JP2675546B2 - Solid electrolyte fuel cell - Google Patents
Solid electrolyte fuel cellInfo
- Publication number
- JP2675546B2 JP2675546B2 JP61300710A JP30071086A JP2675546B2 JP 2675546 B2 JP2675546 B2 JP 2675546B2 JP 61300710 A JP61300710 A JP 61300710A JP 30071086 A JP30071086 A JP 30071086A JP 2675546 B2 JP2675546 B2 JP 2675546B2
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- oxygen electrode
- electrode
- fuel
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/243—Grouping of unit cells of tubular or cylindrical configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1231—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は,燃料を水素や一酸化炭素など,酸化され易
いガスを用いて電気化学的に直接電気を発生する燃料電
池の中,電解質に固体の電解質を用いた燃料電池に関す
るものである。
〔従来の技術〕
現在,広く一般に知られている筒状の固体電解質燃料
電池(以下SOFCと略称する)の代表例は,特開昭54−73
246号(以下,従来例1と略称する)と特開昭57−13038
1号(以下,従来例2と略称する)がある。何れの従来
例に於いても,固体電解質にYSZ(イットリア安定化ジ
ルコニア)を用いるとき,約1,000℃程度で加熱を継続
すると,酸素極で1/2O2+2e-→O2-と反応されたO2-が固
体電解質の中を透過し,燃料電極を透過して来た水素も
しくは一酸化炭素等の酸化され易いガスと固体電解質表
面で反応し,燃料が水素ガスのとき,O2-+H2→H2O+2e-
ととなって電子が流れ,直接電気エネルギーとして取り
出すことが可能となる。
然し乍ら,従来例1の場合,各電池のセルが円筒軸方
向に電流が流れる為,電気抵抗が大きくなる。更にはポ
ーラス状のアルミナの如き材質でつくられた剛性のある
比較的厚肉の基体管の外側にNiOの如き材質の燃料電極
で覆い,その上に例えばYSZ(イットリア安定化ジルコ
ニア)の如き固体電解質で覆う。更にまた,そのYSZの
上にLaCoO3のような電子,イオン混合導伝性を持つペロ
ブスカイト型酸化物よりなる酸素電極で覆われるのであ
るが,一般に知られているペロブスカイト型酸化物は,
物理的,構造的に不安定であるが為,SOFCの長寿命化の
妨げとなっている。
これらのことから,従来例2では酸素電極と燃料電極
の位置を入れ替え,基体管の外側を酸素電極とし,最外
層を燃料電極とすることにより,酸素電極を抑え込むよ
うにし,長寿命化の一助となるようにしている。
更に従来例2にあっては,電流を周方向に流れるよう
にすると共に,径も従来例1のものに比べて小さくし,
電気抵抗を少くすることにより,電池内部の電気抵抗の
低減を図っている。然し乍ら,電流値が大きくなれば,
それに伴って酸素電極は電気抵抗の少いものが望まれる
のであるが,この従来例2にあっては基体管に密着して
(結合あるいはその状態に近いことが望まれる。)膜を
形成する必要がある為,多種・多様な被覆手法が試みら
れているが,剥離性の面から夫々の電極は数10μから数
100μと比較的薄く,厚さには限界があり,酸素電極の
抵抗は高価な材質のものを用いているにも拘らず一定値
より小さく出来ないのが現状である。
また,各層の薄膜を維持する機能を持つ基体管は,電
極材と電解質とに出来るだけ熱膨張係数を近づけること
が望まれており,高価なYSZ(イットリア安定化ジルコ
ニア)やCSZ(カルシア安定化ジルコニア)といった高
価なものを用いているのが現状である。また,本従来例
ではセルとセルの電気的結合にニッケルフェルトの如き
パッドを用いる必要があり,従来例1に比べて耐震性上
問題がある。
〔発明が解決しようとする問題点〕
従来,酸素電極を固体電解質上に覆うか、或いは基体
管上を覆うには,溶射や,スパッタリング,スラリーコ
ーティング,CVD或いはEVD手法により行われていたが,
これらの手法では精々700μ位までの厚みとするのが限
度で,従来の手法にあっては,これ以上の厚みの酸素電
極を求めるのは困難であった。
本発明は,前記両従来例の欠点を補うべく,酸素電極
を最内層とすると共に,酸素電極を従来のものより厚く
とれるようにし,電気抵抗が長さに比例し面積に反比例
するという原則を活し,且つ安価なSOFCを提供するもの
である。
〔問題点を解決するための手段〕
即ち,本発明は筒状の固体電解質燃料電池において,
上記電池の最内層が1mm以上の厚さからなる酸素電極
と,同酸素電極を電気的絶縁物を介してシリーズに接合
すると共に同酸素電極の外表面に被覆される固体電解質
と,同固体電解質の外周面に被覆される燃料電極とを具
備してなることを特徴とする固体電解質燃料電池であ
る。
従って,筒状の固体電解質燃料電池を形成するに際し
ては,燃料電池の最内層を1mm以上の厚さからなる酸素
電極で形成し,同酸素電極のほぼ全外周面を固体電解質
で被覆し,更に同固体電解質のほぼ全外周面を燃料電極
で被覆することにより酸素電極と上記固体電解質及び上
記燃料電極とを直接接続するか,もしくは必要に応じ酸
素電極と燃料電極の間に中間接続子を嵌挿して上記酸素
電極と上記燃料電極を接続している。
〔作用〕
上記構成としたことにより,本発明は,円筒状のSOFC
に於いて基体管を排し,セルの最も内側を酸素電極,最
外層を燃料電極として,電気抵抗を少くする為,酸素電
極層を厚くして剛性を持たせると共に,断面積を稼ぎ得
るようにしたものである。
このことにより,比較的電子導電性の悪い材料でも用
い得るようになるばかりだけでなく,基体管を排するこ
とによって,より安価なSOFCを提供することが出来るよ
うになった。
〔実施例〕
第1図は,本発明に係わる一実施例を示すセルの断面
図である。
本実施例では,酸素電極1をペロブスカイト型酸化物
で多孔質な円筒とし,ここに用いる材料としては,Co,La
等の高価な物質をTi,Ca,Fe,Mn,Sr等の安価なものとする
ことが出来た。
このような安価な物質としたとき,これらの酸素電極
1は電気抵抗が大であるため,酸素電極1の層は1mm以
上の厚肉とするが,従来のものでは酸素電極を固体電解
質もしくは基体管に密着して被覆する為,従来手法では
700μ,よくても1mm以下であったが,本発明では酸素電
極1を独立して形成することが出来るので,圧縮,焼成
等の各種方法を用いることが出来,酸素電極1の厚さは
1mm以上の肉厚とすることが出来た。
Ti,Ca,Fe等のペロブスカイト型酸化物,例えばCaTiO3
やSrMnO3の如きものは,LaCoO3やLaMnO3に比べれば導電
性は落ちるが,非常に安価であり,焼結体とすることに
よって剛性も充分得られる。また断面積を稼ぎ得ること
によって,電気抵抗的にはこれを補って余りあるものと
なる。
また,第2図に示す通り,酸素電極1と酸素電極1′
の結合は,酸素電極間にAl2O3の如き電気絶縁体6を介
して通常行われている圧接法等でも結合することが出来
るが,より一層の信頼性を向上する為に,上記電気絶縁
体6と酸素電極1の間の希土類酸化物を含む接着剤をは
さみ,当該接合面に数100〜数1000ボルトの高電圧をか
けて電流を流し,結合を可能とする電気的接合法やハロ
ゲン化物法等の手段がとられる。
このように本発明では,基体管の機能をも有する酸素
電極1の外側に固体電解質2と燃料電極4とを被覆し,
直接酸素電極1と燃料電極4を接合しているが,夫々の
電極がポーラス状である為,当該接合部から僅かである
がガスの透過が見られる。そこで一層の気密性を保つ
為,酸素電極1と燃料電極2の間に酸化雰囲気に耐え得
る中間接続子3と還流雰囲気に耐え得る中間接続子5を
前記固体電解質2,2′間に被覆することで,燃料電池と
しての1つのセルを構成することができた。従って,こ
の場合,中間接続子3を用いるか否かは,工程の増減と
気密性の絡みが生じるが,これは設計上の問題となる。
〔発明の効果〕
本発明によれば,酸素電極自身に基体管の機能をも持
たせ得るようにした為,電池構成部材が1つ減ることに
より製作工程が短縮されるのみならず,安価な材料を使
うことも可能としたことにより経済性の高いものとする
ことが出来るようになった。更には,酸素電極の構造上
の強度が増すため,電池全体の長寿命化・安定化を図る
ことが出来る等本発明は産業の発達に寄与するところ大
である。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an electrolyte in a fuel cell that electrochemically directly generates electricity using a gas that is easily oxidized, such as hydrogen or carbon monoxide. The present invention relates to a fuel cell using a solid electrolyte. [Prior Art] A typical example of a widely known tubular solid electrolyte fuel cell (hereinafter abbreviated as SOFC) is disclosed in Japanese Patent Laid-Open No. 54-73.
No. 246 (hereinafter referred to as "conventional example 1") and JP-A-57-13038.
There is No. 1 (hereinafter referred to as Conventional Example 2). In any of the conventional examples, when YSZ (yttria-stabilized zirconia) was used as the solid electrolyte, when heating was continued at about 1,000 ° C, it was reacted with 1 / 2O 2 + 2e − → O 2 − at the oxygen electrode. O 2- permeates through the solid electrolyte and reacts with hydrogen or carbon monoxide or other easily oxidizable gas that has permeated the fuel electrode on the surface of the solid electrolyte. When the fuel is hydrogen gas, O 2- + H 2 → H 2 O + 2e -
As a result, electrons flow and can be directly taken out as electric energy. However, in the case of Conventional Example 1, the electric current increases in the cells of each battery because the current flows in the axial direction of the cylinder. Furthermore, a rigid relatively thick-walled base tube made of a material such as porous alumina is covered with a fuel electrode made of a material such as NiO on the outside, and a solid material such as YSZ (yttria-stabilized zirconia) is placed on top of it. Cover with electrolyte. Furthermore, the YSZ is covered with an oxygen electrode composed of a perovskite type oxide having mixed conductivity of electrons and ions such as LaCoO 3 , and the generally known perovskite type oxide is
The physical and structural instability hinders the SOFC from having a long life. For these reasons, in Conventional Example 2, the positions of the oxygen electrode and the fuel electrode are exchanged, the oxygen electrode is provided outside the substrate tube, and the fuel electrode is provided at the outermost layer, so that the oxygen electrode is suppressed and the life is prolonged. I am trying to become. Further, in the conventional example 2, the current is allowed to flow in the circumferential direction, and the diameter is made smaller than that of the conventional example 1,
The electric resistance inside the battery is reduced by reducing the electric resistance. However, if the current value increases,
Along with this, it is desired that the oxygen electrode has a low electric resistance, but in the second conventional example, a film is formed in close contact with the base tube (bonding or close to that state). Therefore, various coating methods have been tried, but each electrode is several tens of μ to several
It is comparatively thin at 100μ, and there is a limit to the thickness. Even though the resistance of the oxygen electrode is made of expensive material, it cannot be reduced below a certain value. In addition, it is desired that the base material tube, which has the function of maintaining the thin film of each layer, has a thermal expansion coefficient as close as possible to the electrode material and the electrolyte, and expensive YSZ (yttria-stabilized zirconia) and CSZ (calcia-stabilized) are used. The current situation is to use expensive materials such as zirconia. In addition, in this conventional example, it is necessary to use a pad such as nickel felt for electrical connection between cells, and there is a problem in earthquake resistance as compared with Conventional example 1. [Problems to be Solved by the Invention] Conventionally, in order to cover the oxygen electrode on the solid electrolyte or the base tube, thermal spraying, sputtering, slurry coating, CVD or EVD method has been used.
With these methods, the thickness is limited to at most 700 μ, and it was difficult to obtain an oxygen electrode with a thickness greater than this with conventional methods. In order to make up for the drawbacks of both the conventional examples, the present invention adopts the principle that the oxygen electrode is the innermost layer, the oxygen electrode can be thicker than the conventional one, and the electric resistance is proportional to the length and inversely proportional to the area. It is a live and inexpensive SOFC. [Means for Solving the Problems] That is, the present invention provides a tubular solid electrolyte fuel cell,
An oxygen electrode whose innermost layer has a thickness of 1 mm or more, a solid electrolyte that is bonded to the oxygen electrode in series through an electrical insulator and is coated on the outer surface of the oxygen electrode, and a solid electrolyte And a fuel electrode coated on the outer peripheral surface of the solid electrolyte fuel cell. Therefore, when forming a tubular solid electrolyte fuel cell, the innermost layer of the fuel cell is formed with an oxygen electrode having a thickness of 1 mm or more, and almost the entire outer peripheral surface of the oxygen electrode is covered with a solid electrolyte. The oxygen electrode is directly connected to the solid electrolyte and the fuel electrode by covering almost the entire outer peripheral surface of the solid electrolyte, or an intermediate connector is fitted between the oxygen electrode and the fuel electrode as necessary. Then, the oxygen electrode and the fuel electrode are connected to each other. [Operation] With the above-mentioned configuration, the present invention has a cylindrical SOFC.
In order to reduce the electric resistance by exhausting the base tube and using the oxygen electrode on the innermost side of the cell and the fuel electrode on the outermost layer, the oxygen electrode layer should be thickened to give rigidity and to increase the cross-sectional area. It is the one. As a result, not only is it possible to use a material with relatively poor electronic conductivity, but it has become possible to provide a cheaper SOFC by eliminating the substrate tube. [Embodiment] FIG. 1 is a sectional view of a cell showing an embodiment according to the present invention. In this embodiment, the oxygen electrode 1 is made of a perovskite-type oxide and is a porous cylinder, and the materials used here are Co and La.
