少なくとも表面層の結晶
粒界に、Y2O3、ThO2、HfO2、UO2、BeO、Ho2O3、Tm2O3
Er2O3、Nd2O3、TaC、HfC、TiC、ZrC、TaN、HfN、TiNお
よびZrNからなる群から選択された少なくとも1種のセ
ラミック粒子からなる耐食性ないし粒界結合力に優れた
物質粒子が配されてなることを特徴とする、溶融金属に
対して優れた耐食性を有する耐食性材料。
1. A corrosion-resistant material having a matrix of a refractory metal selected from W, Ta, Re and alloys containing these as main components, wherein Y 2 O is present in at least the grain boundary of the surface layer of the corrosion-resistant material. 3 , ThO 2 , HfO 2 , UO 2 , BeO, Ho 2 O 3 , Tm 2 O 3 ,
A substance having excellent corrosion resistance and grain boundary bonding force, which is composed of at least one ceramic particle selected from the group consisting of Er 2 O 3 , Nd 2 O 3 , TaC, HfC, TiC, ZrC, TaN, HfN, TiN and ZrN. A corrosion resistant material having excellent corrosion resistance to molten metal, characterized in that particles are arranged.
【請求項2】前記物質粒子の含有量が0.1〜20重量%で
あることを特徴とする、請求項1に記載の耐食性材料。
2. The corrosion resistant material according to claim 1, wherein the content of the substance particles is 0.1 to 20% by weight.
【請求項3】前記物質粒子として、マトリクス金属と異
なる合金元素粉末を添加することを特徴とする、請求項
1に記載の耐食性材料。
3. The corrosion resistant material according to claim 1, wherein an alloy element powder different from a matrix metal is added as the substance particles.
【請求項4】前記合金元素が、Re、Hf、Taから選択され
た少なくとも1種からなるものであることを特徴とす
る、請求項3に記載の耐食性材料。
4. The corrosion resistant material according to claim 3, wherein the alloy element is made of at least one selected from Re, Hf, and Ta.
【請求項5】前記合金元素の含有量が1〜50重量%であ
ることを特徴とする、請求項3に記載の耐食性材料。
5. The corrosion resistant material according to claim 3, wherein the content of the alloying element is 1 to 50% by weight.
【請求項6】高融点金属粉末と耐食性ないし粒界結合力
にすぐれた物質粉末を混合し、加熱および加圧すること
によって得られた、請求項1に記載の耐食性材料。
6. The corrosion resistant material according to claim 1, which is obtained by mixing a high melting point metal powder and a substance powder having excellent corrosion resistance or grain boundary bonding strength, and heating and pressing.
【請求項7】前記加熱、加圧手段として熱間静水圧加圧
法、ホットプレス法のいずれかを用いることを特徴とす
る請求項6に記載の耐食性材料。
7. The corrosion resistant material according to claim 6, wherein one of a hot isostatic pressing method and a hot pressing method is used as the heating and pressing means.
JP63226113A 1988-09-09 1988-09-09 Corrosion resistant material Expired - Fee Related JP2680370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63226113A JP2680370B2 (en) 1988-09-09 1988-09-09 Corrosion resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63226113A JP2680370B2 (en) 1988-09-09 1988-09-09 Corrosion resistant material

Publications (2)

Publication Number Publication Date
JPH0273944A JPH0273944A (en) 1990-03-13
JP2680370B2 true JP2680370B2 (en) 1997-11-19

Family

ID=16840041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63226113A Expired - Fee Related JP2680370B2 (en) 1988-09-09 1988-09-09 Corrosion resistant material

Country Status (1)

Country Link
JP (1) JP2680370B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499146A (en) * 1990-08-02 1992-03-31 Toshiba Corp Powder sintered material and its manufacture
JPH06297190A (en) * 1993-04-14 1994-10-25 Toho Kinzoku Kk Tungsten electrode material
JPH07233434A (en) * 1994-02-24 1995-09-05 Toshiba Corp Corrosion resistant material and its production
JP2756928B2 (en) * 1995-03-27 1998-05-25 科学技術庁金属材料技術研究所長 Method for producing HfC dispersion strengthened W alloy
JP2007063068A (en) * 2005-08-31 2007-03-15 Toshiba Ceramics Co Ltd Yttria ceramic sintered compact
DE102010022888B4 (en) * 2010-06-07 2012-05-03 Kennametal Inc. Alloy for a penetrator and method of making a penetrator of such an alloy
WO2013094685A1 (en) * 2011-12-20 2013-06-27 株式会社 東芝 Tungsten alloy, and tungsten alloy part, discharge lamp, transmitting tube and magnetron using tungsten alloy
EP2801629B1 (en) * 2012-01-07 2020-12-02 Kabushiki Kaisha Toshiba Tungsten alloy, tungsten alloy sintered body using same, discharge lamp, transmitting tube, and magnetron
JP5881826B2 (en) * 2012-05-29 2016-03-09 株式会社東芝 Tungsten alloy parts, and discharge lamps, transmitter tubes and magnetrons using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050859B2 (en) * 1981-01-14 1985-11-11 株式会社東芝 Corrosion resistant zirconium alloy for nuclear reactors
JPS59208043A (en) * 1983-05-13 1984-11-26 Toshiba Corp Corrosion-resistant hafnium alloy and its production

Also Published As

Publication number Publication date
JPH0273944A (en) 1990-03-13

Similar Documents

Publication Publication Date Title
JP3827725B2 (en) Method for producing sputtering target
US5238751A (en) Powder of dental metal, a process for the preparation thereof, a process for the manufacture of a substructure for a dental restoration and a process for the manufacture of a dental restoration
JPS63162161A (en) Ceramic grinding grain coated with metal
JP2680370B2 (en) Corrosion resistant material
JP2016113320A (en) Ceramic member and cutting tool
KR20120090883A (en) Heat resistant coated member, making method, and treatment using the same
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
Tressler Interfaces in Oxide Reinforced Metalst
JP2653527B2 (en) How to join erosion resistant alloys
US7687023B1 (en) Titanium carbide alloy
JPH07233434A (en) Corrosion resistant material and its production
Neubauer et al. Diffusion in the nickel-rhenium system
JP2007153666A (en) Diamond sintered compact
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
US3926571A (en) Metallized isotropic boron nitride body
EP3730666B1 (en) TiAl ALLOY MEMBER, METHOD OF MANUFACTURING THE SAME, AND METHOD OF FORGING TiAl ALLOY MEMBER
JP2000129389A (en) Molybdenum sintered compact and its manufacture
Wendorff et al. Platinum as a weak interphase for fiber‐reinforced oxide‐matrix composites
US5118025A (en) Method to fabricate titanium aluminide matrix composites
KR20010040578A (en) Iron aluminide composite and method of manufacture thereof
JP4081574B2 (en) Method for manufacturing heat-resistant coated member
JPH09176759A (en) Production of erosion resistant alloy
US5679297A (en) Method of making reinforced intermetallic-matrix composites containing ceramics
JP2004250788A (en) Film depositing method
JP4396931B2 (en) FIBER-REINFORCED PLATINUM COMPOSITE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND FIBER-REINFORCED PLATINUM PRODUCT

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees