JP2676831B2 - Automatic guided vehicle position detection device - Google Patents
Automatic guided vehicle position detection deviceInfo
- Publication number
- JP2676831B2 JP2676831B2 JP63254824A JP25482488A JP2676831B2 JP 2676831 B2 JP2676831 B2 JP 2676831B2 JP 63254824 A JP63254824 A JP 63254824A JP 25482488 A JP25482488 A JP 25482488A JP 2676831 B2 JP2676831 B2 JP 2676831B2
- Authority
- JP
- Japan
- Prior art keywords
- steering angle
- guided vehicle
- measured
- automatic guided
- vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 title claims description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Description
【発明の詳細な説明】 A. 産業上の利用分野 本発明は無人搬送車の位置検出装置に関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a position detection device for an automated guided vehicle.
B. 発明の概要 無人搬送車の進行方向に沿った移動距離を測定するだ
けでは、例えばコーナをカーブする場合のように横ずれ
を起こすため、正確な2次元的位置を検出することはで
きないが、本発明では測定方向の直交する移動距離測定
器を設置したので、横側の移動距離も測定して2次元的
位置を演算により求めることができる。移動距離測定器
として空間フィルタによる測定器を用いると、車輪のス
リップや摩耗による測定誤差を避けることができる。B. Outline of the Invention Although it is not possible to detect an accurate two-dimensional position by simply measuring the distance traveled along the traveling direction of the automatic guided vehicle, a lateral shift occurs, for example, when a corner is curved. In the present invention, since the moving distance measuring device having the measurement directions orthogonal to each other is installed, the two-dimensional position can be calculated by measuring the lateral moving distance. If a measuring device using a spatial filter is used as the moving distance measuring device, it is possible to avoid a measurement error due to wheel slip or wear.
C. 従来の技術 従来、無人搬送車などの自動運転にあたって、走行路
上に電磁誘導線や光学式反射テープを布設して走行ガイ
ドを形成する方式や、車軸,計測輪にエンコーダやタコ
ジェネレータを取り付けて、車輪の回転に応じたパルス
又はアナログ電圧から無人車の速度、移動距離を計測す
る方式がある。C. Conventional technology Conventionally, in automated driving of automated guided vehicles, a method of laying an electromagnetic induction wire or optical reflection tape on the road to form a travel guide, or attaching an encoder or tachogenerator to the axle or measuring wheel. Then, there is a method of measuring the speed and moving distance of the unmanned vehicle from a pulse or analog voltage corresponding to the rotation of the wheel.
しかしながら、これらの方式は路面に誘導線や反射テ
ープ等を布設する走行路の加工を必要とし、その加工作
業が面倒であると共に路面の凹凸、外力等による車輪の
スリップや車輪の摩耗により精度良い計測が出来なかっ
た。However, these methods require processing of a traveling path in which a guide wire, a reflective tape, etc. are laid on the road surface, and the processing work is troublesome and the wheel slippage and wheel wear due to unevenness of the road surface, external force, etc. are accurate. I could not measure.
このため、外部からの誘導が不要で、かつ、非接触で
移動距離を測定する方法として、空間フィルタを利用し
た距離測定方法が開発されている。For this reason, a distance measuring method using a spatial filter has been developed as a method of measuring a moving distance in a non-contact manner without requiring guidance from the outside.
D. 発明が解決しようとする課題 空間フィルタを利用して距離を測定すると、車輪のス
リップや摩耗による誤差を避けることができるが、進行
方向に沿った方向の移動距離を測定するものであったた
め、例えば、コーナをカーブする場合には、操舵するこ
とにより車輪が外側方向に横滑りを起こすので、正確な
2次元的位置を求めることは困難であった。D. Problems to be Solved by the Invention When distance is measured by using a spatial filter, errors due to wheel slip and wear can be avoided, but the distance traveled along the traveling direction is measured. For example, when turning a corner, it is difficult to obtain an accurate two-dimensional position because steering causes the wheels to skid outward.
本発明は車輪が横ずれを起こした場合でも正確な2次
元的位置・速度を求めることのできる無人搬送車の位置
検出装置を提供することを目的とする。It is an object of the present invention to provide a position detecting device for an automatic guided vehicle, which can obtain an accurate two-dimensional position / speed even when the wheels are laterally displaced.
E. 課題を解決するための手段及び作用 無人搬送車に、測定方向の直交する移動距離測定装置
と操舵角を検出する検出器とを設けたので、例えばコー
ナをカーブする場合など、操舵することにより無人搬送
車は外側方向に横滑りを起こしてしまうけれども、2個
の移動距離測定器により測定された進行方向及びこれに
直交する方向の移動距離と、操舵角検出器により検出さ
れた車体の傾きとから演算してその横滑りを求めること
ができるので、カーブした後の無人搬送車の二次元的位
置が演算により求められる。E. Means and Actions for Solving the Problems Since the automatic guided vehicle is provided with the moving distance measuring device orthogonal to the measuring direction and the detector for detecting the steering angle, it is possible to steer the vehicle when, for example, turning a corner. As a result, the automated guided vehicle will skid outward, but the travel distance measured by the two travel distance measuring devices and the travel distance in the direction orthogonal thereto and the inclination of the vehicle body detected by the steering angle detector. Since the sideslip can be calculated by calculating from, the two-dimensional position of the automated guided vehicle after the curve can be calculated.
F. 実施例 以下、本発明を図面に示す実施例に従い詳細に説明す
る。F. Examples Hereinafter, the present invention will be described in detail according to Examples shown in the drawings.
第1図〜第3図に本発明の一実施例を示す。第2図に
示すように、無人搬送車1は前輪2及び後輪3,4とを有
する三輪車であり、前輪2は走行モータ5によって駆動
回転する駆動輪であると共に操舵モータ6によって旋回
させられる操舵輪でもある。前輪2には、その操舵角を
検出するポテンショメータ7が設けられる。後輪3,4は
いずれも従動輪であり、それらの中間位置である車体中
心線上には空間フィルタによる移動距離・速度検出器8,
9が設置されている。これらの移動距離・速度検出器8,9
はその検出方向が、進行方向と平行、垂直となって直交
する外は、通常のものと同様のものである。即ち、第3
図に示すように空間フィルタによる移動距離・速度検出
器8,9はいずれも、路面から反射した光を光学系10,11を
介してラインセンサ12,13で受光し、読出回路14,15によ
り特定の周期でサンプリングし、AD変換器16によりデジ
タル信号に変換した後演算部17へ入力する。演算部17は
CPU18,RAM19及びROM20を具え、入力された信号に正弦
波,余弦波を乗じて所定範囲で積分することにより任意
の周波数成分を抽出し、移動距離に対応するベクトルに
変換し、更にそれから速度を演算する。更に、演算部17
は操舵角検出器7であるポテンショメータから前輪2の
操舵角をデジタル化した後に入力し、第4図に示す演算
系統システム図に従って無人搬送車の2次元的位置速度
を演算する。1 to 3 show an embodiment of the present invention. As shown in FIG. 2, the automatic guided vehicle 1 is a three-wheeled vehicle having a front wheel 2 and rear wheels 3 and 4, and the front wheel 2 is a drive wheel that is driven and rotated by a traveling motor 5 and is turned by a steering motor 6. It is also a steering wheel. The front wheel 2 is provided with a potentiometer 7 that detects the steering angle. The rear wheels 3 and 4 are both driven wheels, and a moving distance / velocity detector 8 and a velocity detector 8 based on a spatial filter are located on the center line of the vehicle body, which is an intermediate position between them.
9 are installed. These moving distance / speed detectors 8,9
Is the same as the normal one except that the detection direction is parallel or perpendicular to the traveling direction and is orthogonal. That is, the third
As shown in the figure, the moving distance / velocity detectors 8 and 9 by the spatial filter both receive the light reflected from the road surface by the line sensors 12 and 13 via the optical systems 10 and 11, and the read circuits 14 and 15 It is sampled at a specific cycle, converted into a digital signal by the AD converter 16, and then input to the calculation unit 17. The calculation unit 17
It has a CPU18, RAM19 and ROM20, and extracts an arbitrary frequency component by multiplying the input signal by a sine wave and a cosine wave and integrating it in a predetermined range, and converts it to a vector corresponding to the moving distance, and then the speed Calculate Furthermore, the calculation unit 17
Is input after digitizing the steering angle of the front wheels 2 from the potentiometer which is the steering angle detector 7, and calculates the two-dimensional position / velocity of the automatic guided vehicle according to the calculation system system diagram shown in FIG.
ここで、第4図は第5図及び第6図に示すように無人
搬送車を二輪車モデルによりシュミレートした結果に基
づくものである。Here, FIG. 4 is based on the result of simulating an automatic guided vehicle by a two-wheeled vehicle model as shown in FIGS. 5 and 6.
即ち、本実施例の無人搬送車1は前輪1輪,後輪2輪
であるが、アッカーマンジャントの理論から、前輪1
輪,後輪1輪の二輪車として近似することができ、第5
図では操舵角θのときに前輪がC点からC′点へ、後輪
がD点がD′点へ移動する。このとき下式が成り立つ。That is, although the automated guided vehicle 1 of this embodiment has one front wheel and two rear wheels, the front wheel 1 is based on Ackermann-Junt's theory.
It can be approximated as a two-wheeled vehicle with one wheel and one rear wheel.
In the figure, at the steering angle θ, the front wheels move from point C to point C ′, and the rear wheels move from point D to point D ′. At this time, the following formula is established.
但し、 ρ:y軸に対する車体の傾き θ:車体に対する操舵角、 x,y:後輪の位置 V:速度(後輪) L:前輪後輪間の長さ 次に、無人搬送車1がC点,D点からC′点,D′点へそ
れぞれ1サンプリング時間(TS)の間に移動したとする
と、この間の変化分Δは第5図の幾何学的関係から下式
のようになる。 Where ρ is the inclination of the vehicle body with respect to the y-axis, θ is the steering angle with respect to the vehicle body, x, y is the position of the rear wheels, V is the speed (rear wheels), L is the length between the front wheels and the rear wheels, and the automated guided vehicle 1 is C. Assuming that each point moves from point D, point C'to point D'for 1 sampling time (T S ), the change Δ during this time is given by the following equation based on the geometrical relationship in FIG. .
ここで、上記SVは空間フィルタによる移動距離・速度
検出器8で検出した進行方向の距離である。 Here, S V is the distance in the traveling direction detected by the moving distance / speed detector 8 by the spatial filter.
上式(4)(5)(6)は、車体の横滑りを考慮して
いないが、カーブするときに実際は第6図に示すように
横滑りを起こしてC′点からC″点へD′点からD″点
へと変異する。このため、次の様に補正する。The above equations (4), (5), and (6) do not take into consideration the sideslip of the vehicle body, but when the vehicle bends, it actually causes sideslip and causes a point D'to change from the point C'to the point C ". To the D ″ point. Therefore, the correction is made as follows.
Δx=SV・sinρ−SW・cos(ρ+Δρ) ≒SV・sinρ−SW(cosρ−Δρsinρ) …(8) Δy=SV・cosρ+SW・sin(ρ+Δρ) ≒SV・cosρ+SW(sinρ+Δρcosρ) …(9) ここで上記SWは空間フィルタによる移動距離・速度検
出器9で検出した車体に対して横方向の移動距離であ
る。 Δx = S V · sinρ-S W · cos (ρ + Δρ) ≒ S V · sinρ-S W (cosρ-Δρsinρ) ... (8) Δy = S V · cosρ + S W · sin (ρ + Δρ) ≒ S V · cosρ + S W ( sinρ + Δρcosρ) ... (9) wherein said S W is the moving distance transverse to the vehicle body detected by the moving distance and speed detector 9 by the spatial filter.
従って、無人搬送車の2次元的位置及び方向は、空間
フィルタによる移動距離・速度検出器8,9で検出した距
離SV,SWと操舵角検出器7で求めた操舵角θにより、式
(7)〜式(9)により演算し、更に下式に示すように
累積的に加算して求められる。但し、添字はサンプリン
グの回数である。Therefore, the two-dimensional position and direction of the automatic guided vehicle can be calculated by the equations by the distances S V and S W detected by the moving distance / speed detectors 8 and 9 by the spatial filter and the steering angle θ obtained by the steering angle detector 7. It is calculated by the equations (7) to (9) and then cumulatively added as shown in the following equation. However, the subscript is the number of times of sampling.
ρn=ρn-1+Δρ …(10) xn=xn-1+Δx …(11) yn=yn-1+Δy …(12) 尚、移動距離を測定する測定装置としては空間フィル
タによるもののみに限るものではない。例えば、本発明
の他の実施例を示す第7図のように横方向の移動距離は
空間フィルタによる移動距離検出装置10で検出し、進行
方向に沿った移動距離は計測輪11を設けて測定するよう
にしても良い。また、同図に示すように操舵角検出器と
してポテンショメータに代えジャイロを設けるようにし
ても良い。ρ n = ρ n-1 + Δρ (10) x n = x n-1 + Δx (11) y n = y n-1 + Δy (12) A spatial filter is used as the measuring device for measuring the moving distance. It is not limited to only things. For example, as shown in FIG. 7 showing another embodiment of the present invention, the lateral movement distance is detected by a movement distance detecting device 10 using a spatial filter, and the movement distance along the traveling direction is measured by providing a measuring wheel 11. It may be done. Further, as shown in the figure, a gyro may be provided as the steering angle detector instead of the potentiometer.