It was possible to replace expensive materials such as Ti with inexpensive materials such as Ti, Ca, Fe, Mn, and Sr. When such an inexpensive material is used, since the oxygen electrode 1 has a large electric resistance, the layer of the oxygen electrode 1 has a thickness of 1 mm or more. However, in the conventional one, the oxygen electrode 1 is a solid electrolyte or a substrate. Because the coating adheres closely to the pipe, conventional methods
Although it was 700 μ, at most 1 mm or less, in the present invention, since the oxygen electrode 1 can be formed independently, various methods such as compression and firing can be used, and the thickness of the oxygen electrode 1 is
It was possible to have a wall thickness of 1 mm or more. Perovskite type oxides such as Ti, Ca, Fe, eg CaTiO 3
Although the conductivity of SrMnO 3 and SrMnO 3 is lower than that of LaCoO 3 and LaMnO 3 , they are very inexpensive and can be sufficiently rigid by using a sintered body. In addition, since the cross-sectional area can be earned, the electrical resistance is more than compensated for. Also, as shown in FIG. 2, the oxygen electrode 1 and the oxygen electrode 1 '
Can be bonded by a pressure welding method or the like which is usually performed through an electric insulator 6 such as Al 2 O 3 between oxygen electrodes. However, in order to further improve reliability, An electrical bonding method that enables bonding by sandwiching an adhesive containing a rare earth oxide between the insulator 6 and the oxygen electrode 1 and applying a high voltage of several hundred to several thousand volts to the bonding surface to allow a current to flow. Means such as the halide method may be used. Thus, in the present invention, the solid electrolyte 2 and the fuel electrode 4 are coated on the outside of the oxygen electrode 1 which also has the function of the base tube,
Although the oxygen electrode 1 and the fuel electrode 4 are directly joined to each other, gas permeation can be seen at a slight amount from the joint because the electrodes are porous. Therefore, in order to maintain further airtightness, an intermediate connector 3 capable of withstanding an oxidizing atmosphere and an intermediate connector 5 capable of withstanding a reflux atmosphere are coated between the oxygen electrode 1 and the fuel electrode 2 between the solid electrolytes 2 and 2 '. As a result, one cell as a fuel cell could be constructed. Therefore, in this case, whether or not to use the intermediate connector 3 involves an increase / decrease in processes and airtightness, which is a design problem. EFFECTS OF THE INVENTION According to the present invention, since the oxygen electrode itself can be made to have the function of the base tube, not only the number of battery constituent members is reduced by one, but also the manufacturing process is shortened and the cost is low. By making it possible to use materials, it became possible to make it highly economical. Furthermore, since the structural strength of the oxygen electrode is increased, the life of the entire battery can be extended and stabilized, and the present invention greatly contributes to the development of industry.
【図面の簡単な説明】
第1図は本発明に係わる一実施例を示すセルの断面図で
ある。第2図は本発明に係わる酸素電極間の分解斜視図
である。第3図は本発明に係わる他の実施例を示すセル
の断面図である。
1……酸素電極,2……固体電解質,3……中間接続子,4…
…燃料電極,5……中間接続子,6……電気絶縁体。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a cell showing an embodiment according to the present invention. FIG. 2 is an exploded perspective view of the oxygen electrodes according to the present invention. FIG. 3 is a sectional view of a cell showing another embodiment according to the present invention. 1 ... Oxygen electrode, 2 ... Solid electrolyte, 3 ... Intermediate connector, 4 ...