G. 発明の効果 以上、実施例に基づいて具体的に説明したように本発
明では無人搬送車に測定方向の直交した移動距離測定装
置と操舵角を検出する検出器とを設けたので、無人搬送
車がカーブする際に横滑りを起こしても、2個の移動距
離測定器により測定された進行方向及びこれに直交する
方向の移動距離と、操舵角検出器により検出された車体
の傾きとから、上述した数式(8)(9)に基づいて演
算により、その横滑りを求めることができ、無人搬送車
の正確な二次元的位置及び方向を求めることができるよ
うになった。G. Effects of the Invention As described above in detail based on the embodiments, in the present invention, since the unmanned guided vehicle is provided with the moving distance measuring device orthogonal to the measuring direction and the detector for detecting the steering angle, Even if skidding occurs when the transport vehicle bends, it is estimated from the travel distance measured by the two travel distance measuring devices and the travel distance in the direction orthogonal thereto, and the inclination of the vehicle body detected by the steering angle detector. The sideslip can be obtained by calculation based on the equations (8) and (9) described above, and the accurate two-dimensional position and direction of the automatic guided vehicle can be obtained.
第1図,第2図はそれぞれ無人搬送車の平面図,斜視
図、第3図は本発明の一実施例にかかる位置検出装置の
ブロック図、第4図は演算系統を示す説明図、第5図は
アッカーマンジャントの理論による二輪車モデル図、第
6図は横滑りを加えた二輪車モデル図、第7図は他の実
施例にかかる無人搬送車の平面図である。 図面中、 1は無人搬送車、 2は前輪、 3,4は後輪、 7は操舵角検出装置、 8,9は空間フィルタによる移動距離・速度検出器、 11は計測輪、 12はジャイロである。1 and 2 are a plan view and a perspective view, respectively, of an automated guided vehicle, FIG. 3 is a block diagram of a position detecting device according to an embodiment of the present invention, and FIG. 4 is an explanatory diagram showing an arithmetic system. FIG. 5 is a motorcycle model diagram based on Ackermann-Jand's theory, FIG. 6 is a motorcycle model diagram with skidding, and FIG. 7 is a plan view of an automated guided vehicle according to another embodiment. In the drawing, 1 is an automated guided vehicle, 2 is a front wheel, 3 and 4 are rear wheels, 7 is a steering angle detection device, 8 and 9 are movement distance / speed detectors using a spatial filter, 11 is a measurement wheel, and 12 is a gyro. is there.
フロントページの続き (56)参考文献 特開 昭62−112069(JP,A) 特開 昭63−233413(JP,A) 特開 昭62−105206(JP,A) 特開 昭54−61972(JP,A)Continuation of front page (56) Reference JP 62-112069 (JP, A) JP 63-233413 (JP, A) JP 62-105206 (JP, A) JP 54-61972 (JP , A)
Claims (1)
を無人搬送車の中心線上に設置すると共に操舵角を検出
する検出器を前記無人搬送車に取り付け、更に直交する
2つの移動距離と操舵角とから前記無人搬送車の2次元
的位置及び方向を演算する演算回路を設けた位置検出装
置において、前記演算回路は、前記移動距離測定器のう
ちの一方により測定された進行方向の移動距離と前記操
舵角検出器により測定された車体の傾きの正弦成分との
積から、前記移動距離測定器のうちの他方により測定さ
れた進行方向に対して横方向の移動距離と前記操舵角検
出器により測定された車体の傾きとその変化分の和の余
弦成分の積を減算した値を上記無人搬送車の2次元的位
置の一方の横滑りとし、かつ、前記移動距離測定器のう
ちの一方により測定された進行方向の移動距離と前記操
舵角検出器により測定された車体の傾きの余弦成分との
積に、前記移動距離測定器のうちの他方により測定され
た進行方向に対して横方向の移動距離と前記操舵角検出
器により測定された車体の傾きとその変化分の和の正弦
成分の積を加算した値を上記無人搬送車の2次元的位置
の他方の横滑りとしたことを特徴とする無人搬送車の位
置検出装置。1. A moving distance measuring device having two measuring directions orthogonal to each other is installed on a center line of an automatic guided vehicle, and a detector for detecting a steering angle is attached to the automatic guided vehicle. In a position detecting device provided with a calculation circuit for calculating a two-dimensional position and direction of the automatic guided vehicle from a steering angle, the calculation circuit is configured to move in a traveling direction measured by one of the movement distance measuring devices. Based on the product of the distance and the sine component of the inclination of the vehicle body measured by the steering angle detector, the movement distance in the lateral direction with respect to the traveling direction measured by the other of the movement distance measuring devices and the steering angle detection. A value obtained by subtracting the product of the cosine component of the sum of the change of the vehicle body tilt measured by the measuring device is defined as one of the two-dimensional sideslip of the automatic guided vehicle, and one of the moving distance measuring devices is used. Measured by The product of the traveled travel distance in the traveling direction and the cosine component of the inclination of the vehicle body measured by the steering angle detector, and the lateral travel with respect to the traveled direction measured by the other of the travel distance measuring devices. The value obtained by adding the product of the distance and the inclination of the vehicle body measured by the steering angle detector and the sine component of the sum of the changes is used as the other skid of the two-dimensional position of the automatic guided vehicle. Position detection device for automated guided vehicles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63254824A JP2676831B2 (en) | 1988-10-12 | 1988-10-12 | Automatic guided vehicle position detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63254824A JP2676831B2 (en) | 1988-10-12 | 1988-10-12 | Automatic guided vehicle position detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02103606A JPH02103606A (en) | 1990-04-16 |
JP2676831B2 true JP2676831B2 (en) | 1997-11-17 |
Family
ID=17270378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63254824A Expired - Lifetime JP2676831B2 (en) | 1988-10-12 | 1988-10-12 | Automatic guided vehicle position detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2676831B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2587856Y2 (en) * | 1991-10-14 | 1998-12-24 | 株式会社明電舎 | Automatic guided vehicle position detection device |
JPH0587608U (en) * | 1992-04-17 | 1993-11-26 | 株式会社明電舎 | Automated guided vehicle |
CN115793433B (en) * | 2023-01-06 | 2023-05-05 | 北京史河科技有限公司 | Robot downslide correction control method, downslide correction chassis and robot |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62112069A (en) * | 1985-11-11 | 1987-05-23 | Nippon Petrochem Co Ltd | Speed measuring instrument |
JPS63233413A (en) * | 1987-03-20 | 1988-09-29 | Hitachi Kiden Kogyo Ltd | Method for detecting slip of automatically guided unmanned carrier car |
-
1988
- 1988-10-12 JP JP63254824A patent/JP2676831B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02103606A (en) | 1990-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4406608B2 (en) | Method for detecting geometric shape data for vehicle parking process | |
JP2689357B2 (en) | Relative direction detection method | |
JP2676831B2 (en) | Automatic guided vehicle position detection device | |
JP4382266B2 (en) | Method and apparatus for measuring position of moving object | |
JPH1195837A (en) | Method for determining initial truck position and attitude angle of gyro guide type automated guided vehicle, and method for improving travel stability at position correction | |
JP2676777B2 (en) | Position detection device for unmanned vehicles | |
JPH1039927A (en) | Position computing method at the time of autonomous operation of unmanned carrier | |
JP2573135Y2 (en) | Moving distance detector | |
JPH01282615A (en) | Position correcting system for self-travelling unmanned vehicle | |
JP3334074B2 (en) | Moving object position measurement device | |
JP3484020B2 (en) | Vehicle side slip angle measurement method | |
JPH06332531A (en) | Unmanned trackless vehicle | |
JPH0716164Y2 (en) | Vehicle position / speed detector | |
JPH073339B2 (en) | Detecting device for direction and position of unmanned vehicle | |
JP2983527B1 (en) | Vehicle measuring device | |
JP2543873Y2 (en) | Deflection detection device for automatic guided vehicles | |
JP3239992B2 (en) | Error Correction Method for Steering Zero Information in Gyro Guided Automated guided Vehicle | |
JP2543898Y2 (en) | Moving distance detector | |
JPH05324057A (en) | Unmanned vehicle for autonomous traveling system | |
JPH1195835A (en) | Traveling distance measurement error correction method for gyro-guidance type automated guided vehicle | |
JPS62221707A (en) | Gyro-guide type unmanned carrier | |
JPH07281740A (en) | Method and device for detecting position of unmanned vehicle | |
JP2552336Y2 (en) | Sensor mechanism of autonomous guided automatic guided vehicle | |
JPH07113538B2 (en) | Mobile object position recognition device | |
JP2500224Y2 (en) | Distance measuring device with spatial filter |