… Fuel electrode, 5 …… Intermediate connector, 6 …… Electrical insulator.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中谷 速水 神戸市兵庫区和田崎町1丁目1番1号 三菱重工業株式会社神戸造船所内 (72)発明者 中森 正治 高砂市荒井町新浜2丁目1番1号 三菱 重工業株式会社高砂研究所内 (56)参考文献 特開 昭54−58684(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hayami Nakatani 1-1 1-1 Wadasaki-cho, Hyogo-ku, Kobe-shi Mitsubishi Heavy Industries, Ltd.Kobe Shipyard (72) Inventor Masaharu Nakamori 2-1-1 Niihama, Arai-cho, Takasago-shi Mitsubishi Heavy industry Takasago Research Institute (56) References JP-A-54-58684 (JP, A)
Claims (1)
以上の厚さからなる酸素電極によって構成し,該酸素電
極を単位電池毎に電気絶縁体を介して接合し,前記酸素
電極の外周面を被覆する固体電解質と,該固体電解質の
外周面を被覆する燃料電極とを具備してなり,単位電池
間において酸素電極と燃料電極とを接続したことを特徴
とする固体電解質燃料電池。(57) [Claims] In cylindrical solid electrolyte fuel cells, the innermost layer is 1 mm
A solid electrolyte composed of an oxygen electrode having the above-mentioned thickness, the oxygen electrode being bonded for each unit cell via an electrical insulator, and the solid electrolyte covering the outer peripheral surface of the oxygen electrode, and the outer peripheral surface of the solid electrolyte being covered. A solid electrolyte fuel cell, comprising: a fuel electrode which is connected to an oxygen electrode and a fuel electrode between unit cells.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61300710A JP2675546B2 (en) | 1986-12-17 | 1986-12-17 | Solid electrolyte fuel cell |
DE8787114113T DE3775915D1 (en) | 1986-09-30 | 1987-09-26 | FUEL CELL WITH SOLID ELECTROLYTE AND METHOD FOR THE PRODUCTION THEREOF. |
EP87114113A EP0275364B1 (en) | 1986-09-30 | 1987-09-26 | Solid electrolytic fuel cell and method for manufacturing same |
US07/102,652 US4873156A (en) | 1986-09-30 | 1987-09-30 | Solid electrolytic fuel cell and method for manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61300710A JP2675546B2 (en) | 1986-12-17 | 1986-12-17 | Solid electrolyte fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63152875A JPS63152875A (en) | 1988-06-25 |
JP2675546B2 true JP2675546B2 (en) | 1997-11-12 |
Family
ID=17888156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61300710A Expired - Lifetime JP2675546B2 (en) | 1986-09-30 | 1986-12-17 | Solid electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2675546B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4767406B2 (en) * | 2000-01-20 | 2011-09-07 | 日本碍子株式会社 | Electrochemical device and integrated electrochemical device |
JP5501882B2 (en) * | 2010-07-13 | 2014-05-28 | 三菱重工業株式会社 | Solid oxide fuel cell and method for producing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2746172C3 (en) * | 1977-10-14 | 1981-02-05 | Dornier System Gmbh, 7990 Friedrichshafen | Composite of electrochemical solid electrolyte cells |
-
1986
- 1986-12-17 JP JP61300710A patent/JP2675546B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63152875A (en) | 1988-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4582766A (en) | High performance cermet electrodes | |
US7455700B2 (en) | Method for creating solid oxide fuel cell anodes and electrodes for other electrochemical devices | |
JPH0997613A (en) | High-temperature electrochemical battery | |
JP4647901B2 (en) | Solid oxide fuel cell and method for producing solid oxide fuel cell | |
JP5061408B2 (en) | STACK FOR SOLID ELECTROLYTE FUEL CELL AND SOLID ELECTROLYTE FUEL CELL | |
JP2675546B2 (en) | Solid electrolyte fuel cell | |
JP2622261B2 (en) | Method for manufacturing solid electrolyte fuel cell | |
JPH07235316A (en) | Cylindrical solid electrolyte fuel cell | |
EP0639866B1 (en) | Stable air electrode for high temperature solid oxide electrolyte electrochemical cells | |
US4873156A (en) | Solid electrolytic fuel cell and method for manufacturing same | |
JPH07145492A (en) | Steam electrolytic cell | |
JP2601806B2 (en) | Solid electrolyte fuel cell and its fabrication method | |
JPH0644981A (en) | Flat plate-shaped solid electrolyte fuel cell | |
JPH07130385A (en) | Cylindrical lateral band type solid electrolyte electrolytic cell | |
JPH05166530A (en) | Battery member for solid electrolyte fuel cell | |
JPH103932A (en) | Cylindrical lateral stripe type solid electrolyte fuel cell | |
JP5062786B1 (en) | Fuel cell structure | |
JP2777725B2 (en) | Solid electrolyte type cylindrical fuel cell unit and its manufacturing method | |
JPH0758615B2 (en) | Solid electrolyte fuel cell | |
JPH10223239A (en) | Cylindrical solid oxide electrolyte fuel cell | |
JPH077673B2 (en) | Solid electrolyte fuel cell unit | |
TW202412369A (en) | Electrochemical cell | |
JPH0461752A (en) | Fuel cell with solid electrolyte | |
JPH09106824A (en) | Conductive cermet and solid electrolyte fuel cell and interconnector using the cermet | |
JP3483004B2 (en) | Method for manufacturing solid oxide fuel cell |